Displays for Statistics 5401/8401

Lecture 24

November 2, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall

Class Web Page

http://www.stat.umn.edu/~kb/classes/5401 © 2005 by Christopher Bingham Statistics 5401 Lecture 24 November 2, 2005

Principal components

Principal components are specific <u>linear combinations</u> $Z_j \equiv \mathbf{V}_j' \mathbf{X} = \sum_{1 \leq l \leq p} \mathbf{V}_{lj} \mathbf{X}_{l}$ of variables $\mathbf{X}_1, ..., \mathbf{X}_p$. The vectors $\mathbf{V}_j = [\mathbf{V}_{1j}, ..., \mathbf{V}_{pj}]', 1 \leq j \leq p$, of coefficients are chosen to have certain properties.

There are at least two ways to motivate principal components.

• Principal components are linear combinations $\mathbf{v}_{_{\mathbf{j}}}$ ' \mathbf{x} of variables which have the <u>largest variances subject to constraints</u> on the coefficients $\mathbf{v}_{_{\mathbf{l}}}$:

$$\|\mathbf{v}_{j}\|^{2} = \mathbf{v}_{j}'\mathbf{v}_{j} = \sum_{\ell} \mathbf{v}_{\ell j}^{2} = 1 \text{ (normalized)}$$

 $\mathbf{v}_{j}'\mathbf{v}_{k} = \sum_{\ell} \mathbf{v}_{\ell j} \mathbf{v}_{\ell k} = 0, j \neq k \text{ (orthogonal)}$

 Principal components are linear combinations from which you can <u>approx-</u> <u>imately reconstruct</u> a data matrix X using a <u>least squares</u> criterion. The two approaches agree in an important way.

Both view the first few principal components as a set, preferably small, of new variables $z_1, z_2, ..., z_m$, linearly related to $x_1, x_2, ..., x_p$, and which lose as little as possible "important information" in the complete data.

- The variance maximization approach equates "important information" with high variability.
- The data matrix approximation approach equates "important information" with having an approximation with small errors.

I focus on their use in *approximating* a N by p data matrix \mathbf{X} , because I think that is closer to the way principal components are usually used.

In many cases, the single most important description or summary of a data matrix \mathbf{X} is its sample mean vector $\overline{\mathbf{X}} = \sum_i \mathbf{X}_i / \mathbf{N}$.

I think this is because the N by p matrix

$$1_{N}\overline{X'} = \begin{bmatrix} \overline{X'} \\ \overline{X'} \end{bmatrix}$$

often "explains" or predicts \mathbf{X} well in the following sense:

Elements of $\widetilde{X} \equiv X - 1_{N} \overline{X'}$ are often much smaller than the elements of X.

Principal components are actually derived from a process which attempts to approximate $\widetilde{\mathbf{X}}$ rather than \mathbf{X} . By adding $\mathbf{1}_{n}\overline{\mathbf{x}'}$ to an approximation $\widehat{\mathbf{X}}$ to $\widetilde{\mathbf{X}}$, you can then get an approximation $\widehat{\mathbf{X}}$ for \mathbf{X} :

$$\hat{X} = \hat{X} + 1_N \overline{X'}$$
.

The matrix of <u>residuals</u> of X from \overline{X} is,

$$\widetilde{\mathbf{X}} = \mathbf{X} - \mathbf{1}_{N} \overline{\mathbf{x}'} = \begin{bmatrix} (\mathbf{x}_{1} - \overline{\mathbf{x}})' \\ (\mathbf{x}_{2} - \overline{\mathbf{x}})' \\ (\mathbf{x}_{3} - \overline{\mathbf{x}})' \\ \vdots \\ (\mathbf{x}_{N} - \overline{\mathbf{x}})' \end{bmatrix}, \text{ N by p}$$

When N > p, usually rank($\widetilde{\mathbf{X}}$) = p. That is, you can always find p pairs of vectors,

$$U_{k}$$
 (N × 1) and \mathbf{v}_{k} (p × 1)

so that \widetilde{X} is the sum of p outer products $U_{_{\!\!\!\!\!L}}\,v_{_{\!\!\!\!L}}$ ' of $U_{_{\!\!\!L}}$ and $v_{_{\!\!\!L}}$:

$$\widetilde{\mathbf{X}} = \sum_{1 \leq k \leq p} \mathbf{U}_k \mathbf{v}_k$$

The element in row i (case i) and column ℓ (variable ℓ) of $\widetilde{\mathbf{X}}$ is

$$\widetilde{X}_{i\ell} \equiv X_{i\ell} - \overline{X}_{\ell} = \sum_{1 \le k \le p} U_{ik} V_{\ell k} = \sum_{1 \le k \le p} V_{\ell k} U_{ik}$$

There are an infinite number of such sets of vectors $\{\mathbf{U}_{\mathbf{k}}\}$ and $\{\mathbf{v}_{\mathbf{k}}\}$.

In this representation, $\widetilde{\mathbf{X}} = \sum_{1 \le k \le p} \mathbf{U}_k \mathbf{v}_k$, think of \mathbf{U}_k and \mathbf{v}_k in the following way:

- Each N by 1 \mathbf{U}_{k} is a new *variable* with a value for each of the N cases
- Element v_{k} of the p by 1 vector \mathbf{v}_{k} is a coefficient of \mathbf{U}_{k} , in a representation for column $\widetilde{\mathbf{X}}_{k}$ of $\widetilde{\mathbf{X}}$.

Specifically, if $\widetilde{\mathbf{X}}_{i}$ is column ℓ of $\widetilde{\mathbf{X}}$, $\widetilde{\mathbf{X}}_{i} = \sum_{1 \le k \le p} \mathbf{V}_{ik} \mathbf{U}_{k}$.

Except for there being no constant term (intercept), this looks a little like a multiple regression of $\widetilde{\mathbf{X}}_{\scriptscriptstyle \parallel}$ on $\mathbf{U}_{\scriptscriptstyle \parallel}$, ..., $\mathbf{U}_{\scriptscriptstyle \parallel}$.

When rank($\widetilde{\mathbf{X}}$) = p, when m \widetilde{\mathbf{X}} by $\sum_{1 \le k \le m} \mathbf{U}_k \mathbf{v}_k$ ', but it may be possible to get a good fit that is, have $\widetilde{\mathbf{X}} - \sum_{1 \le k \le m} \mathbf{U}_k \mathbf{v}_k$ '.

Lecture 24

November 2, 2005 Statistics 5401

Lecture 24

November 2, 2005

That is, you may be able closely to approximate $\widetilde{\mathbf{X}}$ by a sum of m < p outer products:

$$\widetilde{X} = \sum_{1 \le k \le m} U_k V_k$$
, or $\widetilde{X}_{\ell} = \sum_{1 \le k \le m} V_{\ell k} U_k$, $\ell = 1, ..., p$

in the sense that the elements of $\widetilde{\mathbf{X}}$ - $\sum_{1 < k < m} \mathbf{U}_k \mathbf{v}_k$ ' are small.

This would be a reduced rank approximation (specifically a rank m approximation) to $\widetilde{\mathbf{X}}$ because

$$rank(\sum_{1 < i < m} U_i v_i') = m < p$$

How do you find such U_i 's and v_i 's?

That is, for a specific m < p, how do you find

- Variables U_k, k = 1,...,m
- Coefficient vectors \mathbf{v}_{k} , k = 1,...,m such that $\widetilde{\mathbf{X}} \sum_{1 < k < m} \mathbf{U}_{k} \mathbf{v}_{k}$ is small?

Let's start with m = 1, that is, find a $N \times 1$ **U** and $p \times 1$ **v** such that

$$\widetilde{\mathbf{X}}^{(1)} = \mathbf{U}\mathbf{v}' = [\mathbf{v}_1\mathbf{U} \ \mathbf{v}_2\mathbf{U} \ \dots \ \mathbf{v}_p\mathbf{U}] = \widetilde{\mathbf{X}}$$
 (rank 1) that is, find numbers

- $\{u_i\}$, i = 1,...,N
- $\{v_{\ell}\}$, $\ell = 1,...p$

so that $\widetilde{X}_{i,0}^{(1)} - u_i V_i$ is small.

Let's drop the $\widetilde{\ }$ and just use X, since what we are doing does not depend on working with a matrix with 0 means, although that is the usual case.

If you view ${\bf U}$ as a new variable, this is like finding one predictor variable ${\bf U}$ so that the regressions (without intercept) of each column of ${\bf X}$ on ${\bf U}$ is a good fit.

Contrast this with the usual regression situation where you are *given* a predictor variable **Z** and seek to find coefficients. Here you need to find both predictor and coefficients.

The first thought many statisticians

The Singular Value Decomposition would have would be to find U and v so

For any $N \times p$ matrix X with

that **Uv**' is close to **X** by the *least* squares criterion.

That is, find \boldsymbol{U} and \boldsymbol{v} so as to minimize

$$\sum_{1 \le i \le N} \sum_{1 \le \ell \le p} (X_{i\ell} - u_i V_{\ell})^2 = \|X - UV'\|^2$$

That's what we're going to do.

Notation: When $A = [a_{ij}]$ is a matrix

$$\|\mathbf{A}\|^2 = \sum_{i} \sum_{j} a_{ij}^2 = \text{trace}(\mathbf{A}'\mathbf{A})$$

The Singular Value Decomposition (SVD) of X is the key to finding U and v to minimize $\|X - Uv'\|^2$.

The SVD of \boldsymbol{X} is a mathematical representation of \boldsymbol{X} which is useful in many contexts.

The Singular Value Decomposition For any N×p matrix X with N \geq p, there are always three matrices L, R and T such that X = LTR' where

Lecture 24

November 2, 2005

• L = $[L_1, L_2, ..., L_p]$ is N × p with L'L = I_p . That is, the columns $L_1, ..., L_p$ of L are orthonormal:

$$L_i'L_i = 1$$
, $L_i'L_k = 0$, $j \neq k$

Note: When N > p, this does not mean that $L^{-1} = L'$, since L is not square.

• $\mathbf{R} = [\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_p]$ is $p \times p$ square with $\mathbf{R}'\mathbf{R} = \mathbf{I}_p$, that is, the columns $\mathbf{r}_1, \dots, \mathbf{r}_p$ of \mathbf{R} are orthonormal:

$$\mathbf{r}_{j}'\mathbf{r}_{j} = 1$$
, $\mathbf{r}_{j}'\mathbf{r}_{k} = 0$, $j \neq k$
Since **R** is p×p, this means that $\mathbf{R}^{-1} = \mathbf{R}'$

and $RR' = I_p$. R is an <u>orthogonal matrix</u>.

• $T = diag[t_1, ..., t_p], p \times p, diagonal$ with $t_1 \ge t_2 \ge ... \ge t_p \ge 0$

Vocabulary

X = LTR' is the singular value decomposition (SVD) of X

Facts

- $X = LTR' = \sum_{1 \le k \le p} t_k L_k r_k' = \sum_{1 \le k \le p} (t_k L_k) r_k'$, a sum of *p* outer products of $t_k L_k$ and r_k
- The ti's are unique
- When t_i ≠ t_j, all j ≠ i, L_i and r_i are unique (except for multiplication of both by -1 : (-L_i)(-r_i)' = L_ir_i')

Thus the SVD X = LTR' of X is <u>essentially unique</u>.

- The N by 1 vectors L_j, j = 1,...,p are the
 left singular vectors of X.
- The p by 1 vectors \mathbf{r}_{j} , j = 1,...,p are the right singular vectors of X.
- The p scalars $t_1 \ge t_2 \ge ... \ge t_p \ge 0$ are the *singular values* of X.

When there are only s t_i \neq 0, so that $t_{s+1} = ... = t_p = 0$,

$$X = \sum_{1 \le k \le s} (t_k L_k) r_k'$$

a sum of only s outer products.

Fact:

 Rank(X) = s = number of non-zero singular values. When s < p,

$$t_s > t_{s+1} = t_{s+2} = \dots = t_p = 0.$$

The SVD is often the best way numerically to determine the Rank(X):

- Compute T from X
- Count how many diagonal elements are non-zero except for rounding error.
 This should be Rank(X).

Computing the SVD in MacAnova: svd()

Suppose x is a REAL matrix. Then svd(x) computes the vector $[t_1,...,t_p]$ of $singular\ values$ of x (diag(T), not T)

svd(x,left:T) computes a structure with
two components:

- values, vector of singular values
- leftvectors matrix L whose columns are L_1 , ..., $L_{\tiny D}$, the *left* singular vectors

svd(x,right:T) computes a structure
with two components:

- values, vector of singular values
- rightvectors matrix \mathbf{R} whose columns are $\mathbf{r}_1, ..., \mathbf{r}_D$, right singular vectors

svd(x,right:T,left:T) Or svd(x,all:T)
computes a 3 component structure:

- values: <u>singular values</u>
- leftvectors: left singular vectors
- rightvectors: right singular vectors

Example

November 2, 2005

```
Cmd> x < -run(10)^run(0,3)' \# powers of run(10)
Cmd> setlabels(x,\)
        structure("@", vector("i^0", "i^1", "i^2", "i^3")))
Cmd> x \# 10 ny 4 matrix
(1)
(3)
                                                     27
                                        16
                                                     64
                                                     216
                                                     343
                                                     512
                                                     729
                                                    1000
Cmd> vals <- svd(x); vals #just Sing values
                       27.14
                                   2.2961
                                               0.41587
```

X has rank 4, but since the two smallest singular value are so small, it is close to having rank 3, or possibly even rank 2.

Cmd> results <- svd(x,left:T,right:T)# or all:T</pre>

<pre>Cmd> compnames(results)</pre>	
(1) "values"	Structure
(2) "leftvectors"	component
(3) "rightvectors"	names

- values
- p-vector, $(t_1, t_2, ..., t_p)$
- leftvectors N by p $L = [L_1 ... L_p]$
- rightvectors p by p square $\mathbf{R} = [\mathbf{r}_1 ... \mathbf{r}_p]$

You can construct the diagonal matrix T in the SVD by

Lecture 24

Here are <u>numerical checks</u> that the right and left singular vectors are orthonormal $(\mathbf{R}'\mathbf{R} = \mathbf{I}_{D})$ and $\mathbf{L}'\mathbf{L} = \mathbf{I}_{D}$:

Cmd> R <- results\$rightvectors # right singular vectors

Cmd>
$$list(R)$$
 # $size$ is p by p REAL 4 4 (labels) (Cmd> R' %*% R # = I_{-4} (1) (2) (3) (4) (1) $\frac{1}{(2)}$ 4.0533e-17 -6.9218e-17 4.9043e-17 (2) 4.0533e-17 $\frac{1}{(3)}$ 6.2095e-17 4.8526e-17 (3) -6.9218e-17 6.2095e-17 $\frac{1}{(4)}$ 4.9043e-17 4.8526e-17 -1.4827e-16 $\frac{1}{(4)}$

This is I_4 .

Cmd> L <- results\$leftvectors # left singular vectors

This is also I_4 .

Relationship with Eigenvalues and Eigenvectors

• Each <u>right</u> singular vector \mathbf{r}_{j} is an eigenvector of $\mathbf{X}'\mathbf{X}$ with eigenvalue t_{j}^{2} .

That is, \mathbf{r}_{j} satisfies $\mathbf{X}'\mathbf{X}\mathbf{r}_{j} = t_{j}^{2}\mathbf{r}_{j}$. Check: $\mathbf{X}'\mathbf{X}\mathbf{r}_{j} = \mathbf{R}\mathbf{T}\mathbf{L}'\mathbf{L}\mathbf{T}\mathbf{R}'\mathbf{r}_{j} = t_{j}^{2}\mathbf{r}_{j}$, because $\mathbf{L}'\mathbf{L} = \mathbf{I}_{p}$ and $\mathbf{R}'\mathbf{R} = \mathbf{I}_{p}$.

Cmd> sqrt(eigenvals(x' %*% x)) # numerical check
(1) 1415.4 27.14 2.2961 0.41587

X'X is the p×p matrix of sums of squares (SS) and sums of products (SP) of the *columns* of X.

And, for the case we apply this to, $\widetilde{\mathbf{X}}'\widetilde{\mathbf{X}}$ consists of sums of squares $\sum_{i}(x_{i\ell}-\overline{x_{\ell}})^{2}$ and products $\sum_{i}(x_{i\ell}-\overline{x_{\ell}})(x_{i\ell}-\overline{x_{\ell}})$. An, of course, $\mathbf{S}_{\mathbf{x}}=(1/(N-1))\widetilde{\mathbf{X}}'\widetilde{\mathbf{X}}$.

Statistics 5401 Lecture 24 November 2, 2005 Statistics 5401 Lecture 24 November 2, 2005

• Each <u>left</u> singular vector \mathbf{L}_{j} is an eigenvector of the N by N matrix $\mathbf{X}\mathbf{X}'$ with eigenvalue t_{j}^{2} .

That is, L_j satisfies $XX'L_j = t_j^2L_j$.

Check: $XX'L_j = LTR'RTL'L_j = t_j^2L_j$ since $R'R = I_p$ and $L'L = I_p$.

Cmd>
$$sqrt(round(eigenvals(x *** x'),9))$$
 # numerical check (1) 1415.4 27.14 2.2961 0.41587 0 (6) 0 0 0 0

There are N - p = 6 zero eigenvalues.

XX' is the N×N matrix of SS and SP of the rows of X.

Summary

If $\mathbf{V}_{_{1}}$, $\mathbf{V}_{_{2}}$, ..., $\mathbf{V}_{_{p}}$ are eigenvectors of \mathbf{X} ' \mathbf{X} with eigenvalues $\lambda_{_{1}} \geq \lambda_{_{2}} \geq \lambda_{_{p}} \geq 0$ then

- the jth singular value is $t_i = \sqrt{\lambda_i}$
- the jth right singular vector is $\mathbf{r}_{j} = \mathbf{v}_{j}$ (could be $-\mathbf{v}_{j}$), j = 1, ..., p

If $\boldsymbol{l}_{\scriptscriptstyle 1}$, $\boldsymbol{l}_{\scriptscriptstyle 2}$, ..., $\boldsymbol{l}_{\scriptscriptstyle N}$ (all N by 1) are eigenvectors of $\boldsymbol{X}\boldsymbol{X}$ ' with eigenvalues $\lambda_{\scriptscriptstyle 1} \geq \lambda_{\scriptscriptstyle 2} \geq \lambda_{\scriptscriptstyle p} \geq \ldots \geq \lambda_{\scriptscriptstyle N}$ then

- the jth singular value is $t_i = \sqrt{\lambda_i}$, j = 1, ..., p
- the jth left singular vector is $\mathbf{L}_{j} = \mathbf{l}_{j}$ (could be $-\mathbf{l}_{j}$), j = 1, ..., p
- The remaining eigenvalues $\lambda_{_{p+1}},\;...,\;\lambda_{_{N}}$ are 0
- The remaining eigenvectors $\mathbf{l}_{\text{D+1}}, ..., \mathbf{l}_{\text{N}}$ are irrelevant

Now define p linear combinations of the columns of X with coefficients from the right singular vectors \mathbf{r}_i , j = 1,... p:

$$U_j \equiv Z_j = Xr_j = LTR'r_j = t_jL_j, j = 1,...,p$$

 $\mathbf{Z}_{j} = \mathbf{X}\mathbf{r}_{j} = \sum_{1 \le k \le p} r_{kj} \mathbf{X}_{k}$ is a linear combination of the columns of \mathbf{X} .

The coefficients (weights) are the elements of

Because $R'R = I_p$, $R'r_j = [0 \ 0 \dots 1 \dots 0]'$ and so

$$Z_j = LTR'r_j = t_jL_j$$

is proportional to a left singular vector of \mathbf{X} .

Back to low rank approximations

Q. With m = 1, what N×1 U and p×1 v minimize (make smallest) the "residual SS"

$$\|X - Uv'\|^2 = \sum_{1 \le i \le N} \sum_{1 \le \ell \le p} (x_{i\ell} - u_i v_{\ell})^2 ?$$

A.
$$U = Z_1 = t_1L_1$$
 and $v = r_1$

That is

$$\hat{X}^{(1)} \equiv Z_1 r_1' = t_1 L_1 r_1' = X r_1 r_1'$$

is the best rank 1 approximation to \mathbf{X} in the least squares sense.

This generalizes to rank m > 1:

$$\hat{\mathbf{X}}^{(m)} = \sum_{1 \le j \le m} \mathbf{Z}_{j} \mathbf{r}_{j}' = \sum_{1 \le j \le m} t_{j} \mathbf{L}_{j} \mathbf{r}_{j}'$$
$$= \mathbf{X} \left(\sum_{1 \le j \le m} \mathbf{r}_{j} \mathbf{r}_{j}' \right)$$

is the <u>best rank m approximation</u> to \mathbf{X} in the least squares sense.

How good is the approximation?

• The "residual sum of squares" is

$$\| \mathbf{X} - \hat{\mathbf{X}}^{(m)} \|^2 = \sum_{1 \le i \le N} \sum_{1 \le \ell \le p} (\mathbf{X}_{i\ell} - \hat{\mathbf{X}_{i\ell}}^{(m)})^2$$

$$= \sum_{m+1 \le k \le p} t_k^2 = \sum_{m+1 \le k \le p} \lambda_k$$

- = the sum of the squared smallest
 p m singular values of X
- = sum of the smallest p m eigenvalues of X'X.
- The "total sum of squares" is

$$\|X\|^{2} = \sum_{\ell} \sum_{i} X_{i\ell}^{2} = \sum_{1 < k < p} t_{k}^{2} = \sum_{1 < k < p} \lambda_{k} = tr X'X$$

Therefore, when the ratio

$$\frac{\|\mathbf{X} - \hat{\mathbf{X}}^{(m)}\|^{2}}{\|\mathbf{X}\|^{2}} = \frac{\sum_{1 \le i \le N} \sum_{1 \le k \le p} (x_{ik} - \hat{x_{ik}}^{(m)})^{2}}{\sum_{1 \le i \le N} \sum_{1 \le k \le p} x_{ik}^{2}} = \frac{\sum_{m+1 \le k \le p} t_{k}^{2}}{\sum_{1 \le k \le p} t_{k}^{2}}$$
is small the approximation is protty

is small, the approximation is pretty good. This ratio is analogous to

$$SS_{residual}/SS_{total} = 1 - R^2$$

in regression.

In the rank m approximation,

$$\hat{X}^{(m)} = \sum_{1 \le k \le m} Z_k r_k' = \sum_{1 \le k \le m} t_k L_k r_k'$$
,

column X, of X is approximated by

$$\hat{\mathbf{X}}_{\ell}^{(m)} = \sum_{1 \le k \le m} \mathbf{Z}_{k} \mathbf{r}_{\ell k} = \sum_{1 \le k \le m} \mathbf{r}_{\ell k} \mathbf{Z}_{k},$$

a linear combination of \mathbf{Z}_1 , \mathbf{Z}_2 , ..., \mathbf{Z}_m .

Since the \mathbf{Z}_{k} 's themselves are linear combinations of the columns of \mathbf{X} (\mathbf{Z}_{k} = $\mathbf{X}\mathbf{r}_{k}$), so are the columns of $\hat{\mathbf{X}}^{(m)}$:

$$\widehat{\mathbf{X}}_{\ell}^{(m)} = \sum_{1 \leq k \leq m} r_{\ell k} \mathbf{X} \mathbf{r}_{k}$$
$$= \sum_{1 \leq \ell \leq m} (\sum_{1 \leq k \leq m} r_{\ell k} r_{j k}) \mathbf{X}_{j}$$

 $\sum_{1 \le k \le m} r_{\ell k} r_{jk}$ is a partial sum of squares (j = ℓ) or sum of products (j $\neq \ell$) of rows of R. Since $RR' = I_{p}$,

$$\sum_{1 \le k \le m} r_{\ell k}^{2} = 1 - \sum_{m+1 \le k \le p} r_{\ell k}^{2}$$
$$\sum_{1 \le k \le m} r_{\ell k} r_{jk} = -\sum_{m+1 \le k \le p} r_{\ell k} r_{jk}$$