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Principal components

Principal components are specific
linear combinations z. = V.'X = > .V X

1<0<p ) ¢
of variables x, ..., x . The vectors

v.o=lv, .. v I, 1 <j <p,of coefficients

are chosen to have certain properties.

There are at least two ways to motivate
principal components.

e Principal components are linear com-
binations vj‘x of variables which have

the largest variances subject to cons-
traints on the coefficients v,

v i®=v'v =53 v *=1 (normalized)
vV'v, =2 ,v,Vv, =0, =k (orthogonal)

e Principal components are linear com-
binations from which you can approx-
imately reconstruct a data matrix X
using a least squares criterion.
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The two approaches agree in an important
way.

Both view the first few principal com-
ponents as a set, preferably small, of
new variables z, z,, ..., z_, linearly
related to x,, x,, ..., X, and which lose as

little as possible "important information”
In the complete data.

e The variance maximization approach
equates "important information” with
high variability.

e The data matrix approximation ap-
proach equates “"important information”
with having an approximation with
small errors.

[ focus on their use in approximating a N

by p data matrix X, because [ think that

1s closer to the way principal components
are usually used.
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[n many cases, the single most important
description or summary of a data matrix
X is its sample mean vector X = > X./N.

[ think this is because the N by p matrix
11X = | X

N

often "explains” or predicts X well in the
following sense:
Flements of X = X - 1 X are often

much smaller than the elements of X.

Principal components are actually derived

from a process which attempts to ap-

proximate X rather than X. By adding

1 X to an approximation X to X, you can

then get an approximation X for X:
X=X+1X.

4



Statistics 5401 Lecture 24 November 2, 2005

The matrix of residuals of X from X is,
(X - %) T
(x, - X)’
X =X-1Xx =] (x,-%)"|,Nbyp
| (x, - X)"

When N > p, usually rank(X) = p. That is,

you can always find p pairs of vectors,
U (Nx1)and v, (p x 1)

so that X is the sum of p outer products

Uv' ' of U and v,:

X = Z15k5p Uk Vk‘

The element in row i (case i) and column
0 (variable 2) of X is

~

Xig =Xy = X, = Z15k5puikvszk - Z15k5pvszkuik
There are an infinite number of such sets
of vectors {U} and {v }.

k
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In this representation, X = 3., _U v/,

think of U _and v, _in the following way:

e Each Nby 1 U is anew variable with
a value for each of the N cases

e Element v, of the p by 1 vector v_is a
coefficient of U, in a representation
for column X, of X.

Specifically, if X, is column 2 of X,
XQ - Z]ikﬁpVQkUk°

Except for there being no constant term
(intercept), this looks a little like a

multiple regression of X, on U, ..., U .

When rank(X) = p, when m < p you can't
exactly reproduce X by ¥ U v ', but
1t may be possible to get a good fit
that is, have X - 5. U v .

1<k<m ~k "k
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That 1s, you may be able closely to
approximate X by a sum of m < p outer
products:

~ ~~

X =3 .Uy or X, =%

in the sense that the elements of
X - ¥ ..UV, are small.

T<k<m = 2k k!

This would be a reduced rank approx-
Imation (specifically a rank m approx-
imation) to X because

rank (>’

Uv') =m<p

]
1<i<m 1 i

How do you find such U's and v, 's?

That 1s, for a specific m < p, how do you
find

e Variables U, k = 1,....m
e Coefficient vectors v, k = 1,...m

such that X - 5 Uv'is small?

1<k<m "k "k
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Let's start with m = 1, that 1s, find a
NxT U and px1 v such that

X" =Uv =[vUvU .. vUl
that 1s, find numbers
e {u}t,i=1,.., N

1

o {v,}. 2 =1,.p
so that x,” - uv, is small.

~

X (rank 1)

Let's drop the = and just use X, since
what we are doing does not depend on
working with a matrix with O means,
although that is the usual case.

[f you view U as a new variable, this 1is
like finding one predictor variable U so
that the regressions (without intercept)
of each column of X on U is a good fit.

Contrast this with the usual regression
situation where you are given a
predictor variable Z and seek to find
coefficients. Here you need to find both
predictor and coefficients.
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The first thought many statisticians
would have would be to find U and v so
that Uv’ 1s close to X by the least
squares criterion.

That 1s, find U and v so as to minimize
ZKENZB@(XM -uv,) =X - uvn’
That's what we're going to do.

Notation: When A = [a ] is a matrix
IAN® = 55 a® = trace(A'A)

The Singular Value Decomposition
(SVD) of X is the key to finding U and v
to minimize 1X - Uv'II°,

The SVD of X 1s a mathematical repre-

sentation of X which is useful in many
contexts.
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The Singular Value Decomposition

For any Nxp matrix X with N > p, there
are always three matrices L, R and T
such that X = LTR" where

e L=[L,L,...,L]isNxpwithLlL=1.
That is, the columns L, ..., L of L are
orthonormal:

L'L=1,LL =0 ]=k
Note: When N > p, this does not mean
that L' = L, since L is not square.

e R=1[r,r,..,rlispxp square with
R'R =1, that is, the columns r, ..., r
of R are orthonormal:

rro=1,r'r,=0,]=zKk
Since R is pxp, this means that R =
and RR" = I. R is an orthogonal matrix.

November 2, 2005

p x p, diagonal

>t >0

e T =diaglt,.., t]
with t >t > .
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Vocabulary
X = LTR’ is the singular value decom-
position (SVD) of X

Facts
e X = LTR' = Z]MtkLk r' = Z1ik5p(tkLk)rk‘, a

sum of p outer products of t L, and r,

e The t's are unique

e Whent =zt,all j=z1,L and r are
unique (except for multiplication of
both by -1 : (-L)(-r)" = Lr")

Thus the SVD X = LTR' of X 1s essen-
tially unique.

e The Nby T vectors L, j=1,.,pare the
left singular vectors of X.

I

o
o
R
D
f_|-
-0
D

e The p by 1 vectors r, ]
right singular vectors of X.

e Thepscalarst >t > ..> ’tD > 0 are
the singular values of X.
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When there are only s < p singular values
t,z0,sothatt =..=1 =0,

1
x - Z]ﬁkis(tkLk)rk‘

a sum of only s outer products.
Fact:
e Rank(X) = s = number of non-zero

singular values. When s < p,

t,>t,=t,=..=1=0.

The SVD 1s often the best way numeri-
cally to determine the Rank(X):

e Compute T from X

e Count how many diagonal elements are
non-zero except for rounding error.
This should be Rank(X).
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Computing the SVD in MacAnova: svd()

Suppose x 1s a REAL matrix. Then
svd(x) computes the vector [t ,...,t]]" of

singular values of x (diag(T), not T)

svd(x, | eft: T) computes a structure with
two components:

e val ues, vector of sinqular values

e |eftvectors matrix L whose columns

are L, ..., L, the left singular vectors

svd(x, right: T) computes a structure
with two components:

e val ues, vector of singular values

e rightvectors matrix R whose columns

arer, .., r,right singular vectors

svd(x,right:T,left:T) or svd(x,all:T)
computes a 3 component structure:

e val ues: singular values

e |eftvectors: left singular vectors

e rightvectors: right sinqular vectors
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Example

Qrd> x <- run(10)*run(0,3)' # powers of run(10)

Qmd> setlabels(x,\
structure("@",vector("i*0","ir1","i"2","i*3"))

Ord> x# 10 ny 4 matrix

i 20 i in2 in3
(1) 1 1 1 1
(2) 1 2 4 8
(3) 1 3 9 27
(4) 1 4 16 64
(5) 1 5 25 125
(6) 1 6 36 216
(7) 1 7 49 343
(8) 1 8 64 512
(9) 1 9 81 729
(10) 1 10 100 1000
Ord> vals <- svd(x); vals #ust Sing values
(1) 1415. 4 27.14 2.2961 0. 41587

X has rank 4, but since the two smallest
singular value are so small, it is close to
having rank 3, or possibly even rank 2.

Ond> results <- svd(x,left:T,right:T)# or all: T

Ord> compnames(results)
(1) "val ues”

(2) "leftvectors"
(3) "rightvectors”

Structure
conmponent
nanes

val ues p-vector, (t,, t,, ..., t)
leftvectors NbyplL=I[L ..L]
rightvectors p by p square R = [r ...r ]

1 p
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You can construct the diagonal matrix T
In the SVD by

Omd> tmatrix <- dmat(results$values); tmatrix#Diagonal matrix T
0 0

(1,1) 1415. 4 0
(2,1) 0 27.14 0 0
(3,1) 0 0 2. 2961 0
(4,1) 0 0 0 0. 41587

Here are numerical checks that the right
and left singular vectors are orthonormal
(RR =1 and L'L = 1):

Omd> R <- results$rightvectors # right singular vectors

Ond> list(R) # sizeisp by p
R REAL 4 4

aml> R %% R#=1_4
(1) (2) (3) (4)
1 4.0533e-17 -6.9218e-17 4.9043e-17
4.0533e- 17 1 6.2095e-17 4.8526e-17
-6.9218e-17 6. 2095e- 17 1 -1.4827e-16
4.9043e-17 4.8526e-17 -1.4827e-16 1

This is 1,.

Ond> L <-results$leftvectors # left singular vectors

(I abel s)

A~~~
AWN
o ~——

Ord> list(L) # sizeis N by p
L REAL

10 4 (I abel s)

Q> L'%*%L#=14
(1) (2) (3) (4)
1 1 -6.9389e-18 -1.1102e-16 - 2. 3592e- 16
(2) -6.9389%-18 1 1.6653e-16 3.8858e- 16
(3) -1.1102e-16 1.6653e-16 1 -4.4409- 16
(4) -2.3592e-16 3.8858e-16 -4.4409- 16 1

This is also I,.
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Relationship with Eigenvalues and
Eigenvectors

e Each right singular vector r, is an
eigenvector of X'X with eigenvalue t~.

That is, r satisfies X'Xr = tfrj.
Check: X‘er = RTL‘LTR'rJ. = tfrj,
because L'L = lp and R'R = Ip.

Qmd> sqrt(eigenvals(x' %*% X)) # numerical check
(1) 1415. 4 27.14 2.2961

X'X 1s the pxp matrix of sums of
squares (SS) and sums of products (SP)
of the columns of X.

0. 41587

And, for the case we apply this to, X'X
consists of sums of squares 2 (x,-X,)’

and products  (x, - x,)(x, - X ). An,
of course, S, = (1/(N-1))X'X.
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e Each left singular vector L. is an

eigenvector of the N by N matrlx XX’
with eigenvalue t°.

That is, L satisfies XX'L = t°L.
Check: XX'L = LTRRTL'L = t°L since
RR=1andLlL =1.

Qrd> sqrt(round(eigenvals(x %*% x'),9)) # numerical check

(1) 1415. 4 27.14 2.2961 0. 41587 0
(6) 0 0 0 0 0

There are N - p = 6 zero eigenvalues.

XX'" 1s the NxN matrix of SS and SP of
the rows of X.
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Summary
If v, v, ..., v are eigenvectors of X'X

with eigenvalues A > X\ > A, > 0 then
e the " singular value is

t = \/XJ.
e the j" right singular vector is

r =v (couldbe -v), j=1,..,p

It 2,2, .... 8 (allNby 1) are
eigenvectors of XX' with eigenvalues
o> > xpz ... > A, then
e the j" singular value is
t=y/X.j=1,..p
e the | left singular vector is
L =& (couldbe -2),j=1,..,p
e The remaining eigenvalues X ., ..., A

p+1 N
are O
e The remaining eigenvectors

... ... L, are irrelevant
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Now define p linear combinations of the
columns of X with coefficients from the
right singular vectors r, j = 1,... p:

U=2 =Xr =LTRr =tL,j=1,..p
] J ] ] 1]

Z =Xr =2 ..rX lis a linear com-

bination of the columns of X.

The coefficients (weights) are the
elements of
r = j" right singular vector of X
- | eigenvector of X'X.

Because RR =1, RT =[0 0 ..1..0]
and so

Z =LTRT =1tL
s proportional to a left singular vector
of X.
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Back to low rank approximations

Q.With m = 1, what Nx1T U and px1 v
minimize (make smallest) the "residual
SS”

IX = UVIE = 502X, = uv,)*?
A. U=Z =tlL andv=r
That 1s
XV=2Zr ' =tLr ' =Xrr'

s the best rank 1 approximation to X
In the least squares sense.

This generalizes to rank m > 1:
X = 2l - 2centiLiT
= X(Z, el )

1s the best rank m approximation to X in
the least squares sense.
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How good is the approximation?
e The "residual sum of squares” is
7(m),, 2 _ ~ (m)y2
X - X7 = Z1§i§NZ15Q§p(XiQ - Xy )
- 2 _
B Zm+15k5ptk - Zmﬂgkgp}\k

= the sum of the squared smallest
p - m singular values of X

= sum of the smallest p - m eigen-
values of X'X.

e The "total sum of squares” is
IXN1% = 22X = 2ol = 2 ao A=t XX

Therefore, when the ratio
7 (m) 2 ~(m)y2 2
X=X Z1515NZ15Q5p(XiQ_XiQ ) Zm+1§k§ptk

||X||2 Z15i5NZ15Q5pXiQ2 Z]ikiptk2
Is small, the approximation is pretty
good. This ratio is analogous to

SS...,../SS,., = 1-FR

residual

In regression.
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In the rank m approximation,
A(m) — ’ _ ]
X - Z1<k§mzkrk B Z]ikﬁmtkLkrk ’

column X, of X is approximated by

vy (m) _ _
XQ - Z15k5mzkrszk - Z15k5mrszkzk’
a linear combinationof 2., Z , ..., Z_.

Since the £ 's themselves are linear
combinations of the columns of X (Z, =
Xr,), so are the columns of X™:

X, ™ =5 . r.Xr

Q <k<m 2k

= Z]ﬁQim(ZBkimerrjk)X'

]

> wenl ol 1S @ partial sum of squares (]
= Q) or sum of products (j z 2) of rows
of R. Since RR" =1,

2 _ 1 2
Z15k5mrﬁk =1 Zm+1§k§per
Z15kgmrﬁkrjk - _Zm+15k5prszkrjk
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