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Each hypothesis matrix H in the MANOVA
corresponds to a null hypothesis of the
form H: LB = 0, where each row &' of
L = [2,] defines a linear combination 2B

= 3,8, of the rows B of B.
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MANACOVA
In MANACOVA ,in addition you have m > 1
numerical variables or covariates u, ...,

u_ which are correlated with y.

You can arrange these data in a Nxm
matrix U = [U Ul=1[u
Each variable u,is to be viewed as a
predictor (independent) variable rather
than as a response (dependent) variable.

Caution on my notation: These Z's and
U’'s have nothing to do with canonical
variables or eigenvectors.
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MANACOVA

MANOVA Model
In MANOVA a linear model has the form

y = (u+Term +Term, + ...) + {Error terms}
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where a term consists of main effects,
interactions or nested effects due to
factors, that is, categorical variables.

One-way MANOVA:
y, = (B+o)+{e},

or
y, = (p)~ e}, j=1..g

You can always write a MANOVA model in

regression form as E[Y] = ZB where

e Bis ak+1 by p matrix of means and
main effects and interaction effects

e Zis a N by k+1 matrix whose columns
are "dummy” variables coding for main
effects and possibly interactions.
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MANACOVA assumes that the dependence
of y on u is linear.

You can combine the U's with the design
matrix Z to get an larger linear model.

In pre-computer days, there were special
analysis of covariance computations.
These were based on MANOVA compu-
tations, which were easier than regres-
sion computations, at least for balanced
designs.

[t's now easier just to fit a combined
model involving both the MANOVA dummy
variables Z and the covariates U. In the
context of this model you test a null
hypothesis in the usual linear model way,
using the principle of reduction of SSCP
matrix of residuals. MacAnova uses the
same command manova() for this.
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The analysis of covariance assumes the

following:

e Expectation E[Y | Z] of Y given Z but
ignoring U is linear in Z:
E[Y|Z21=2B=3,,Z8 ' Bk+1byp
matrix with rows $°

e Expectation E[U | Z] of U given Z but
ignoring Y is linear in Z:

ElU|21=2D =%, .28,
D=-1[8,8, .. 81 k<1 bym, 8 mby I
D contains means an effect coef-
ficients in a MANOVA of U.

If the rows B, of B are group means
W, for Y, the rows &' of D group

means for the covariates in U.
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There are at least two different situa-
tions where you might use MANACOVA.

Situation 1: E[u | Z]= 8§ is constant

That is, the means of covariates don’t
differ among factor levels. The "treat-
ments” don’'t affect the covariates.

This would be the case, for example,
when the covariates are measured before

treatments were randomly assigned.
Since Z, = 1, this means
D' =1[8,0, .., 0] 8 =Elul

B*=-B-Dr =[8,-I's,B...BJ

0

[N

In this case B and B* are the same
except for the intercepts (coefficients of
1) which are usually of no interest.

Whether you include U (MANACOVA) or
ignore it (MANOVA) in your analysis, E[Y]
has the same dependence on the non-
constant columns of Z.
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e The expectation E[Y |U, Z] of Y given
both U and Z is linear in Z and U:

E[Y|U, Z] = 2zB* + UT
= Logel B L g YT
I' with rows &' is a m by p matrix of

regression coefficients of Y on U in a
linear model with both Z and U and

B* - [,BO*,,B1* ..... B.*I'=B - DI', k«1 by p
1s the matrix of means and effects in
this larger model
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You may be able to see what's going on
by looking at both models complete with
errors for the one-way MANOVA situation

with B = p, B, = o, j=1,....g-1

Model 1gnoring U:
Y=1W +2 2o +E

Model including U:

LA Y AL U- 150 «e”
where €* = € - (U - 1 )T is the part of
Y that doesn’t depends on the factors
encoded in Z or on the covariates U.

€* has a "smaller” variance matrix than €
in the sense that V[e] - V[e*] is positive
definite. Other things being equal, the
MANACOVA (errors €%) is more
sensitive and precise than MANOVA
(errors €).

When Yy depends only weakly on u (I" = 0),
the gain from using covariates may be
offset by lost degrees of freedom in E.
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R.A. Fisher pioneered correct analysis
when there are covariates. He used a
univariate example of this type.

e y was the yield of rice subjected to
treatments which were randomly
assigned to plots which had been used
in the previous year in a uniformity
trial when all plots were treated the
same.

e The covariate u was the yield of rice
on the same plot the previous year.
Because of the randomization, there is no

way that Ilast year's yield u could be

affected by this year’s treatment so E[u]
would not differ among treatments.

The purpose of using the previous year's
yield was to decrease the MSE in the
analysis. This allowed more powerful
tests and shorter confidence intervals.
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Depending on the analyst’s goal, you
might use either §.,.... B or B *,..., B.*
to describe dependence of Y on the
factors encoded in Z.

That means that L specifies two
different null hypothesis:
H:LB =0
(e.g. &k =ot, =... = o« = 0)
or
H*: LB* =LB - LD =0
(6.g. > =a* =... = ot * = 0)
[f one of these is true, the other probably
is not unless LD = 0.

You need to decide, on non-statistical
grounds, which is the appropriate null
hypothesis.
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Situation 2: E[u | Z]is not constant

That is, E[u] differs among the levels of
factors in the experiment.

The "treatments” do affect u and con-
sequently there is no simple relationship
between B and B* = B - DI.

In this case there are two different
matrices of coefficients, B and B* that
describe the dependence of y on Z (the
effect of the treatments).

Vocabulary

B* is the matrix of means and factor

effects adjusted for U.

In a one-way MANACOVA parametrized by
treatment means J. the rows of B>* would
be the treatment means p* adjusted for
U.
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The means and effects in B describe the
overall dependence of Yy on the experi-
mental factors, including any indirect
effects mediated by u from factors which
affect u.

B* describes the direct effect of the
factors on Yy in addition to indirect
effects mediated by u.

Interpretation of two situations:

e H, is false and H_ * is true

The effects being tested are not zero
but they are entirely mediated through
u.

e Both H, and H * are false: The effects

being tested are not zero, and are not
entirely mediated through u.
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[f you are not aware of this difference
and routinely do MANACOVA whenever you
have covariates, you may "throw out the
baby with the bath water” by failing to
conclude a treatment has an effect
because you can’t reject H * even though

you can reject H_.

An example is an experiment comparing
crop varieties where the response y was
the yields on a plot, and the covariate u
was a count of the number of "shoots” on
the plot, which differed greatly between
varieties.

An ANOVA indicated a big difference
between varieties in mean yields. But
after adjusting for u in ANACOVA, the
variety effects lost significance.

The correct conclusion was that yield
differed greatly among varieties, but the
yield differences were caused by variety
differences in the number of shoots.
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Parallelism assumption
The assumption that linear combinations
of ZB, and U8 enter additively into the

model is called the parallelism assum-
ption.

With only one covariate (m=1), it states
that the slopes of the regressions of Y
on U are the same for all treatments
groups, that is, the regression lines are
parallel.

When parallelism doesn’t hold, you may
be able to "enlarge” the model to include
Z by U "interaction” terms. The null
hypothesis that these additional terms
are zero is the parallelism assumption
and can be tested.

Without parallelism, the hypothesis of no
treatment effect depends on the levels of
the covariates. You need to pick a level
of the u at which to test for or estimate
treatment effects.
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Here are plots illustrating the two situa-

tions whenp =m = 1.

Sitvation 1, mea:
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Parallelism assumption
The assumption that linear combinations
of ZB and U8 enter additively into the

model is called the parallelism assum-
ption.

With only one covariate (m=1), it states
that the slopes of the regressions of Y
on U are the same for all treatments
groups, that is, the regression lines are
parallel.

When parallelism doesn’t hold, you may
be able to "enlarge” the model to include
Z by U "interaction” terms. The null
hypothesis that these additional terms
are zero is the parallelism assumption
and can be tested.

Without parallelism, the hypothesis of no
treatment effect depends on the levels of
the covariates. You need to pick a level
of the u at which to test for or estimate
treatment effects.
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Using manova() for MANACOVA

Suppose the response variables are col-
umns of matrix y and there are three
covariates in vectors uil, u2, u3 (not
factors or columns of a matrix).

And suppose you have a single factor

groups , that is, you are in a one-way

MANOVA/MANACOVA situation

e You compute ordinary MANOVA by
Cmd> manova("y=groups")

SS[2,] and SS[3,] are the unadjusted
H..., and E, ignoring covariates

e You compute MANACOVA by
Cmd> manova("y=ul+u2+u3+groups")
with groups the last term (term 5,
counting CONSTANTas term 1).

SS[5,] and SS[6,] are the adjusted
H and E matrices since manova()

groups

fits groups after ul, u2, and u3 (terms
2, 3 and 4).
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Example with g = 4 groups, p = 3
response variables and 1 covariate.

Cmd> data <- read(","X5.9.1") # read from cbmorex.txt
X5.9.1 45 8 FORMAT

) Data on specific gravity and chemicals in urine specimens of
) young men classified into four groups according to their
degree

) of obesity or underweight. The specific gravity is considered
) to be a concomitant variable (covariate).

) Data from morrison p. 224. groups have been combined in one
) 45 by 8 matrix, with columns 1 - 4 dummy variables.

) Col. 1: constant column of 1's

) Col. 2: dummy variable for group 1 coded (1,0,0,-1)

) Col. 3: dummy variable for group 2 coded (0,1,0,-1)

) Col. 4: dummy variable for group 3 coded (0,0,1,-1)

) Col. 5: u = (specific gravity - 1) x 10~

) Col. 6: x1 = pigment creatinine

) Col. 7: x2 = chloride

) Col. 8: x3 = choline

Read from file "TP1:Stat5401:Data:cbmorex.txt"

| first had to create a factor from the
dummy variable columns:

Cmd> group <- factor(1*(data[,2]==1) + 2*(data[,3]==1) +\
3*(data[,4]==1) + 4*(data[,2]==-1))

Cmd> print(paste(group)) # check that it's right
11111111111122222222222222333333
3333344444444 12 1's, 15 2's, 11 3's, 8 4's

Cmd> n <- tabs(,group);n # sample sizes
@) 12 11 8

Cmd> u <- data[,5]; y <- data[,-run(5)] # cols 6, 7, 8
MacAnova: When a, b, ... are factors
with length N, tabs(,a,b,...) with no
argument 1 computes the sizes of the
“cells” defined by a, b,
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After manova("y=groups”) , secoefs()
computes unadjusted effects and their
standard errors, ignoring covariates.

After manova("y=ul+u2+u3+groups") ,
secoefs() computes adjusted effects
and their standard errors.

When covariates are columns of a matrix,
you can use makecols() to create vectors.

For example, if covariates are in columns

1 through 3 of matrix data ,
Cmd> makecols(data[,run(1,3)], ul, u2, u3)
Column 1 saved as vector ul

Column 2 saved as vector u2
Column 3 saved as vector u3

creates vectors ul,
covariates.

.., U3 containing

After manova("y=groups+ul+u2+u3") you
can test H:I" = 0 (coefficients of Y on

covariates in model Y = ZB + UT + €)
because the covariates are [ast in the
model.

Cmd> hgamma <- SS[3,,] +'SS[4,,] + SS[5,,J#SSCP due to ul,u2,u3
Cmd> e <- SS[6,]
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MANACOVA to test groups adjusted for

covariate u.

Cmd> manova("y=u + group") # MANACOVA
Model used is y=u + group
WARNING: summaries are sequential
SS and SP Matrices
DF

CONSTANT 1

(1,1) 11370 37529 5340.9

(2,1) 37529 1238.7 1762.9

(3,1) 53409 17629 2508.8

u 1

(1,1) 71949 -65.991 -133.36

(2,1) -65.991 60.527 12231

(3,1) -13336 12231 247.17

group 3

(1,1) 142.68 57.976 -25.818 SS[3,,] =
(21) 57976 28324 -31.295 Adjusted H_groups
(3,1) -25.818 -31.295 111.34

ERROR1 40

(1,1) 46321 52559 -132.57 SS[4,] =
(2,1) 52559 84.042 -46.163 Adjusted E
(31) -13257 -46.163 1177.1

Cmd> vals <- releigenvals(SS[3,,], SS[4,.])

Cmd> vals # relative eigenvalues
(1) 0.48767 0.12049 0.0044973

Cmd> addmacrofile("") # make sure new Mulvar.mac is available

Cmd> culeIks(l/prod(l+vals) DF[3],DF[4],ncols(y))
(1) 0.015923 5, P-value for Wilks

Uprod(l+vals) = TT,(1/(1 + X))
= det(E)/det(H+E) = AX*.

Arguments 2, 3 and 4 are f , f_, and p
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Test H: T =0

Cmd> manova( 'y=group+u") # test dependence on u (H_0: gamma=0)
Model used is y=group+u Covariate u is now last
WARNING: summaries are sequential

SS and SP Matrices

DF

CONSTANT 1
(1,1) 11370 37529 5340.9
(2,1) 37529 1238.7 1762.9
(31) 53409 17629 2508.8
group 3
(1,1) 181.07 40.037 -66.725
(2,1) 40.037 20.038 -41.372
(3,1) -66.725 -41.372 103.81
u 1
(1,1) 33555 -48.052 -92.448
(2,1) -48.052 68.812 132.39
(3,1) -92.448 13239 25471
ERROR1 40
(1,1) 46321 52559 -132.57
(2,1) 52559 84.042 -46.163
(31) -13257 -46.163 1177.1

Cmd> valsu <- releigenvals(SS[3,,],SS[4,,]); valsu
(1) 1.3824-1.4236e-16 -4.4607e-16

Cmd>cumwilks(1/prod(1+valsu),DF[3],DF[4],ncols(y))
(1) 2.6704e-07

October 24, 2005

fh for testing gamma

H_gamma

Same E as before

s=min(fh,p) = 1

Or since s = min(f_,p) you can treat
fX, as T2 so (f-p+1)X /p = F

fe-p+1
Cmd> p <- ncols(y); fe <- DF[4]

Cmd> cumF(((fe-p+1)*valsu[1)/p),p,fe-p+1,upper:T)
(1) 2.6704e-07

This tests the hgpothesis that the slopes
of y onuare0 in each group, under the
assumptlon that they are the same in the
four groups (parallelism assumption).
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Cmd> stats <- secoefs("group.u”) # or secoefs(4)
Cmd> tstats <- matrix(stats$coefs/stats$se); tstats

(1,1) -0.23489 0.62935 -0.58247 Group 1
(2,1) -0.49734 3.7097  -0.29359 Group 2
(31) 0.1049 0.067863  0.532 Group 3
(4,1) 0.44219 -2.8658 0.35789 Group 4
Cmd> 12*twotailt(tstats,fe) # Bonferronized P-values

(1,1) 9.7871 6.3958 6.7654 Group 1
(21) 7.4627 0.0081415 9.2485 Group 2
(31) 11.004 11355 7.1749 Group 3
(4,1 79311 0.081864 8.6695 Group 4

Cmd> u0 <- run(min(u),max(u),(max(u) - min(u))/5)#used in plot

Cmd> for(i,1,p){
plot(u,y[,i],symbols:vector("\1","\2","\3","\4")[group],\
title:paste("Variable",i,"by groups"),show:F)
manova("y=group + group.u - 1" silent.T)
b0 <- coefs(l) bl <- coefs(2)

for(j,1,4){
addlines(u0,bO[j,i] + b1[j,,i*u0,symbols:j,show:F)

showplot(window:i,ymin:?,ymax:?)

Warizkle 1 by groups Warizble 2 by greups
T

barrant lines

M
10 15 a0, 25 30 35 - 15 20
Yazizble 3 by guoups

28 30 35
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Test of parallelism

You can test departure from parallelism
by including the term groups.u (inter-
action of groups by u) last in the model.

Cmd> manova("y = group + u + group.u")
Model used is y = group + u + group.u
WARNING: summaries are sequential

SS and SP Matrices

DF

CONSTANT 1
(1,1) 11370 37529 5340.9
(2,1) 37529 1238.7 1762.9
(3,1) 53409 17629 2508.8
group 3
(1,1) 181.07 40.037 -66.725
(2,1) 40.037 20.038 -41.372
(3,1) -66.725 -41.372 103.81
u 1
(1,1) 33555 -48.052 -92.448
(2,1) -48.052 68.812 132.39
(3,1) -92.448 13239 25471
group.u 3
(1,1) 49342 -10.888 8.8227
(2,1) -10.888 25.846 -15.746
(3,1) 88227 -15.746 23.802
ERROR1 37 fh
(1,1) 45828 63447 -1414
(2,1) 63447 58196 -30.417
(3,1) -1414 -30417 11533

Cmd> H <- SS[4,,],E <- SS[5, ];th <- DF[4]; fe <- DF[5]

Cmd> cumwilks(det(E)/det(E+H),fh,fe,p)
(1) 0.038727

H for interaction

It appears there is some evidence that
the slope of at least one of the responses
differs among groups.
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