Displays for Statistics 5401/8401

Lecture 20

October 21, 2005

Christopher Bingham, Instructor

612-625-1024, kb@m. edu
372 Ford Hall

Class Web Page

http://ww. st at. um. edu/ ~kb/ cl asses/ 5401

© 2005 by Christopher Bingham

Statistics 5401 Lecture 20 October 21, 2005

Recap: Testing linear hypothesis H_ using

hypothesis and error matrices H and E
with degrees of freedom f and f_.

~

Relative eigenvalues X are eigenvalues of
E'H.

Roy's maximum root test
Reject H, when X, = X__is "large’
| found estimates of X_(.10), X__ (.05)

max

and X__(.01) from 5000 simulated values

In | anbda_nax.

Crd> | anbda_nmax[ round(vector (. 90,.95,.99)*M]
(1) 0. 076562 0. 090821 0. 12154

Actually Roy proposed the canonical
correlation form of the statistic

8 =86

1 max

where 6 = X /(1 + X), j=1,..,0p
Ord> theta_max <- |anbda_nmax/ (1 + | anbda_max)

Qrd> t heta_max[ round(vector(.90,.95,.99)*M] # critical vals
(1) 0.071117 0. 083259 0.10837 10% 5% 1%

This approach by simulation is always
available with the right software
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Alternatively you can use tables or n ChartI,s=2,0 = .01
charts where available. v T
. wo MR s e
[ posted a handout with charts from D. L. e
Heck, Charts of Some Upper Percentage o
Points of the Distribution of the Largest - R
Characteristic Root, Ann.Math. Statist. » -um“'"_"'"'_" I A O .
NN T [ LfmEtp | ][] T
31 (1960) 625-642. | A BR\\\nZesiaun _
These give upper 5% and 1% points of 6__ . \\ﬁ\\“\\ bl
, , AV I =5
for a range of situations. &&% Thpasl
- ! ! > > " LIARAY N M=
The null distributions of the X and 6, o \SfQ%gx,n;_fu
n=71 = . [ o 1 P
(and of any statistic computed from « SRR
them) depend on 3 quantities. NHELET AN S S ONNSN S SN
s = min(f, p) = rank(H) > 1, integer BEFE ISR NSNS SN
° = , = , YRS : o e el L
n P Z | J NN7Z@m ERENSNEANENSSSSSNg
e M = (|fh - p| - 1)/2 > -1/2, integer or n:ﬁ&% ,ml‘\ \\i\‘“‘“?‘?‘:bﬁ%ﬁ
half integer s bk‘:‘:%:% :/'-Z‘_/m:__l 2 \H\H“‘ ™ MH"“-M:"—"‘M
. Mg wAa) H%%' | “xh‘:‘x&““x‘“x“““
e n=(f -p-1)/2>-1, integer or half RN || RIS
. € ( . h . ) 1: — S -.h‘"“:‘x.,‘ K}:;‘:S&:,{j HR
Integer (n 1s not the sample size 0| ‘““:““Q::““;};@‘%\ ~H
You can check that =B OaN NSNS
em+s=(f +p-1)/2 R S
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Using the charts of probability points

e Fach chart is a set of double-width
graphs . The curves in the lower left
continue (with a little overlap) the
curves that start in the upper left.

e Each chart goes with one value of s =
2,3,4,0r 5 and one value of « = .05
or .01.

e FEach curve on a chart goes with one
value of m=-1/2,0,1,2,3, ..., 10

The two bottom curves in each group
are for m = -1/2 and m = 0O; the others
are form =1, 2, ..., stepping by 1. For
In between values you need to inter-
polate. So for m = 5/2 interpolate
between m = 2 and m = 3 curves.

~

e x-axis (two scales) is 6 __
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The two scales below the X-axis both
represent values of eﬂ. The upper scale,

from O to .550 goes with the upper set of
The lower scale, from .500 to 1,

curves.
goes with the lower curves.
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for m crosses the
horizontal line cor-

e Find a critical value:
n ':‘"""%
i Curwve far o

Find where the curve
Critical walue

responding to n. The
horizontal position of
the intersection 1s
the critical value.

Cheerved §'

e Significance test of an observed X :
Compute 6, = X /(1 + X,), s, m and n.

e y axis representsn=(f_-p-1)/2

from 5 to 1000. Large f_leads to large
n. Large p reduces n.

Find point (8., n) on chart for s and o.
Reject H,when it 1s to the right of the
curve for m; otherwise don't reject H,.
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Application to Fisher Data.
N=150,g=3,p=4

f =N-g=147

f=g-1=2

s = min(4, 2) = 2
m=(|4-2]-1)/2=1/2=1/2
e N=(147 -4-1)/2=142/2 =71

On Chart for s = 2 and « = .01, the heavy
line traces from n = 71 to the critical
value. Since the curves for m = 0 and 1
are 2™ and 3™ curves, we need to inter-
polate between them.

The intersection with the m = O line 1s
approximately at .095 and the inter-
section with the m = 1 line is approx-
imately at .118. So the critical value is
about (0.095+.118)/2 = .1065

Ond> thetahat <- |anmbdahat/ (1 + | anbdahat)

Qrd> thetahat [ 1]
(1) 0. 96987
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>> 1065, v. signif.

Simulated 0.1084 is close to .1065.
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Pillai's V-statistic is
Vo= (f + f)tr(H + E)'H

(fh * fe)zl<i<sxi/(1 + >,\\1)

~

2
thp

Continuing with the artificial data:

Q> v <- (fh + fe)*trace(sol ve(h+e,h)); v
(1) 23.576

Qmd> (fh+fe)*sum(eigval s/ (1 + eigvals))
(1) 23.576 Computed from rel ative eigenval ues

Ord> cunchi (v, fh*p, upper: T)
(1) 0. 023213

This is a large sample P-value computed
from X°.

You can use cuntrace() with keyword
phrase pillai: T to get a more exact P-

value:
Ond> cuntrace(trace(sol ve(h+e,h)),fh,fe,p,pillai:T, upper:T)
(1) 0. 013864

Note: The degrees of freedom for the
large sample X* approximation to the null
distribution of Hotelling's T * Pillai's V
and the log LR test are all the same, f =
f xp = the number of scalar coefficients
or linear combinations of coefficients
that are being tested.
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Complex MANOVA situations
Suppose you have a complex MANOVA
situation that is more complex than one-
way MANOVA.

For example, you might need to analyze
multivariate data from a completely
randomized 3- way factorial (3 way
ANOVA) or a split plot design.

[f you know how to do a univariate
ANOVA for the situation, you know how
to do a MANOVA.

Suppose you are analyzing a split plot
experiment with whole block factor A
arranged in a randomized block design and
sub plot factor B.

The correct analysis has two error terms,
whole plot and subplot.
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For a univariate split plot ANOVA with
whole plots arranged in a RBD, In
MacAnova you would use a command like
the following.

anova("y=reps+a+tE(reps. a) +tb+a. b")
wherey is N by 1 and reps, a and b are
factors coding replications, the whole
plot factor and subplot factor.

Variable SS will contain hypotheses sums
of squares SS[ 1] = SS, for CONSTANT,

SS[2] =reps =SS, for reps, SS[ 3] = SS,
for a, S§[5] =SS, for b (SS[5]), and
SS[s] =SS, for a. b (interaction). The
two error SS are SS[ 4] = SSE , and SS[ 7]
= SSE_,. Their degrees of freedom are in
DF.
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You use SS[ 4]/ DF[ 4] as the error MS to
test A main effects.

You use SS[ 7]/ DF[ 7] as the error MS to
test B main effects and AB interaction.

Wheny is N by p is (multivariate), you
would do a split plot MANOVA by
manova("y=r eps+a+E(reps. a) +tb+a. b")

Variable SS will contain hypotheses
Matrices H for CONSTANT (SS[1,,]) reps
(SS[2,,]),a (S9[3,,]), b (S9[5,,]), and
a. b (interaction, (SS[6,,])) and two error
matrices £, = SS[4] and E_, = SS[ 7] .

You use SS[3,,] for H and S§[4,,] for E
with f = DF[3] and f_= DF[4] to test A
mean effects.

You use SS[7,,] for E with f_ = DF[ 7] to
test B main effects and AB interaction.
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For every hypothesis, you have the full
range of tests, all based on some
comparison of an H and an E --

Bonferronized F comparing diagonals h._
and e
Roy’'s maximum root

Wilks' likelithood ratio
Hotelling's T ° (Hotelling's trace test)

Pillai's V (Pillai’'s trace test).

But there are other possible tests as
well.
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Bonferronize T*-tests
[n the g group situation,

Hoe B = H, = o = J
s equivalent to the g-1 hypotheses
Ho- M, =0, 0 - 1, =0, 0 W - H=
each of which you can test by
T2= (g - §) WV -§)'(@ - §)
where VIy, - §1=(1/n+1/n)S, S = E/f_.
Note that this uses S, an estimate of &

pooling over all g groups, not just
groups 1 and j.

October 21, 2005

Example:

You Bonferronize using factor g-1, that
is find critical values using o' = ot/(g-1).

Or, in the spirit of multiple comparisons,
you could Bonferronize all g(g-1)/2

L , S . )
statistics T,”, <1 <] <gtesting j, = M.
Bonferronized critical values use
o = ot/{g(g-1)/2}.
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Bonferronize univariate t-tests

Since an alternative to a T? is to Bon-
ferronize p t-tests, you could Bonfer-
ronize px(g-1) t-tests based on

t]jk:(x_kl - X_kj)/SAE[X_M - X_kj]’
] = 2,....g, k= 1,..., P
where SE[X,, - X, ] = \/{skk(wn +1/n)}

Or you could Bonferronize all
pxgx(g-1)/2 t statistics t ,1 <i<j<g,
k = 1,..., P.

There are a Ilot of options.

Bonferronizing t or T?is more inter-
pretable, but can lose power, especially
1f there is high correlation.

When there is one variable which strongly
violate H  and for the other variables, H,

is (nearly) true, Bonferronizing F-tests or
even t-tests may have good power.
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Choosing a MANOVA test when you have prior information about
The Wilks (LR), Hotelling trace, and Pillai ~WHhich alternative hypotheses are likely,
trace tests are all general, having a you can sometimes get tests with higher

2 , power than the general tests.
completely unspecified alternative H.. .
o 1 For example, suppose you believe that H,
Moreover, they tend to have similar

behavior and give similar conclusions so might be substantially fals'e for specific
it's hard to come up with good reasons ltnear combinations y, = U’y for one or

for preferring one over another. more u,'s. Then you might include these
y,'s among a larger set u'y, u,'y, ... of

Roy's 1s also general, but has best power
when the alternative is one dimensional - linear combinations to be analyzed by
all means or effects tested are close to a Bonferronized F-tests.

straight line in p-dimensional space.
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Example
[n a repeated measures one-way MANOVA
case when p = 5, suppose you believe that
the means of linear combination

y, = Uy = -2y -y,+y,+ 2y,
differed greatly among groups. That 1s
-2, - M+ Mo+ 21 (group 1 value)
-2, - M+ M+ 2 (group 2 value)

FE
11 11

-------------------

My, = =20, - o+ M+ 21, (group g value)
are very different (u = [-2,-1, 0, 1, 2]).
Then an F-test computed from the values
of y might have high power, even when

Bonferronized because you test other
linear combinations such as

15'g:g1+g2+gs+g4+g5'
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You might be tempted to restrict testing
to just this one linear combination, so
you didn’'t need to Bonferronize. You
would run the risk of havmg no power if
you were wrong and U'j. = U'g = ... =
u'pl ., even though the H's were very

different. For example, suppose the
profile plots of the mean vectors were
like this:

Frofile Flots of g = 4 raean vectors, p =5
' ' ' ' Ity
/ B3
1 Z 3 i 5

For these u'p, =0, ] = 1,2,3,4 but
TUM, 10, 10, and 1,74, differ.
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MANOVA CANONICAL VARIABLES
Eigenvalues X, of H relative to E tell us

about the relative sizes of H and E.

Lecture 20 October 21, 2005

As computed bg MacAnova u & >\ satisfy
E Hu = >\u

Hu = XEu

uEu:1

U'HU = 0, iz]|U'EU = O, iz]
1 j i )

The U's are part of the definition of
MANOVA canonical variables:

z, =0y, 2,=0y, ....2 =U"Y
Each z = 2 QJgQ s a linear com-
bination of the original variables

e SS(z)=U'HU = X
 SS |

7) = GEG = 1

o fX/f =(SS(z)/f)/(SS(2)/f) =
ANOVA F-statistic computed from z

e« U'EU =0,i=j =z andz have
estimated within-group correlation O.
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Reminder:

H is a hypothesis matrix for a specific
|l hypothesis H,. This means the

relative eigenvalues and eigenvectors Xi

and U are specific to H_.

When you test a different H on the basis

of the same data the relative eigenvalues
and vectors and MANOVA canonical
variables are different.

For example 1in a two factor experiment
with main effect terms for A and B and
interaction effect AB, you would have
three sets of canonical variables, Z's
computed from H, and E, z's computed

from H_ and E, and z's computed from H
and E.
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Properties:

« F. =fX/f isthe largest possible F-
statistic F, of any linear combination
u'y. It is not distributed as F.

e F, Is largest F based on u for which
u'y is uncorrelated with z..

e F, 1s largest F based on u for which

u'y is uncorrelated with z and z.

e And so on.
Thus z, is the linear combination for

which the null hypothesis appears to be
most violated.

22 1s the linear combination uncorrelated
with z that most violates H_, and so on.

Examination of the canonical variables
may help find ways in which H  1s false,

just as finding the variable y, with the
largest F does.
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Example using Fisher iris data.

Qrd> manova("y=varieties", silent:T)
Cm> h <- S§2,,]; e < SY3,,] # Hand E

October 21, 2005

Q> fh <- DF[2]; fe <- DF[3] # hypothesis and error D. F.

Qrd> eigs <- releigen(h,e) # eigs is structure
Omd> eigs$val ues # last 2 are essentially 0

(1)

32. 192 0.28539 7.5171e-15 1.7978e-16

Ond> ulhat <- eigs$vectors[, 1];
Ond> u2hat <- eigs$vectors[, 2];
Ond> u3hat <- eigs$vectors[, 3];

z1l <- y %¥%ulhat # Can Var 1
z2 <- y %W%u2hat # Can Var 2
z3 <- y W¥%u3hat # Can Var 3

Qmd> # vy is 150 by 4, each zi is 150 by 1

There are s = min(2,4) = 2 non-zero i

Ca)

i

Crd> plot(zl, z2, synbol s:varieties,\

title:"Fisher iris data canonical variable plot",\

xl ab:"z1 hat = canonical variable 1",\
yl ab: "CanVar 2", yaxis:F)

Fisher iris data canonical wariable plot
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