Displays for Statistics 5401/8401

Lecture 22

October 28, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall

Class Web Page

http://www.stat.umn.edu/~kb/classes/5401 © 2005 by Christopher Bingham Statistics 5401 Lecture 22 October 28, 2005

Analysis of covariance computations are useful even when there are no covariates.

They provide a way to test H_0 : **LB** = **0** that is different from either of

- tests based on the eigenvalues of H relative to E
- tests based on Bonferronized univariate F-statistics for each response.
- tests based on Bonferronized univariate t-statistics for each coefficient of each response

Reminder: H_0 : **LB** = **0** is often stated more understandably in terms of means or effects. For example

- H_0 : $\mu_1 = \mu_2 = ... = \mu_g$, that is, no differences among group means
- H_0 : $(\alpha \beta)_{jk} = 0$, all j and k, that is, no AB interactions

Suppose $Y = [Y_1 \ Y_2]$ consists of two groups of variables (columns of Y_1 and columns of Y_2).

The analysis of covariance approach can answer the following question:

Does Y₂ add information about violation of H₀ beyond information in Y₁?

Example: μ_0 : μ_1 = ... = μ_g in one-way MANOVA of Y. Do the variables in Y_2 provide information about differences of means that is not provided by Y_1 .

For the Fisher iris data, Y_1 might contain sepal lengths and widths and Y_2 petal lengths and widths. The question would be, do petal sizes help distinguish varieties once you know sepal sizes.

More specifically, suppose \mathbf{Y}_1 and \mathbf{Y}_2 have \mathbf{p}_1 and \mathbf{p}_2 columns respectively. For the iris data example, \mathbf{Y}_1 \mathbf{p}_1 = 2 and \mathbf{p}_2 = 2.

Then you can partition the coefficient and variance matrices as

$$\mathbf{B} = [\mathbf{B}_1, \ \mathbf{B}_2] \text{ and } \mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{12} & \mathbf{\Sigma}_{22} \end{bmatrix} \mathbf{p}_1 \text{ rows}$$

Then $Y = ZB + \varepsilon$, $V[\varepsilon] = \Sigma$ becomes

$$\mathbf{Y} = [\mathbf{Y}_1, \mathbf{Y}_2] = [\mathbf{ZB}_1 \ \mathbf{ZB}_2] + [\mathbf{\epsilon}_1, \mathbf{\epsilon}_2],$$

 $\mathbf{V}[\mathbf{\epsilon}_1] = \mathbf{\Sigma}_{11}, \mathbf{V}[\mathbf{\epsilon}_2] = \mathbf{\Sigma}_{22}, \mathbf{Cov}[\mathbf{\epsilon}_1, \mathbf{\epsilon}_2] = \mathbf{\Sigma}_{12}$

The matrix of regression coefficients of the residuals \mathbf{Y}_2 - \mathbf{ZB}_2 on the residuals \mathbf{Y}_1 - \mathbf{ZB}_1 is $\mathbf{\Gamma} = \mathbf{\Sigma}_{11}^{-1} \mathbf{\Sigma}_{12}$.

Note that Γ = **0** if and only if Σ_{12} = **0**.

When the errors $[\mathbf{\epsilon}_1, \mathbf{\epsilon}_2]$ are multivariate normal, the <u>conditional</u> distribution of \mathbf{Y}_2 given both \mathbf{Z} and \mathbf{Y}_1 is

$$N_{p_2}(\mathbf{Z} \ \mathbf{B}_2^* + \mathbf{Y}_1 \mathbf{\Gamma}, \ \widetilde{\mathbf{\Sigma}}_{22}) \text{ with } \mathbf{B}_2^* \equiv \mathbf{B}_2 - \mathbf{B}_1 \mathbf{\Gamma}$$

This is essentially the same model as the MANACOVA model, with \mathbf{Y}_1 as <u>covariates</u>. Here's how the components match up:

Notation correspondence

MANACOVA U Y D B B^* Γ Above Y_1 Y_2 B_1 B_2 B_2^* Γ

 \mathbf{B}_{2}^{*} measures the effect of \mathbf{Z} on \mathbf{Y}_{2} that is not mediated through \mathbf{Y}_{1} . If $\mathbf{LB}_{2}^{*} = \mathbf{0}$, \mathbf{Y}_{2} provides no additional information about violation of \mathbf{H}_{0} .

Fact With $\mathbf{B} = [\mathbf{B}_1 \ \mathbf{B}_2], \ \mathbf{B}_2^* \equiv \mathbf{B}_2 - \mathbf{B}_1 \Gamma$ \mathbf{H}_0 : $\mathbf{L}\mathbf{B} = \mathbf{0}$ is true if and only if both $\mathbf{H}_0^{(1)}$: $\mathbf{L}\mathbf{B}_1 = \mathbf{0}$ and $\mathbf{H}_0^{(2)}$: $\mathbf{L}\mathbf{B}_2^* = \mathbf{0}$ are true.

Lecture 22

- Test $H_0^{(1)}$: $LB_1 = 0$ by <u>MANOVA</u> of Y_1 with design matrix Z, <u>ignoring</u> Y_2 . $H = H^{(1)}$, $E = E^{(1)}$
- Test $H_0^{(2)}*: LB_2* = 0$ by <u>MANACOVA</u> of Y_2 with design matrix Z and Y_1 as covariates. $H = H^{(2)}*, E = E^{(2)}*$

For both tests, you can use any available test - Bonferronized F or tests based on relative eigenvalues.

Note: This is different from testing $LB_1 = 0$ and $LB_2 = 0$

by Bonferronizing multivariate tests based on MANOVA of \mathbf{Y}_1 and MANOVA of \mathbf{Y}_2 .

Fact: Under multivariate normality, $\mathbf{H}^{(1)}$ and $\mathbf{E}^{(1)}$ are *independent* of $\mathbf{H}^{(2)*}$ and $\mathbf{E}^{(2)*}$.

This means you can combine P-values from each test more advantageously than by Bonferronizing.

If you use $\alpha' = 1 - (1 - \alpha)^{1/2} = \alpha/2 + \alpha^2/8$ > $\alpha/2$, the Bonferrronized α , the <u>overall</u> significance level of your test is exactly α .

An overall P-value is

$$P = 1 - (1 - min(P_1, P_2))^2$$

where P_1 and P_2 are the P-values for the individual tests of $H_0^{(1)}$ and $H_0^{(2)}$. This is smaller than the Bonferronized P-values $2 \times \min(P_1, P_2)$

Suppose you reject $H_0^{(1)}$: $LB_1 = 0$ using only Y_1 .

Then the test of $H_0^{(2)}*: LB_2* = 0$ based on Y_2 with covariates Y_1 , attempts to answer our question

Does \mathbf{Y}_2 add evidence against the overall \mathbf{H}_0 beyond the evidence already provided by \mathbf{Y}_1 ?

When you <u>reject</u> $H_0^{(1)}$ using \mathbf{Y}_1 but can't reject $H_0^{(2)*}$, you have rejected the overall H_0 but find no evidence that \mathbf{Y}_2 provides additional information about violation of the overall H_0 .

When you <u>reject</u> $H_0^{(2)*}$ you can conclude that \mathbf{Y}_2 does have information about violation of H_0 that \mathbf{Y}_1 does not provide.

Example with Fisher iris data,

- Y₁ = sepal data (y[,run(2)])
- Y_2 = petal data (y[,-run(2)])

Conclusion 1:

Statistics 5401

Variety means differ very significantly with respect to sepal dimensions.

```
Cmd> # Do MANACOVA of petal vars with sepal vars as covariates
Cmd> manova("{y[,-run(2)]} = {y[,1]} + {y[,2]} + varieties", 
Cmd> TERMNAMES # helps to find numbers of terms
(1) "CONSTANT"
(2) "{y[,1]}"
                     Term for covariate y[,1]
(3) "{y[,2]}"
                     Term for covariate y[,2]
(4) "varieties"
                     Hypothesis term = term 4
                     Error term = term 5
Cmd> h2 < -SS[4,,]; e2 < -SS[5,,]
Cmd> vals2 <- releigenvals(h2,e2); vals2</pre>
                  0.044657 Relative eigen values
Cmd> cumtrace(sum(vals2),DF[4], DF[5], 2, upper:T)
(1) 2.2139e-178
```

Conclusion 2:

- Petal dimensions differ among varieties, even after adjusting for sepal dimensions.
- They do add information about differences among varieties.

Statistics 5401

Sequential F-tests

Lecture 22

You can extend this approach to testing H_0 , sequentially, variable by variable.

- 1 Use univariate <u>ANOVA</u> to test H_0 : $L\beta_1 = 0$ for scalar response variable Y_1 (N by 1 vector) in $Y = [Y_1, Y_2, ..., Y_D]$.
- 2 Use univariate <u>ANACOVA</u> to test H_0 for Y_2 , adjusted for Y_1 .
- 3 Use univariate <u>ANACOVA</u> to test H_0 for Y_3 , adjusted for Y_1 and Y_2 , etc.

At stage j you have a *univariate* problem with test statistic F_i , j = 1,...p.

When the errors are MVN, the F_j are <u>independent</u> and have central (H_0 true) or noncentral (H_0 not true) F-distributions.

Fact: When H_0 : LB = 0 is true, each F_j is distributed as F_{f_h, f_e^-j+1} .

- Numerator d.f. = f, are all the same
- Denominator d.f. = f_e -j+1 drop by 1 for each additional covariate.

Because of independence, to get overall significance level pprox, for each F-test you use

$$\alpha' = 1 - (1 - \alpha)^{1/p}$$

instead of the Bonferronized $\alpha' = \alpha/p$. This is better than Bonferronizing since

$$1 - (1 - \alpha)^{1/p} > \alpha/p.$$

The P-value for the overall test of H_0 is $P = 1 - (1 - min(P_1, P_2, ..., P_p))^p$

where P_j is the P-value computed from the observed F_j . P , the Bonferronized P-value.

Notes:

Statistics 5401

- Except for F_1 , the sequential F-statistics are different from the F-statistics $(h_{jj}/f_h)/(e_{jj}/f_e)$ computed from each variable ignoring all the others.
- Each successive F_j tests whether Y_j provides information on the violation of H₀ additional to that provided by Y₁,..., Y_{i-1}.
- The F's <u>depend on the order of the variables</u> so the result of sequential F-tests may depend on the specific ordering of the variables Y_i.

When you are primarily interested in testing the overall H_0 : **LB** = **0**, you can stop once you have found F_j with P-value < 1 - $(1 - \alpha)^{1/p}$.

Here is how the sequential test works with the Fisher iris data.

```
Cmd> anova("{y[,1]}=varieties",fstat:T,pval:F)
Model used is \{y[,1]\}=varieties
                  1
                           5121.7
                                        5121.7 19326.50528
CONSTANT
varieties
                   2
                          63.212
                                        31.606
                                                  119.26450 = F1
ERROR1
                147
                          38,956
                                       0.26501
Cmd> anova(\{y[,2]\}=\{y[,1]\}+varieties'',fstat:T,pval:F\}
Model used is \{y[,2]\}=\{y[,1]\}+varieties
WARNING: summaries are sequential
                                        1402.1 16788.59502
CONSTANT
                          1402.1
                         0.39128
{y[,1]}
                                       0.39128
varieties
                                        7.8613
                                                   94.13036 = F2
                          15.723
ERROR1
                146
                          12.193
                                      0.083515
\label{eq:cmd-anova} $$\operatorname{Cmd-anova(''\{y[,3]\}=\{y[,1]\}+\{y[,2]\}+varieties'',fstat:T,pval:F)}$$
Model used is \{y[,3]\}=\{y[,1]\}+\{y[,2]\}+varieties
WARNING: summaries are sequential
                 DF
CONSTANT
                          2118.4
                                        2118.4 26395.47270
{y[,1]}
                          352.87
                                        352.87
                                                 4396.78014
\{y[,2]\}
                          50.022
                                        50.022
                                                  623.28867
varieties
                  2
                             49.8
                                          24.9
                                                  310.25674 = F3
                145
                          11.637
                                      0.080256
Cmd> anova("\{y[,4]\}=\{y[,1]\}+\{y[,2]\}+\{y[,3]\}+varieties",\
 fstat:T,pval:F)
Model used is \{y[,4]\}=\{y[,1]\}+\{y[,2]\}+\{y[,3]\}+varieties
WARNING: summaries are sequential
CONSTANT
                          215.76
                                        215.76 7772.09243
{y[,1]}
                          57.918
                                        57.918
                                                 2086.30627
{y[,2]}
                          6.3975
                                        6.3975
                                                  230.45189
\{y[,3]\}
                          16.874
                                        16.874
                                                  607.84862
                          1.3827
                                       0.69137
                                                   24.90433 = F4
varieties
ERROR1
                144
                          3.9976
                                      0.027761 144
```

<u>Underlined</u> values are sequential F-statistics. All are huge, very significant.

Macro seqF() in the new Mulvar.mac computes sequential F statistics.

Statistics 5401

```
Cmd> manova("y = varieties", sscp:F) # do before using seqF()
Model used is y = varieties
WARNING: summaries are sequential
                           SS and SP Matrices
                DF
CONSTANT
                 1
                     Type 'SS[1,,]' to see SS/SP matrix
varieties
                    Type 'SS[2,,]' to see SS/SP matrix
ERROR1
               147
                    Type 'SS[3,,]' to see SS/SP matrix
Cmd> stats <- seqF(2); stats # or seqF("varieties")</pre>
component: f
      SepLen
                  SepWid
                                            PetWid
                               PetLen
                   94.13
                                            24.904
      119.26
                               310.26
component: fh
                  SepWid
                               PetLen
                                            PetWid
      SepLen
component: fe
                  SepWid
                               PetLen
                                            PetWid
      SepLen
         147
                      146
                                  145
                                               144
Cmd> pvals <- cumF(stats$f,stats$fh, stats$fe, upper:T); pvals</pre>
(1) 1.6697e-31 5.4894e-27 4.0983e-53 5.1432e-10
```

These are the ordinary P-values of the 4 sequential F-statistics.

```
Cmd> p < -4

Cmd> 1 - (1 - min(pvals))^p

(1) 0

Cmd> 4*min(pvals) # valid for small min(pvals)

(1) 1.6393e-52
```

This is the P-value for the test of the overall null hypothesis that the three varieties are identical.

seqF() can change the order.
Put petal variables ahead of sepal
variables:

October 28, 2005

```
Cmd> seqF("varieties", order:vector(3,4,1,2))
component: f
      PetLen
                                            SepWid
                   PetWid
                               SepLen
      1180.2
                   24.766
                               31.289
                                            21.936
component: fh
                   PetWid
                                            SepWid
      PetLen
                               SepLen
component: fe
      PetLen
                   PetWid
                               SepLen
                                            SepWid
                      146
                                  145
                                               144
         147
```

Conclusions are the same.

Multi-sample repeated measures profile analysis

Suppose you have g independent random samples of sizes n_1 , n_2 , ..., n_g of p-variable repeated measures data from populations with

- means μ_1 , μ_2 , ..., μ_q
- common variance matrix Σ.

Example: Subjects randomly assigned to one of g = 3 treatments, with p = 6 measurements $x_1, x_2, ..., x_6$ of <u>heart rate</u> made on each subject at times 0000h, 0400h, 0800h, 1200h, 1600h, 2000h.

This situation may be viewed as a <u>two-factor</u> repeated measures design with

- a within-subjects factor (e.g., time of day) with p levels, and
- a between-subjects factor (e.g., treatment or variety) with g levels.

This is a type of g by p <u>factorial experiment</u>.

It is similar to but *not* the same as a <u>split plot design</u> with g <u>whole plot</u> treatments and p <u>subplot</u> treatments.

- <u>Subjects or cases</u> correspond to <u>whole</u> plots
- The <u>between</u>-subjects factor corresponds to a whole plot factor.
- <u>Variables</u> within a subject correspond to <u>subplots</u>
- The <u>within</u>-subjects factor corresponds to the <u>subplot</u> factor.

This <u>differs</u> from a split plot:

- There is no *randomization* of subplot treatments
- There is no assumption that the variance is the same for different subplot treatments $(\sigma_{11} = ... = \sigma_{nn})$.

As with any multi-factor design, you are usually interested in testing and estimating

- main effects of each factor
- <u>interactions</u> (differences in effect of one factor between different levels of the other)

Sometimes a <u>univariate</u> split plot ANOVA provides a correct analysis.

This is the case when

$$\Sigma = \begin{bmatrix} \sigma^2 & \rho\sigma^2 & \rho\sigma^2 & \dots & \rho\sigma^2 \\ \rho\sigma^2 & \sigma^2 & \rho\sigma^2 & \dots & \rho\sigma^2 \\ \rho\sigma^2 & \rho\sigma^2 & \sigma^2 & \dots & \rho\sigma^2 \\ \dots & \dots & \dots & \dots & \dots \\ \rho\sigma^2 & \rho\sigma^2 & \rho\sigma^2 & \dots & \sigma^2 \end{bmatrix}$$

- All variances are equal
- All correlations are equal.

When Σ is not of this form, univariate ANOVA may not "work as advertised."

Under somewhat broader conditions you can use ANOVA, but with adjustments in degrees of freedom.

The names associated with this are Geisser and Greenhouse (Ann. Math. Stat (1958) **29** 885-891, Psychometrika **24** (1959) 95-112)

There is an example of such an analysis, with two subplot factors, in Section 10.17 of the MacAnova Users' manual. and another in the profile analysis example handout posted on the web.