Lecture 24

November 2, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall

Class Web Page

 $\label{local_continuity} $$ $$ \begin{array}{c} http://www.stat.umn.edu/~kb/classes/5401\\ \hline @ 2005 by Christopher Bingham \\ \end{array} $$$

Statistics 5401 Lecture 24

November 2, 2005

The two approaches agree in an important way.

Both view the first few principal components as a set, preferably small, of new variables $z_1, z_2, ..., z_m$, linearly related to $x_1, x_2, ..., x_p$, and which lose as little as possible "important information" in the complete data.

- The variance maximization approach equates "important information" with high variability.
- The data matrix approximation approach equates "important information" with having an approximation with small errors.

I focus on their use in approximating a N by p data matrix \mathbf{X} , because I think that is closer to the way principal components are usually used.

Statistics 5401 Lecture 24

Principal components

Principal components are specific linear combinations $Z_j = \mathbf{V}_j' \mathbf{X} = \sum_{1 \leq l \leq p} \mathbf{V}_{lj} \mathbf{X}_{l}$ of variables $\mathbf{X}_1, ..., \mathbf{X}_p$. The vectors $\mathbf{V}_j = [\mathbf{V}_{1j}, ..., \mathbf{V}_{pj}]', 1 \leq j \leq p$, of coefficients are chosen to have certain properties.

There are at least two ways to motivate principal components.

Principal components are linear combinations v_j'x of variables which have the <u>largest variances subject to constraints</u> on the coefficients v_j:

$$\|\mathbf{v}_{j}\|^{2} = \mathbf{v}_{j}'\mathbf{v}_{j} = \sum_{\alpha} v_{\alpha j}^{2} = 1 \text{ (normalized)}$$

 $\mathbf{v}_{j}'\mathbf{v}_{k} = \sum_{\alpha} v_{\alpha j}^{2} v_{\alpha k}^{2} = 0, j \neq k \text{ (orthogonal)}$

Principal components are linear combinations from which you can approximately reconstruct a data matrix X using a least squares criterion.

2

Statistics 5401 Lecture 24

November 2, 2005

November 2, 2005

In many cases, the single most important description or summary of a data matrix \mathbf{X} is its sample mean vector $\overline{\mathbf{X}} = \sum_i \mathbf{X}_i / N$.

I think this is because the N by p matrix

$$1_{N}\overline{X'} = \begin{bmatrix} \overline{X'} \\ \overline{X'} \\ \dots \\ \overline{X'} \end{bmatrix}$$

often "explains" or predicts \boldsymbol{X} well in the following sense:

Elements of $\widetilde{X} \equiv X - 1_{N} \overline{X}$ are often much smaller than the elements of X.

Principal components are actually derived from a process which attempts to approximate \widetilde{X} rather than X. By adding $1_{n}\overline{X'}$ to an approximation \widehat{X} to \widetilde{X} , you can then get an approximation \widehat{X} for X:

$$\hat{X} = \hat{X} + 1_N \overline{X'}$$
.

The matrix of <u>residuals</u> of X from \overline{X} is,

$$\widetilde{\mathbf{X}} = \mathbf{X} - \mathbf{1}_{N} \overline{\mathbf{X}'} = \begin{bmatrix} (\mathbf{x}_{1} - \overline{\mathbf{x}})' \\ (\mathbf{x}_{2} - \overline{\mathbf{x}})' \\ (\mathbf{x}_{3} - \overline{\mathbf{x}})' \end{bmatrix}, \text{ N by p}$$

When N > p, usually rank($\widetilde{\mathbf{X}}$) = p. That is, you can always find p pairs of vectors,

$$\mathbf{U}_{k}$$
 (N × 1) and \mathbf{v}_{k} (p × 1)

so that $\widetilde{\mathbf{X}}$ is the sum of p outer products $\mathbf{U}_{\mathbf{k}}$ $\mathbf{v}_{\mathbf{k}}$ ' of $\mathbf{U}_{\mathbf{k}}$ and $\mathbf{v}_{\mathbf{k}}$:

$$\widetilde{X} = \sum_{1 \leq k \leq p} U_k V_k$$

The element in row i (case i) and column ℓ (variable ℓ) of $\widetilde{\mathbf{X}}$ is

$$\widetilde{X}_{i\ell} \equiv X_{i\ell} - \overline{X}_{\ell} = \sum_{1 \leq k \leq p} U_{ik} V_{\ell k} = \sum_{1 \leq k \leq p} V_{\ell k} U_{ik}$$

There are an infinite number of such sets of vectors $\{\mathbf{U}_{\mathbf{k}}\}$ and $\{\mathbf{v}_{\mathbf{k}}\}$.

Statistics 5401

Lecture 24

November 2, 2005

That is, you may be able closely to approximate $\widetilde{\mathbf{X}}$ by a sum of m < p outer products:

$$\widetilde{\mathbf{X}} = \sum_{1 \le k \le m} \mathbf{U}_k \mathbf{v}_k$$
, or $\widetilde{\mathbf{X}}_{\ell} = \sum_{1 \le k \le m} \mathbf{v}_{\ell k} \mathbf{U}_k$, $\ell = 1, ..., p$

in the sense that the elements of $\widetilde{\boldsymbol{X}}$ - $\sum_{1 \leq k \leq m} \boldsymbol{U}_k \boldsymbol{v}_k$ are small.

This would be a reduced rank approximation (specifically a rank m approximation) to $\widetilde{\mathbf{X}}$ because

$$rank(\sum_{1 \le i \le m} U_i v_i') = m < p$$

How do you find such U_i 's and v_i 's?

That is, for a specific m < p, how do you find

- Variables U_{k} , k=1,...,m
- Coefficient vectors \mathbf{v}_k , k = 1,...,m

such that $\widetilde{\mathbf{X}}$ - $\sum_{1 \le k \le m} \mathbf{U}_k \mathbf{v}_k$ ' is small?

In this representation, $\widetilde{\mathbf{X}} = \sum_{1 \leq k \leq p} \mathbf{U}_k \mathbf{v}_k$, think of \mathbf{U}_k and \mathbf{v}_k in the following way:

- \bullet Each N by 1 $\mathbf{U}_{_{\!K}}$ is a new $\mathit{variable}$ with a value for each of the N cases
- Element $V_{\mathfrak{l}^k}$ of the p by 1 vector \mathbf{V}_k is a coefficient of \mathbf{U}_k , in a representation for column $\widetilde{\mathbf{X}}_{\mathfrak{l}}$ of $\widetilde{\mathbf{X}}$.

Specifically, if $\widetilde{\mathbf{X}}_{\alpha}$ is column ℓ of $\widetilde{\mathbf{X}}$, $\widetilde{\mathbf{X}}_{\alpha} = \sum_{1 \leq k \leq p} \mathbf{V}_{\alpha k} \mathbf{U}_{k}$.

Except for there being no constant term (intercept), this looks a little like a multiple regression of $\widetilde{\mathbf{X}}_{\scriptscriptstyle \perp}$ on $\mathbf{U}_{\scriptscriptstyle \parallel}$, ..., $\mathbf{U}_{\scriptscriptstyle p}$.

When rank($\widetilde{\mathbf{X}}$) = p, when m \widetilde{\mathbf{X}} by $\sum_{1 \le k \le m} \mathbf{U}_k \mathbf{v}_k$, but it may be possible to get a good fit that is, have $\widetilde{\mathbf{X}} - \sum_{1 \le k \le m} \mathbf{U}_k \mathbf{v}_k$.

Statistics 5401

Lecture 24

November 2, 2005

Let's start with m = 1, that is, find a $N \times 1$ **U** and $p \times 1$ **v** such that

 $\widetilde{\mathbf{X}}^{(1)} = \mathbf{U}\mathbf{v}' = [\mathbf{v}_1\mathbf{U} \ \mathbf{v}_2\mathbf{U} \ \dots \ \mathbf{v}_p\mathbf{U}] = \widetilde{\mathbf{X}}$ (rank 1) that is, find numbers

- $\{u_i\}$, i = 1,...,N
- $\{V_{\varrho}\}, \ \ell = 1,...p$

so that $\widetilde{X_{i_{\alpha}}}^{(1)} - u_{i_{\alpha}} v_{i_{\alpha}}$ is small.

Let's drop the $\widetilde{\ }$ and just use X, since what we are doing does not depend on working with a matrix with 0 means, although that is the usual case.

If you view U as a new variable, this is like finding one predictor variable U so that the regressions (without intercept) of each column of X on U is a good fit.

Contrast this with the usual regression situation where you are *given* a predictor variable **Z** and seek to find coefficients. Here you need to find both predictor and coefficients.

The first thought many statisticians would have would be to find ${\bf U}$ and ${\bf v}$ so that Uv' is close to X by the *least* squares criterion.

Lecture 24

That is, find U and v so as to minimize $\sum_{1 < i < N} \sum_{1 < i < D} (X_{i,i} - u_{i}V_{i})^{2} = \|X - UV'\|^{2}$

That's what we're going to do.

Notation: When $A = [a_{ij}]$ is a matrix $\|\mathbf{A}\|^2 = \sum_{i} \sum_{i} a_{ii}^2 = \text{trace}(\mathbf{A}'\mathbf{A})$

The Singular Value Decomposition (SVD) of X is the key to finding U and vto minimize || X - Uv'||².

The SVD of X is a mathematical representation of X which is useful in many contexts.

Statistics 5401

November 2, 2005

November 2, 2005

Vocabulary

X = LTR' is the singular value decomposition (SVD) of X

Facts

- $X = LTR' = \sum_{1 \le k \le p} t_k L_k r_k' = \sum_{1 \le k \le p} (t_k L_k) r_k'$, a sum of p outer products of $\mathsf{t_{k}L_{k}}$ and $\boldsymbol{r_{k}}$
- The ti's are unique
- When $t_i \neq t_i$, all $j \neq i$, L_i and r_i are unique (except for multiplication of both by $-1:(-L_{i})(-r_{i})'=L_{i}r_{i}'$

Thus the SVD X = LTR' of X is essentially unique.

- The N by 1 vectors L_i, j = 1,...,p are the left singular vectors of X.
- The p by 1 vectors \mathbf{r}_i , j = 1,...,p are the right singular vectors of X.
- The p scalars $t_1 \ge t_2 \ge ... \ge t_n \ge 0$ are the *singular values* of X.

The Singular Value Decomposition For any $N \times p$ matrix **X** with N > p, there are always three matrices L, R and T such that X = LTR' where

• $L = [L_1, L_2, ..., L_n]$ is $N \times p$ with $L'L = I_n$. That is, the columns L_1, \ldots, L_n of L are orthonormal:

$$\mathbf{L}_{j}'\mathbf{L}_{j} = 1$$
, $\mathbf{L}_{j}'\mathbf{L}_{k} = 0$, $j \neq k$

Note: When N > p, this does not mean that $L^{-1} = L'$, since L is not square.

• $R = [r_1, r_2, ..., r_n]$ is $p \times p$ square with $R'R = I_{p}$, that is, the columns r_{1} , ..., r_{p} of R are orthonormal:

$$\mathbf{r}_{j}'\mathbf{r}_{j}$$
 = 1, $\mathbf{r}_{j}'\mathbf{r}_{k}$ = 0, $j \neq k$
Since \mathbf{R} is p×p, this means that \mathbf{R}^{-1} = \mathbf{R}' and $\mathbf{R}\mathbf{R}'$ = \mathbf{I}_{p} . \mathbf{R} is an orthogonal matrix.

• T = diag[$t_1,..., t_D$], p × p, diagonal with $t_1 \ge t_2 \ge ... \ge t_n \ge 0$

Lecture 24 Statistics 5401

When there are only s < p singular values $t_{i} \neq 0$, so that $t_{s+1} = ... = t_{n} = 0$,

$$X = \sum_{1 \le k \le s} (t_k L_k) r_k$$

a sum of only s outer products.

Fact:

 Rank(X) = s = number of non-zero singular values. When s < p,

$$t_s > t_{s+1} = t_{s+2} = \dots = t_n = 0.$$

The SVD is often the best way numerically to determine the Rank(X):

- Compute T from X
- Count how many diagonal elements are non-zero except for rounding error. This should be Rank(X).

11

Statistics 5401 Lecture 24 November 2, 2005 Statistics 5401 Lecture 24 November 2, 2005

Computing the SVD in MacAnova: svd()

Suppose x is a REAL matrix. Then svd(x) computes the vector $[t_1,...,t_p]$ of $singular\ values$ of x (diag(T), not T)

svd(x,left:T) computes a structure with
two components:

- values, vector of <u>singular values</u>
- leftvectors matrix L whose columns are $L_1, ..., L_D$, the *left* <u>singular vectors</u>

svd(x,right:T) computes a structure
With two components:

- values, vector of singular values
- rightvectors matrix \mathbf{R} whose columns are $\mathbf{r}_1, ..., \mathbf{r}_p$, right singular vectors

svd(x,right:T,left:T) Or svd(x,all:T) computes a 3 component structure:

- values: <u>singular values</u>
- leftvectors: left singular vectors
- rightvectors: right singular vectors

Example

Cmd> $x \leftarrow run(10)^run(0,3)' \# powers of run(10)$ Cmd> $setlabels(x, \$ structure("@", vector("i^0", "i^1", "i^2", "i^3"))) Cmd> x # 10 ny 4 matrix i^0 i^1 i^2 i^3 (1)(3) 27 (4) (5) 125 (6)216 729 1000 (10)10 Cmd> vals <- svd(x); vals #just Sing values1415.4 27.14

X has rank 4, but since the two smallest singular value are so small, it is close to having rank 3, or possibly even rank 2.

Cmd> compnames(results)
(1) "values"
(2) "leftvectors"
(3) "rightvectors"

values

Structure
component
names

p-Vector, (t₁, t₂, ..., t_p)

• leftvectors N by p $L = [L_1 ... L_D]$

Cmd> results <- svd(x,left:T,right:T)# or all:T</pre>

• rightvectors p by p square $R = [r_1...r_p]$

13

Statistics 5401

Lecture 24

November 2, 2005

Statistics 5401

Lecture 24

November 2, 2005

You can construct the diagonal matrix ${\bf T}$ in the SVD by

Cmd> tma	trıx <- dmat(ı	results\$valu	es); tmatrı	x#D1agonal n	natrıx T
(1,1)	1415.4	0	0	0	
(2,1)	0	27.14	0	0	
(3,1)	0	0	2.2961	0	
(4,1)	0	0	0	0.41587	

Here are <u>numerical checks</u> that the right and left singular vectors are orthonormal $(R'R = I_p)$ and $L'L = I_p)$:

 ${\tt Cmd} \verb|> L <- results | \verb|sleft vectors # left singular vectors| \\$

Cmd>
$$list(L)$$
 # $size$ is N by p L $REAL$ 10 4 (labels)
Cmd> L' %*% L # = I _4 (1) (2) (3) (4) (1) $\frac{1}{-6.9389e-18}$ -1.1102e-16 -2.3592e-16 (2) -6.9389e-18 $\frac{1}{1.6653e-16}$ 3.8858e-16 (3) -1.1102e-16 $\frac{1}{1.6653e-16}$ $\frac{1}{1.44409e-16}$ -4.4409e-16 (4) -2.3592e-16 3.8858e-16 -4.4409e-16 $\frac{1}{1.6653e-16}$ $\frac{1}{1.6453e-16}$ $\frac{1}{1$

15

This is also I,.

Relationship with Eigenvalues and Eigenvectors

14

• Each <u>right</u> singular vector \mathbf{r}_{j} is an eigenvector of $\mathbf{X}'\mathbf{X}$ with eigenvalue t_{j}^{2} .

That is, \mathbf{r}_{j} satisfies $\mathbf{X}'\mathbf{X}\mathbf{r}_{j} = \mathbf{t}_{j}^{2}\mathbf{r}_{j}$.

<u>Check</u>: $\mathbf{X}'\mathbf{X}\mathbf{r}_{j} = \mathbf{RTL'LTR'}\mathbf{r}_{j} = \mathbf{t}_{j}^{2}\mathbf{r}_{j}$, because $\mathbf{L'L} = \mathbf{I}_{p}$ and $\mathbf{R'R} = \mathbf{I}_{p}$.

X'X is the p×p matrix of sums of squares (SS) and sums of products (SP) of the *columns* of X.

And, for the case we apply this to, $\widetilde{\mathbf{X}}'\widetilde{\mathbf{X}}$ consists of sums of squares $\sum_{i}(x_{i\imath}-\overline{x_{\imath}})^{2}$ and products $\sum_{i}(x_{i\imath}-\overline{x_{\imath}})(x_{i\imath}-\overline{x_{\imath}})$. An, of course, $\mathbf{S}_{\mathtt{v}}=(1/(N-1))\widetilde{\mathbf{X}}'\widetilde{\mathbf{X}}$.

ullet Each <u>left</u> singular vector $oldsymbol{L}_i$ is an eigenvector of the N by N matrix XX' with eigenvalue t_i².

That is, L_i satisfies $XX^iL_j = t_i^2L_j$.

<u>Check</u>: $XX'L_i = LTR'RTL'L_i = t_i^2L_i$ since $R'R = I_p$ and $L'L = I_p$.

There are N - p = 6 zero eigenvalues.

XX' is the N×N matrix of SS and SP of the rows of X.

17

Statistics 5401 Lecture 24

November 2, 2005

Now define p linear combinations of the columns of X with coefficients from the <u>right</u> singular vectors \mathbf{r}_i , j = 1,... p:

$$U_j \equiv Z_j = Xr_j = LTR'r_j = t_jL_j, j = 1,...,p$$

 $\mathbf{Z}_{i} = \mathbf{X}\mathbf{r}_{i} = \sum_{1 < k < p} r_{ki} \mathbf{X}_{k}$ is a linear combination of the columns of X.

The coefficients (weights) are the elements of

 $\mathbf{r}_i = \mathbf{j}^{th}$ right singular vector of \mathbf{X} = jth eigenvector of X'X.

Because $R'R = I_{D}$, $R'r_{i} = [0 \ 0 \ ... \ 1 \ ... \ 0]'$ and so

$$\mathbf{Z}_{j}$$
 = LTR' \mathbf{r}_{j} = $\mathbf{t}_{j}\mathbf{L}_{j}$ is proportional to a left singular vector of \mathbf{X} .

Lecture 24 Statistics 5401

Summary

If $\mathbf{V}_{_{1}}$, $\mathbf{V}_{_{2}}$, ..., $\mathbf{V}_{_{\mathrm{p}}}$ are eigenvectors of $\mathbf{X}'\mathbf{X}$ with eigenvalues $\lambda_1 \geq \lambda_2 \geq \lambda_n \geq 0$ then

- the jth singular value is $t_i = \sqrt{\lambda_i}$
- the ith right singular vector is $\mathbf{r}_{i} = \mathbf{v}_{i}$ (could be $-\mathbf{v}_{i}$), j = 1, ..., p

If $\boldsymbol{\ell}_{\scriptscriptstyle 1}$, $\boldsymbol{\ell}_{\scriptscriptstyle 2}$, ..., $\boldsymbol{\ell}_{\scriptscriptstyle N}$ (all N by 1) are eigenvectors of XX' with eigenvalues $\lambda_1 \geq \lambda_2 \geq \lambda_D \geq \dots \geq \lambda_N$ then

- the jth singular value is $t_i = \sqrt{\lambda_i}, j = 1, ..., p$
- the jth left singular vector is $\mathbf{L}_{i} = \mathbf{l}_{i}$ (could be $-\mathbf{l}_{i}$), j = 1, ..., p
- The remaining eigenvalues λ_{n+1} , ..., λ_{N} are 0
- The remaining eigenvectors $\mathbf{l}_{\scriptscriptstyle \text{n+1}}$, ..., $\mathbf{l}_{\scriptscriptstyle \text{N}}$ are irrelevant

Statistics 5401 Lecture 24 November 2, 2005

Back to low rank approximations

Q. With m = 1, what N×1 U and p×1 \mathbf{v} minimize (make smallest) the "residual SS"

$$\| \mathbf{X} - \mathbf{U} \mathbf{v}' \|^2 = \sum_{1 \le i \le N} \sum_{1 \le k \le n} (\mathbf{x}_{ik} - \mathbf{u}_i \mathbf{v}_k)^2 ?$$

A. $U = Z_1 = t_1 L_1$ and $v = r_1$

That is

$$\hat{\mathbf{X}}^{(1)} \equiv \mathbf{Z}_{1}\mathbf{r}_{1}' = \mathbf{t}_{1}\mathbf{L}_{1}\mathbf{r}_{1}' = \mathbf{X}\mathbf{r}_{1}\mathbf{r}_{1}'$$

is the best rank 1 approximation to Xin the least squares sense.

This generalizes to rank m > 1:

$$\hat{\mathbf{X}}^{(m)} = \sum_{1 \le j \le m} \mathbf{Z}_j \mathbf{r}_j' = \sum_{1 \le j \le m} t_j \mathbf{L}_j \mathbf{r}_j' \\
= \mathbf{X} \left(\sum_{1 \le j \le m} \mathbf{r}_j \mathbf{r}_j' \right)$$

is the <u>best rank m approximation</u> to **X** in the least squares sense.

Statistics 5401

How good is the approximation?

• The "residual sum of squares" is

$$|| \mathbf{X} - \hat{\mathbf{X}}^{(m)}||^2 = \sum_{1 \le i \le N} \sum_{1 \le \ell \le p} (\mathbf{X}_{i\ell} - \hat{\mathbf{X}_{i\ell}}^{(m)})^2$$
$$= \sum_{m+1 \le k \le p} t_k^2 = \sum_{m+1 \le k \le p} \lambda_k$$

Lecture 24

- = the sum of the squared smallest p - m singular values of X
- = sum of the smallest p m eigenvalues of X'X.
- The "total sum of squares" is

$$\parallel \mathbf{X} \parallel^2 = \sum_{k} \sum_{i} X_{ik}^2 = \sum_{1 \le k \le p} t_k^2 = \sum_{1 \le k \le p} \lambda_k = \text{tr } \mathbf{X} \cdot \mathbf{X}$$

Therefore, when the ratio

$$\frac{\|\mathbf{X} - \hat{\mathbf{X}}^{(m)}\|^2}{\|\mathbf{X}\|^2} = \frac{\sum_{1 \leq i \leq N} \sum_{1 \leq k \leq p} (\mathbf{X}_{ik} - \hat{\mathbf{X}}_{ik}^{(m)})^2}{\sum_{1 \leq i \leq N} \sum_{1 \leq k \leq p} \mathbf{X}_{ik}^2} = \frac{\sum_{m+1 \leq k \leq p} t_k^2}{\sum_{1 \leq k \leq p} t_k^2}$$
 is small, the approximation is pretty good. This ratio is analogous to

 $SS_{residual}/SS_{total} = 1 - R^2$

21

in regression.

In the rank m approximation,

$$\hat{\boldsymbol{X}}^{(m)} = \sum\nolimits_{1 \le k \le m} \boldsymbol{Z}_k \boldsymbol{r}_k , \quad = \sum\nolimits_{1 \le k \le m} \boldsymbol{t}_k \boldsymbol{L}_k \boldsymbol{r}_k , \quad ,$$

column X, of X is approximated by

$$\hat{\boldsymbol{X}}_{\ell}^{(m)} = \sum_{1 \leq k \leq m} \boldsymbol{Z}_{k} \boldsymbol{\Gamma}_{\ell k} = \sum_{1 \leq k \leq m} \boldsymbol{\Gamma}_{\ell k} \boldsymbol{Z}_{k},$$

a linear combination of $\mathbf{Z}_{_{1}}$, $\mathbf{Z}_{_{2}}$, ..., $\mathbf{Z}_{_{m}}$.

Since the $\mathbf{Z}_{_{\!\mathsf{k}}}$'s themselves are linear combinations of the columns of $X(Z_{k})$ \mathbf{Xr}_{ν}), so are the columns of $\hat{\mathbf{X}}^{(m)}$:

$$\hat{\mathbf{X}}_{i}^{(m)} = \sum_{1 \leq k \leq m} r_{ik} \mathbf{X} \mathbf{r}_{k}$$
$$= \sum_{1 \leq k \leq m} (\sum_{1 \leq k \leq m} r_{ik} r_{jk}) \mathbf{X}_{j}$$

 $\sum_{1 \le k \le m} r_{k} r_{jk}$ is a partial sum of squares (j = l) or sum of products (j ≠ l) of <u>rows</u> of **R**. Since $RR' = I_{n}$,

$$\sum_{1 \le k \le m} r_{ik}^{2} = 1 - \sum_{m+1 \le k \le p} r_{ik}^{2}$$
$$\sum_{1 \le k \le m} r_{ik}^{2} r_{jk} = - \sum_{m+1 \le k \le p} r_{ik}^{2} r_{jk}^{2}$$