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Analysis of covariance computations are
useful even when there are no covariates.

They provide a way to test H: LB = O
that is different from either of

e tests based on the eigenvalues of H
relative to E

e tests based on Bonferronized univar-
late F-statistics for each response.

e tests based on Bonferronized univar-
late t-statistics for each coefficient
of each response

Reminder: H: LB = 0 is often stated

more understandably in terms of means

or effects. For example

e Hy: W, =M, =..=H, that is, no
differences among group means

o Hy: (axf), =0, all jand k, that is, no
AB interactions
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Suppose Y =[Y, Y, consists of two
groups of variables (columns of Y. and
columns of Y,).

The analysis of covariance approach can
answer the following question:

e Does Y, add information about viola-
tion of H, beyond information in Y 7?

Example: H: g = ... = J_1n one-way
MANOVA of Y. Do the variables in Y,

provide information about differences of
means that is not provided by Y..

For the Fisher iris data, Y might contain
sepal lengths and widths and Y, petal

lengths and widths. The question would
be, do petal sizes help distinguish
varieties once you know sepal sizes.
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More specifically, suppose Y, and Y, have
p, and p, columns respectively. For the
iris data example, Y, p, = 2 and p, = 2.

Then you can partition the coefficient and
variance matrices as

|_ ZH
B-=[B,BJlandg = |
L= = 1| p, rows
Then Y = ZB + €, V[e] = £ becomes
Y =[Y,Y]1=1[ZB, 2B+ [e , €],
vie]l=%,VIe]l=% 6 Covle, 6 €]==%
The matrix of regression coefficients of
the residuals Y, - ZB, on the residuals
Y -2ZB isT =% "% .
Note that T' = O if and only 1f £ = 0.

I 1 p, rows

12
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When the errors [e , € ] are multivariate
normal, the conditional distribution of Y,
given both Z and Y, is

N(zB* «YTI, £)withB*=B,-BT

P2

This 1s essentially the same model as the
MANACOVA model, with Y. as covariates.

Here's how the components match up:

Notation correspondence
MANACOVA U Y D B B* T

Above Y Y, B B, B*T

B,* measures the effect of Z on Y, that
1s not mediated through Y . If LB * = 0,
Y, provides no additional information
about violation of H..
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Fact withB =[B, B B*=B,-BT

H;: LB = O is true if and only if both
H": LB, = 0andH®: LB * =0
are true.

e Test H": LB = 0 by MANOVA of Y,
with design matrix Z, ignoring Y..

H - H(l)' F - E(l)

e Test H®*: LB * = 0 by MANACOVA of
Y, with design matrix Z and Y. as
covariates. H = H®* E = E®*

For both tests, you can use any available

test - Bonferronized F or tests based on
relative eigenvalues.

Note: This is different from testing
LB, =0and LB, =0

by Bonferronizing multivariate tests

based on MANOVA of Y, and MANOVA of

Y

5
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Fact: Under multivariate normality,
H" and E" are independent of H?* and
E(2)*.

This means you can combine P-values
from each test more advantageously than
by Bonferronizing.

If youuse &’ = 1 - (1 - )" = /2 + /8
> ot/2, the Bonferrronized «, the overall

significance level of your test is exactly
A,

An overall P-value is
P=1-(-min(P P))
where P, and P, are the P-values for the

individual tests of H” and H,*. This is

smaller than the Bonferronized P-values
2xmin(P1,P2)
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Suppose you reject H : LB, = 0 using
only Y..

Then the test of H®*: LB * = 0 based on
Y, with covariates Y, attempts to

answer our question

1

-I 7

Does Y, add evidence against the over-
all H, beyond the evidence already pro-
vided by Y. 7

When you reject H " using Y, but can’t
reject H®*, you have rejected the overall
H, but find no evidence that Y, provides

additional information about violation of

the overall H,.
When you reject H ”* you can conclude
that Y, does have information about

violation of H_ that Y. does not provide.
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: : s Cmd># Do MANACOVA of petal vars with sepal vars as covari ates
Example Wlth FISher Iris data’ Cmd>manova('f{y[,-_run(2)]} ={yl[,11} + {y[,2]} + varieties",\
e Y, = sepal data (y[,run(2)] ) stient:1) |
%T%OTI\IIEWS # helps to find nunbers of terns
¢ Y2 - Detal data (Y[,-run(z)] ) gZ)"{y[,l]}" Term for covariate y[, 1]
3) "2l Term for covariate y[, 2]
Cmd>irisdata <- read("","t11 05", quiet:T) (4) "varieties" Hypot hesis term = term 4
Read from file "TP1:Stat5401:Data:JWData5.txt" (5) "ERRORL1" Error term = term 5
Cmd>varieties <- factor(irisdata[,1]);y <- irisdata[,-1] Cmd>h2 <- S§[4,,]; e2 < S§5,,]
Cmd> manova("{y[,run(2)]} = varieties",silent:T)#Sepal MANOVA Cmd>val s2 <- rel ei genval s(h2, e2); vals2
(1) 5.8018 0.044657 Rel ative eigen val ues
Cmd>h <- S§[2,,]; e < SY3,,] q ls2) D4l DEI5]. 2 T
Cmd>fh <- DF[2]; fe <- DF[3]; pl < 2 # pl = ncol s(Y1) S oiate g suntval s2), DFL4]. DALSI, 2, upper:T)
Cmd>val s1 <- releigenval s(h,e); valsl .
(1) 4.1718 0.161 Rel ative eigen val ues ConclUSIOn 2:
Cmd> cuntrace(sun{val s1), fh, fe, p1, upper:T) : : . :
(1) 5.7321e-131 Highl'y Significant e Petal dimensions differ among varie-
, ties, even after adjusting for sepal
Conclusion 1: dimensions.

Variety means differ very significantly

with respect to sepal dimensions. e They do add information about differ-

ences among varieties.
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Sequential F-tests
You can extend this approach to testing

H,. sequentially, variable by variable.

1 Use univariate ANOVA to test H: L, =
O for scalar response variable Y (N by
I vector) inY =[Y, Y, .., Y]l

2 Use univariate ANACOVA to test H, for
Y,, adjusted for Y.

3 Use univariate ANACOVA to test H, for
Y., adjusted for Y and Y, etc.

October 28, 2005

At stage j you have a univariate problem
with test statistic F, j = 1,...p.

When the errors are MVN, the FJ. are inde-
pendent and have central (H, true) or non-
central (H, not true) F-distributions.

11
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Fact: When H: LB = O is true, each F. 1is
distributed as F :

fr fo-j+1
e Numerator d.f. = f_are all the same

e Denominator d.f. = f_ -j+1 drop by 1 for
each additional covariate.

Because of independence, to get overall
significance level «, for each F-test you
use

o= 1 - (1
Instead of the Bonferronized o' = ot/p.
This is better than Bonferronizing since

T - (1 - )" > ot/p.
The P-value for the overall test of H  1s

P=1-0-min(P.P,..., F’p))p

where P. 1s the P-value computed from
the observed F.. P < pxmin(P ,P,...,P ),
the Bonferronized P-value.

_ O<)1/p

12
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Notes: Here 1s how the sequential test works
 Except for F, the sequential F-statis- ~ WIth the Fisher iris data.
. . . Cmd> anova("{y[, 1] }=varieties",fstat: T, pval : F)
tics are different from the F-statis- Model used is {y[,1]}=varieties

DF SS MS _F
tics (h,/f,)/(e /f,) computed from each varcles | 2 63212 31606 o 11926450

ERROR1 147 38.956 0.26501

Variable ignoring aH the OtherS. Cmd>anova("{y[,2]}=y[,1]}+varieties", fstat: T, pval : F)

\'\/AV(:)AdF?ll\lLljlsled' is {y[,2l}={yl, 1]}+varieties |
e Each successive F. tests whether Y. B TTes S e e e
i ' J‘ ' » i L 030128 080108 aeseiz
provides information on the violation Viictes 2 15723 78613 9413036 = F2
ERRORL 146 12.193 0083515

F1

Of HO addltlonal tO that prOVIded bg Cmd>anova("{y[, 3] }={y[, 1]} +H{y[, 2] }+varieties", fstat: T, pval : F)
Model used is {y[,3]}={y[,.1]}+{y[, 2]}+var|et|es
Y ,...,Y, . WARNING: summaries are sequential
] a CONS N SSZ 8,\/IS 2 EI; 2639 270
, NSTANT 1 118.4 118.4 5.4727
o The. F’'s depend on the order of the. g{:;ﬁ 1 35287 35287 439676014 ]
variables so the result of sequential B Z 1455 632 080256 31025674 = F3
F-tests may depend on the specific arnqraC iy A=yl L, 23+l Sl wvari et es™ A
ordering of the variables Y.. WARNING: Summarics a6 soduental /o etes
J CONSTAB'FI' 1S S 215 %S 215 l;G 7772.09243
When you are primarily interested in HI1} 1 57918 57.918 2086.30627
B3l 1 3687 Sasra aovaases
] . - , 1 16874 16.874 7.84
teStlng the OveraH Ho' LB - 01 UOU can E/ya[rie]%ies 2 13827 0.69137 2490433 = F4

. ERROR1 144 3.9976 0.027761 144
stop once you have found F. with P-

value < 1 - (1 - &), Underlined values are sequential F-

statistics. All are huge, very significant.

13 14
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Macro segF() 1n the new Mulvar.mac
computes sequential F statistics.

Cmd> nmanova("y = varieties",sscp:F) # do before using segF()
Model used is y = varieties
WARNING: summaries are sequential
SS and SP Matrices
DF

CONSTANT 1

Type 'SS[1,,]' to see SS/SP matrix
varieties 2

Type 'SS[2,,]' to see SS/SP matrix
ERROR1 147

Type 'SS[3,,]' to see SS/SP matrix

Cmd>stats <- seqF(2); stats # or seqF("varieties")
component: f

SepLen SepWid Petlen PetWid

11926 9413 310.26 24.904
component: th

SepLen  SepWid PetLen PetWid

2 2 2 2

component: fe

SepLen  SepWid PetLen  PetWid

147 146 145 144

Cmd>pval s <- cunf(stats$f,stats$fh, stats$fe, upper:T); pvals
(1) 1.6697e-31 5.4894e-27 4.0983e-53 5.1432e-10

These are the ordinary P-values of the 4

sequential F-statistics.
Cmd>p <- 4

Cmd>1 - (1 - mn(pvals))”p
@ 0

Cmd>4*mi n(pval s) # valid for small nin(pvals)
(1) 1.6393e-52

This is the P-value for the test of the
overall null hypothesis that the three
varieties are identical.

15
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segF() can change the order.

Put petal variables ahead of sepal
variables:

Cmd>seqF("varieties",order:vector(3,4,1,2))
component; f

PetLen PetWid SeplLen SepWid

1180.2 24.766 31.289 21.936
component: th

PetLen PetWid SepLen SepWid

2 2 2 2

component: fe

PetLen PetWid SepLen SepWid

147 146 145 144

Conclusions are the same.

16
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Multi-sample repeated measures
profile analysis

Suppose you have g independent random
samples of sizes n,n, ..., n of p-
variable repeated measures data from
populations with

e means M, M, ..., B

e common variance matrix Z.

Example: Subjects randomly assigned to
one of g = 3 treatments, with p = 6
measurements X, X, ..., X, Oof heart rate

made on each subject at times 0000N,
0400h, 0800h, 1200h, 1600h, 2000h.

This situation may be viewed as a two-
factor repeated measures design with

e a within- subjects factor (e.g., time
of day) with p levels, and

e a between-subjects factor (e.q.,
treatment or variety) with g levels.

17
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This is a type of g by p factorial exper-

iment.

[t 1s similar to but not the same as a
split plot design with g whole plot

treatments and p subplot treatments.

e Subjects or cases correspond to whole
plots

e The between-subjects factor corres-
ponds to a whole plot factor.

e Variables within a subject correspond
to subplots

e The within-subjects factor corres-
ponds to the subplot factor.

This differs from a split plot:

e There i1s no randomization of subplot
treatments

e There 1s no assumption that the
variance is the same for different
subplot treatments (o, = ... = ¢ ).

11

18
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As with any multi-factor design, you are
usually interested in testing and esti-
mating

e main effects of each factor

e interactions (differences in effect of
one factor between different levels of
the other)

Sometimes a univariate split plot ANOVA
provides a correct analysis.

This is the case when

c°  po’po’.. . po’]

pc’ c® po’...po’
> - |po? po® o?...po?

| po? po?po?...o” |

e All variances are equal
e All correlations are equal.

When £ is not of this form, univariate
ANOVA may not “work as advertised.”

19
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Under somewhat broader conditions you
can use ANOVA, but with adjustments in
degrees of freedom.

The names associated with this are
Geisser and Greenhouse (Ann. Math. Stat
(1958) 29 885-891, Psychometrika 24
(1959) 95-112)

There is an example of such an analysis,
with two subplot factors, in Section
10.17 of the MacAnova Users’ manual. and
another 1n the profile analysis example
handout posted on the web.
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