Displays for Statistics 5401/8401

Lecture 21

October 24, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page

Statistics 5401 Lecture 21

October 24, 2005

Each <u>hypothesis matrix</u> **H** in the MANOVA corresponds to a null hypothesis of the form H_0 : LB = 0, where each row \mathbf{l}_i of $L = [\mathbf{l}_{ij}]$ defines a linear combination \mathbf{l}_i $\mathbf{B} = \sum_{0 \le j \le k} \mathbf{l}_{ij} \mathbf{\beta}_i$ of the *rows* $\mathbf{\beta}_i$ of \mathbf{B} .

MANACOVA

In MANACOVA ,in addition you have m \geq 1 numerical variables or covariates u_1 , ..., u_m which are correlated with \boldsymbol{y} .

You can arrange these data in a N×m matrix $U = [U_1, ..., U_m] = [u_1, ..., u_N]'$.

Each variable u_j is to be viewed as a <u>predictor</u> (independent) variable rather than as a <u>response</u> (dependent) variable.

Caution on my notation: These **Z**'s and **U**'s have nothing to do with canonical variables or eigenvectors.

MANACOVA

MANOVA Model

y = (μ+Term₁+Term₂ + ...) + {Error terms} where a term consists of <u>main effects</u>, <u>interactions</u> or <u>nested effects</u> due to <u>factors</u>, that is, <u>categorical variables</u>. One-way MANOVA:

In MANOVA a linear model has the form

$$y_{ij} = (\mu + \alpha_j) + \{\epsilon_{ij}\}, j = 1,...,g$$

or

$$\mathbf{y}_{ij} = (\boldsymbol{\mu}_{j}) + \{\boldsymbol{\epsilon}_{ij}\}, j = 1,...,g$$

You can always write a MANOVA model in regression form as E[Y] = ZB where

- **B** is a k+1 by p matrix of means and main effects and interaction effects
- **Z** is a N by k+1 matrix whose columns are "dummy" variables coding for main effects and possibly interactions.

2

Statistics 5401 Lecture 21 October 24, 2005

MANACOVA assumes that the dependence of ${\boldsymbol y}$ on ${\boldsymbol u}$ is $\underline{\text{linear}}$.

You can combine the U_j 's with the design matrix Z to get an larger <u>linear model</u>.

In pre-computer days, there were special analysis of covariance computations. These were based on MANOVA computations, which were easier than regression computations, at least for balanced designs.

It's now easier just to fit a combined model involving both the MANOVA dummy variables **Z** and the covariates **U**. In the context of this model you test a null hypothesis in the usual linear model way, using the principle of reduction of SSCP matrix of residuals. MacAnova uses the same command manova() for this.

3

4

The **analysis of covariance** assumes the following:

- Expectation E[Y | Z] of Y given Z but ignoring U is <u>linear</u> in Z: $E[Y \mid Z] = Z B = \sum_{0 \le j \le k} Z_j \beta_j$, B k+1 by p matrix with rows β_i
- Expectation $E[oldsymbol{\mathsf{U}} \, | \, oldsymbol{\mathsf{Z}}]$ of $oldsymbol{\mathsf{U}}$ given $oldsymbol{\mathsf{Z}}$ but ignoring Y is linear in Z:

$$E[U \mid Z] = ZD = \sum_{0 \le j \le k} Z_j \delta_j',$$

 $\mathbf{D} = [\mathbf{\delta}_0, \mathbf{\delta}_1, ..., \mathbf{\delta}_k]', k+1 \text{ by m, } \mathbf{\delta}_i \text{ m by } 1$ D contains means an effect coefficients in a MANOVA of **U**.

If the rows β_i of B are group means μ_{i} for Y, the rows δ_{i} of D group means for the covariates in U.

The expectation E[Y | U, Z] of Y given both U and Z is linear in Z and U:

Lecture 21

$$E[Y | U, Z] = ZB^* + U\Gamma$$

$$= \sum_{0 \le j \le k} Z_j \beta_j^* + \sum_{1 \le j \le m} U_j \delta_j^*$$

 Γ with rows $\boldsymbol{\mathcal{S}}_{i}$ is a m by p matrix of regression coefficients of Y on U in a linear model with both Z and U and

 $\mathbf{B}^* = [\beta_0^*, \beta_1^*, \dots, \beta_k^*]' \equiv \mathbf{B} - \mathbf{D}\Gamma, k+1 \text{ by p}$ is the matrix of means and effects in this larger model

Statistics 5401

October 24, 2005

Statistics 5401

October 24, 2005

There are at least two different situations where you might use MANACOVA.

Situation 1: $E[\mathbf{u}_i \mid \mathbf{Z}] = \mathbf{\delta}_0$ is <u>constant</u> That is, the means of covariates don't differ among factor levels. The "treat-<u>ments" don't affect the covariates.</u>

This would be the case, for example, when the covariates are measured before treatments were <u>randomly</u> assigned.

Since $\mathbf{Z}_{o} = \mathbf{1}_{N}$, this means

$$D' = [\delta_0, 0, ..., 0], \delta_0 = E[u]$$

$$\mathbf{B}^* = \mathbf{B} - \mathbf{D}\mathbf{\Gamma} = [\beta_0 - \mathbf{\Gamma}' \delta_0, \beta_1, ..., \beta_k]'$$

In this case B and B* are the same except for the intercepts (coefficients of 1,) which are usually of no interest.

Whether you include **U** (MANACOVA) or ignore it (MANOVA) in your analysis, E[Y]has the same dependence on the nonconstant columns of Z.

You may be able to see what's going on by looking at both models complete with errors for the one-way MANOVA situation with $\beta_0 = \mu$, $\beta_i = \alpha_i$, j=1,...,g-1

Model ignoring U:

$$Y = 1_N \mu' + \sum_{1 < j < q-1} Z_j \alpha_j' + \epsilon$$

Model including U:

 $Y = 1_{N} \mu' + \sum_{1 \leq j \leq g-1} Z_{j} \alpha_{j}' + (U - 1_{N} \mu_{u}') \Gamma + \epsilon^*$ where $\varepsilon^* = \varepsilon - (U - 1\mu_{\parallel})\Gamma$ is the part of Y that doesn't depends on the factors encoded in **Z** or on the covariates **U**.

 ϵ^* has a "smaller" variance matrix than ϵ in the sense that $V[\varepsilon] - V[\varepsilon^*]$ is positive definite. Other things being equal, the MANACOVA (errors ϵ^*) is more sensitive and precise than MANOVA (errors ϵ).

When y depends only weakly on \mathbf{u} ($\Gamma \approx \mathbf{0}$), the gain from using covariates may be offset by <u>lost degrees of freedom</u> in **E**.

Statistics 5401

R.A. Fisher pioneered correct analysis when there are covariates. He used a univariate example of this type.

Lecture 21

- y was the yield of rice subjected to treatments which were randomly assigned to plots which had been used in the previous year in a uniformity trial when all plots were treated the same.
- The <u>covariate</u> u was the yield of rice on the same plot the previous year.

Because of the randomization, there is no way that last year's yield u could be affected by this year's treatment so E[u] would not differ among treatments.

The purpose of using the previous year's yield was to decrease the MSE in the analysis. This allowed more powerful tests and shorter confidence intervals.

 $E[\mathbf{u}, \mid \mathbf{Z}]$ is not constant Situation 2:

Lecture 21

That is, $E[\mathbf{u}]$ differs among the levels of factors in the experiment.

The "treatments" do affect **u** and consequently there is no simple relationship between B and $B^* = B - D\Gamma$.

In this case there are two different matrices of coefficients, B and B* that describe the dependence of **y** on **Z** (the effect of the treatments).

Vocabulary

B* is the matrix of means and factor effects adjusted for U.

In a one-way MANACOVA parametrized by treatment means $\mu_{\scriptscriptstyle i}$ the rows of B^* would be the treatment means μ_i^* adjusted for U.

October 24, 2005

Depending on the analyst's goal, you might use either $\beta_1,...,\beta_k$ or $\beta_1^*,...,\beta_k^*$ to describe dependence of Y on the factors encoded in **Z**.

Lecture 21

That means that L specifies two different null hypothesis:

$$H_0$$
: LB = 0 (e.g. $\alpha_1 = \alpha_2 = \dots = \alpha_g = 0$)

or

Statistics 5401

$$H_0^*: LB^* = LB - LD\Gamma = 0$$

(e.g. $\alpha_1^* = \alpha_2^* = ... = \alpha_q^* = 0$)

If one of these is true, the other probably is not unless LD = 0.

You need to decide, on non-statistical grounds, which is the appropriate null hypothesis.

Statistics 5401 Lecture 21

October 24, 2005

The means and effects in **B** describe the overall dependence of **y** on the experimental factors, including any indirect effects mediated by u from factors which affect u.

10

B* describes the direct effect of the factors on **y** in addition to indirect effects mediated by u.

Interpretation of two situations:

- H₀ is false and H₀* is true The effects being tested are not zero but they are entirely mediated through u.
- Both H₀ and H₀* are false: The effects being tested are not zero, and are not entirely mediated through **u**.

you can reject H_o.

varieties.

Statistics 5401

October 2

Lecture 21

have covariates, you may "throw out the

baby with the bath water" by failing to

because you can't reject H,* even though

An example is an experiment comparing

crop varieties where the response y was

the yields on a plot, and the covariate u

was a count of the number of "shoots" on

the plot, which differed greatly between

An ANOVA indicated a big difference

variety effects lost significance.

between varieties in mean yields. But after adjusting for u in ANACOVA, the

The correct conclusion was that yield

differences in the number of shoots.

differed greatly among varieties, but the

yield differences were caused by variety

conclude a treatment has an effect

October 24, 2005

October 24, 2005

Statistics 5401

Lecture 21

Statistics 5401 Lecture 21 October 24, 2005

Parallelism assumption

The assumption that linear combinations of $\mathbf{Z}\boldsymbol{\beta}_j$ and $\mathbf{U}\boldsymbol{\delta}_j$ enter additively into the model is called the *parallelism assum-ption*.

With only one covariate (m=1), it states that the slopes of the regressions of Y on U are the same for *all* treatments groups, that is, the regression lines are parallel.

When parallelism doesn't hold, you may be able to "enlarge" the model to include **Z** by **U** "interaction" terms. The null hypothesis that these additional terms are zero is the parallelism assumption and can be tested.

Without parallelism, the hypothesis of no treatment effect depends on the levels of the covariates. You need to pick a level of the **u** at which to test for or estimate treatment effects.

Parallelism assumption

14

The assumption that linear combinations of $\mathbf{Z}\boldsymbol{\beta}_j$ and $\mathbf{U}\boldsymbol{\delta}_j$ enter additively into the model is called the *parallelism assum-ption*.

With only one covariate (m=1), it states that the slopes of the regressions of Y on U are the same for *all* treatments groups, that is, the regression lines are parallel.

When parallelism doesn't hold, you may be able to "enlarge" the model to include **Z** by **U** "interaction" terms. The null hypothesis that these additional terms are zero is the parallelism assumption and can be tested.

Without parallelism, the hypothesis of no treatment effect depends on the levels of the covariates. You need to pick a level of the ${\bf u}$ at which to test for or estimate treatment effects.

Using manova() for MANACOVA

Suppose the response variables are columns of matrix y and there are three covariates in vectors u1, u2, u3 (not factors or columns of a matrix).

And suppose you have a single <u>factor</u> groups, that is, you are in a one-way MANOVA/MANACOVA situation

- You compute ordinary MANOVA by
 Cmd> manova("y=groups")
 ss[2,,] and ss[3,,] are the unadjusted
 H_{groups} and E, ignoring covariates
- You compute MANACOVA by Cmd> manova("y=u1+u2+u3+groups") With groups the last term (term 5, counting CONSTANT as term 1). SS[5,,] and SS[6,,] are the adjusted H_{groups} and E matrices since manova() fits groups after u1, u2, and u3 (terms 2, 3 and 4).

17

Statistics 5401

Lecture 21

October 24, 2005

Example with g = 4 groups, p = 3 response variables and 1 covariate.

```
Cmd> data <- read("","X5.9.1") # read from cbmorex.txt
X5.9.1 45 8 FORMAT
) Data on specific gravity and chemicals in urine specimens of
) young men classified into four groups according to their
degree
) of obesity or underweight. The specific gravity is considered
) to be a concomitant variable (covariate).
) Data from morrison p. 224. groups have been combined in one
) 45 by 8 matrix, with columns 1 - 4 dummy variables.
) Col. 1: constant column of 1's
) Col. 2: dummy variable for group 1 coded (1,0,0,-1)
) Col. 3: dummy variable for group 2 coded (0,1,0,-1)
) Col. 4: dummy variable for group 3 coded (0,0,1,-1)
) Col. 5: u = (specific gravity - 1) x 10~
) Col. 6: x1 = pigment creatinine
) Col. 7: x2 = chloride
) Col. 8: x3 = choline
Read from file "TP1:Stat5401:Data:cbmorex.txt"
```

I first had to <u>create a factor from the</u> dummy variable columns:

MacAnova: When a, b, ... are factors with length N, tabs(,a,b,...) with no argument 1 computes the sizes of the "cells" defined by a, b,

After manova("y=groups"), secoefs() computes unadjusted effects and their standard errors, ignoring covariates.

After manova("y=u1+u2+u3+groups"), secoefs() computes adjusted effects and their standard errors.

When covariates are columns of a matrix, you can use makecols() to create vectors. For example, if covariates are in columns.

For example, if covariates are in columns 1 through 3 of matrix data,

```
Cmd> makecols(data[,run(1,3)], u1, u2, u3)
Column 1 saved as vector u1
Column 2 saved as vector u2
Column 3 saved as vector u3
```

creates vectors u1, ..., u3 containing covariates.

After manova("y=groups+u1+u2+u3") you can test H_0 : Γ = 0 (coefficients of Y on covariates in model Y = ZB + $U\Gamma$ + ϵ) because the covariates are *last* in the model.

```
Cmd> hgamma <- SS[3,,] + SS[4,,] + SS[5,,] \#SSCP due to u1,u2,u3 Cmd> e <- SS[6,,]
```

18

Statistics 5401

Lecture 21

October 24, 2005

MANACOVA to test groups adjusted for covariate u.

```
Cmd> manova("y=u + group") # MANACOVA
Model used is y=u + group
WARNING: summaries are sequential
SS and SP Matrices
                 DF
CONSTANT
             11370
(2,1)
            3752.9
                         1238.7
                                       1762.9
(3,1)
            5340.9
                         1762.9
                                       2508.8
(1,1)
            71.949
                        -65.991
                                      -133.36
           -65.991
                         60.527
           -133.36
(3,1)
                         122.31
                                       247.17
group
                                     -25.818 ss[3,,] =
-31.295 Adjusted H_groups
            142.68
                         57.976
(1,1) (2,1)
            57.976
                         28.324
           -25.818
                        -31.295
                                      111.34
ERROR1
                 40
            463.21
                                     -132.57 \text{ SS[4,,]} =
                         52.559
(1,1)
            52.559
                                     -46.163 Adjusted E
(2,1)
                         84.042
                                      1177.1
(3,1)
           -132.57
                        -46.163
Cmd> vals <- releigenvals(SS[3,,], SS[4,,])
Cmd> vals # relative eigenvalues
        0.48767
                     0.12049 0.0044973
Cmd> addmacrofile("") # make sure new Mulvar.mac is available
Cmd> cumwilks(1/prod(1+vals),DF[3],DF[4],ncols(y))
                   < .05, P-value for Wilks
```

```
1/\text{prod}(1+\text{vals}) = \prod_{\ell} (1/(1 + \hat{\lambda}_{\ell}))= \det(\mathbf{E})/\det(\mathbf{H}+\mathbf{E}) = \Lambda^*.
```

Arguments 2, 3 and 4 are f_h , f_e , and p

Test H_0 : $\Gamma = 0$

```
Cmd> manova("y=group+u") # test dependence on u (H_0: gamma=0)
Model used is y=group+u
                                 Covariate u is now last
WARNING: summaries are sequential
              SS and SP Matrices
CONSTANT
            11370
                        3752.9
                                     5340.9
            3752.9
                        1238.7
                                     1762.9
                                     2508.8
(3,1)
            5340.9
                        1762.9
group
(1,1)
           181.07
                        40.037
                                    -66.725
           40.037
                        20.038
                                    -41.372
(2,1)
(3,1)
          -66.725
                       -41.372
                                     103.81
                                            fh for testing gamma
(1,1)
           33.555
                        -48.052
                                    -92.448
           -48.052
                                     132.39 H_gamma
                        68.812
(2,1)
(3,1)
          -92.448
                        132.39
                                     254.71
ERROR1
                40
(1,1) (2,1)
            463.21
                        52.559
                                    -132.57
-46.163 Same E as before
           52.559
                        84.042
(3,1)
           -132.57
                       -46.163
                                     1177.1
Cmd> valsu <- releigenvals(SS[3,,],SS[4,,]); valsu
         1.3824 - 1.4236e - 16 - 4.4607e - 16 s=min(fh,p) = 1
Cmd> cumwilks(1/prod(1+valsu),DF[3],DF[4],ncols(y))
     2.6704e-07
```

Or since $s = min(f_h,p) = 1$, you can treat $f_e \hat{\lambda}_1$ as T^2 so $(f_e - p + 1)\hat{\lambda}_1/p = F_{p,f_e-p+1}$ Cmd> p < -ncols(y); fe < -DF[4]Cmd> cumF(((fe-p+1)*valsu[1]/p),p,fe-p+1,upper:T)(1) 2.6704e-07

This tests the hypothesis that the slopes of y on u are 0 in each group, <u>under the assumption that they are the same in the four groups</u> (parallelism assumption).

21

```
Statistics 5401
                                                                        October 24, 2005
   Cmd> stats <- secoefs("group.u") # or secoefs(4)</pre>
   Cmd> tstats <- matrix(stats$coefs/stats$se);</pre>
                -0.23489
                                 0.62935 3.7097
    (1,1)
                                                -0.58247
                                                                Group
                -0.49734
   (2,1) (3,1)
                                                -0.29359
                                                                Group
                  0.1049
                                0.067863
                                                                Group
                 0.44219
                                                 0.35789
    (4,1)
                                 <u>-2.8658</u>
   Cmd> 12*twotailt(tstats,fe) # Bonferronized P-values
                  9.7871
7.4627
                                   6.3958
                                                   6.7654
    (1,1)
                                                                Group 1
    (2,1)
                                                   9.2485
                              0.0081415
                  11.004
    (3,1)
                                  11.355
                                                   7.1749
                                                                Group
   (4,1)
                  7.9311
                                0.081864
                                                   8.6695
                                                                Group 4
   \label{eq:cmd} \mbox{Cmd> u0 <- } \mbox{ } \mbox{run}(\mbox{min}(\mbox{u})\,,\mbox{max}(\mbox{u})\,,(\mbox{max}(\mbox{u})\,-\,\mbox{min}(\mbox{u}))/5)\mbox{\#used in plot}
   Cmd> for(i,1,p){
            plot(u,y[,i],symbols:vector("\1","\2","\3","\4")[group],\
            title:paste("Variable",1,"by groups"),show:F)
manova("y=group + group.u - 1",silent:T)
            b0 \leftarrow coefs(1), b1 \leftarrow coefs(2)
              for(j,1,4){
                  addlines(u0,b0[j,i] + b1[j,,i]*u0,symbols:j,show:F)
              showplot(window:i,ymin:?,ymax:?)
                                                         Variable 2 by group
                                                        Aberrant lines
       22
                                                             20
                                                                   25
                                                                         30
                  Variable 3 by groups
                                                      Group 1
                                                      Group 2
       15
                                                      Group 3
                                                      Group 4
```

Test of parallelism

You can test departure from parallelism by including the term groups.u (interaction of groups by u) last in the model.

```
Cmd> manova("y = group + u + group.u")
Model used is y = group + u + group.u
WARNING: summaries are sequential
                 SS and SP Matrices
                   DF
CONSTANT
              11370
                            3752.9
(1,1)(2,1)
                                           5340.9
             3752.9
                            1238.7
                                           1762.9
(3,1)
             5340.9
                            1762.9
                                           2508.8
group
(1,1)
             181.07
                            40.037
                                          -66.725
(2,1)
(3,1)
            40.037
-66.725
                            20.038
                                          -41.372
                                           103.81
                           -41.372
u
             33.555
                           -48.052
                                          -92.448
(2,1)
             -48.052
                            68.812
                                           132.39
(3.1)
            -92.448
                            132.39
                                           254.71
group.u
             4.9342
(1,1)
                           -10.888
                                           8.8227
                            25.846
(2,1)
             -10.888
                                          -15.746
                                                        H for interaction
(3,1)
             8.8227
                           -15.746
                                           23.802
ERROR1
                   37
                              fh
                            63.447
58.196
             458.28
(1,1)
                                           -141.4
                                          -30.417
             63.447
             -141.4
                                           1153.3
                           -30.417
Cmd> H \leftarrow SS[4,,]; E \leftarrow SS[5,,]; fh \leftarrow DF[4]; fe \leftarrow DF[5]
Cmd> cumwilks(det(E)/det(E+H),fh,fe,p)
```

It appears there is some evidence that the slope of at least one of the responses differs among groups.

0.038727

22