Lecture 19

October 19, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page

http://www.stat.umm.edu/~kb/classes/5401 © 2005 by Christopher Bingham

Statistics 5401 Lecture 19 October 19, 2005

What are helpful are measures computed from the eigenvalues of H relative to E, that is the relative eigenvalues.

See the handout for a fairly complete explanation.

Vocabulary

The <u>relative eigenvalues</u> of \mathbf{H} relative to \mathbf{E} are the <u>ordinary</u> eigenvalues of $\mathbf{E}^{-1}\mathbf{H}$

$$\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \dots \geq \hat{\lambda}_n \geq 0$$

You can use relative eigenvalues to express and compute several standard test statistics for multivariate linear hypothesis.

The <u>relative eigenvectors</u> $\hat{\mathbf{u}_1}$, $\hat{\mathbf{u}_2}$, ..., $\hat{\mathbf{u}_p}$ of H relative to E are the <u>ordinary</u> eigenvectors of $\mathbf{E}^{-1}\mathbf{H}$. They satisfy $\mathbf{E}^{-1}\mathbf{H}\hat{\mathbf{u}_i} = \hat{\lambda_i}\hat{\mathbf{u}_i}$

The standard normalization, which I always assume, is $\hat{\mathbf{u}_i}'\mathbf{E}\hat{\mathbf{u}_i}=1$.

Statistics 5401 Lecture 19 October 19, 2005

All tests of multivariate linear hypotheses are derived from different ways of comparing \mathbf{H} and \mathbf{E} . A particularly important class of tests are based on $\mathbf{E}^{-1}\mathbf{H}$. Such tests have the following form:

 Reject H_o when E⁻¹H is "too large" compared to (f_b/f_e)I_p,

or equivalently

• Reject H_0 : when the "multivariate F" $(f_e/f_h)E^{-1}H$ is too large compared to I_p

Here's a problem:

E⁻¹H is a p by p <u>matrix</u>. What number or numbers measure how large it is?

 det(E⁻¹H) is not a useful number because

$$det(\mathbf{E}^{-1}\mathbf{H}) = det(\mathbf{E}^{-1})det(\mathbf{H}) = det(\mathbf{H})/det(\mathbf{E})$$

But when $f_h < p$, det(H) = 0, making $det(E^{-1}H) = 0$ so this is *not* helpful.

2

Statistics 5401 Lecture 19 October 19, 2005

These are all measure that are helpful:

- Hotelling's generalized T^2 (trace test) based on tr $E^{-1}H = \sum_i \hat{\lambda}_i$
- Roy's maximum root test based on $\hat{\lambda}_{\max} = \hat{\lambda}_{1}$.
- Likelihood ratio test (Wilks' or Rao's test) based on

$$1/\det(\mathbf{I}_{p} + \mathbf{E}^{-1}\mathbf{H}) = 1/\Pi_{i}(1 + \hat{\lambda}_{i}) \text{ or } \log(\det(\mathbf{I}_{p} + \mathbf{E}^{-1}\mathbf{H})) = \sum_{i} \log(1 + \hat{\lambda}_{i})$$

• Pillai's trace test based on tr $((\mathbf{H} + \mathbf{E})^{-1}\mathbf{H}) = \text{tr}(\mathbf{I} + \mathbf{E}^{-1}\mathbf{H})^{-1}\mathbf{E}^{-1}\mathbf{H} = \sum_i \hat{\lambda_i}/(1 + \hat{\lambda_i})$

When p = 1, there is only one $\hat{\lambda}$ so they are functions of $\hat{\lambda}_1 = SS_h/SS_e = (f_h/f_e)F$. In particular $\hat{\lambda}_1/(1 + \hat{\lambda}_1) = SS_h/(SS_h+SS_e)$.

When p > 1 and $f_h > 1$ they are all different.

3

Hotelling's generalized T²

$$T_0^2 = f_e \sum_i \hat{\lambda}_i = f_e tr(\mathbf{E}^{-1}\mathbf{H}) = tr(\mathbf{S}^{-1}\mathbf{H})$$

where $\mathbf{S} = (1/f_e)\mathbf{E} = \hat{\Sigma}$.

When H_0 is true, <u>in large samples</u>, T_0^2 is approximately χ_1^2 , where $f = f_b p$.

 $f = f_h p$ is the total number of scalar parameters (or linear combinations of scalar parameters) under test. There are f_h for each of p dimensions.

- 1-way MANOVA with g groups $f_h = g-1$, f = (g-1)p
- Testing two-way interaction in MANOVA, with

$$f_b = (a-1)(b-1), f = (a-1)(b-1)p$$

where a and b are the numbers of levels in the two factors.

• Testing $\beta_1 = \beta_2 = 0$, $f_h = 2$ and f = 2p.

5

Statistics 5401 Lecture 19 October 19, 2005

Cmd> manova("Y=group")
Model used is Y=group
WARNING: summaries are sequential
SS and SP Matrices
DF
CONSTANT 1
Y1 Y2

CONSTAN	T	1				
	Y1		Y2	Y3	Y4	
Y1	48157		47709	47960	47828	
Y2	47709		47265	47514	47383	
Y3	47960		47514	47765	47633	
Y4	47828		47383	47633	47501	
group		3				
	Y1		Y2	Y3	Y4	
Y1	4.9987		5.3629	5.6136	3.7318	
Y2	5.3629		7.2951	9.5705	7.042	= H
Y3	5.6136		9.5705	15.473	12.081	
Y4	3.7318		7.042	12.081	9.578	
ERROR1		46				
	Y1		Y2	Y3	Y4	
Y1	42.715		6.0666	1.1321	-8.952	
Y2	6.0666		42.181	-5.4086	7.4368	= E
Y3	1.1321		-5.4086	51.907	2.5298	
Y4	-8.952		7.4368	2.5298	44.303	

Extract H and E and compute univariate F-statistics, their Bonferronized P-values and $E^{-1}H$.

1 P-value < .05 so <u>reject</u> H_0 at 5% level

Cmd>	e_inv_h <-	solve(e,h);	e_inv_h	(-1)H
	Y1	Y2	Y3	Y4
Y1	0.11565	0.13005	0.14767	0.10174
Y2	0.11045	0.1524	0.20021	0.14761
Y3	0.11311	0.19017	0.30346	0.23624
Y4	0.082606	0.14879	0.2516	0.19848

You get a match to χ_f^2 if you replace f_e by $m_2 \equiv f_e - p - 1$, so the usual form of this test is

 $T = (f_e - p - 1)tr(\mathbf{E}^{-1}\mathbf{H}) = (1 - (p+1)/f_e)T_0^2$. Note that the $1 - (p+1)/f_e \to 1$ as $f_e \to \infty$, so with large enough f_e using m_2 makes little difference.

For an example I created some artificial data with g = 4 groups and p = 4 variables. You can download the data from

www.stat.umn.edu/~kb/classes/5401/datafiles.html

```
Cmd> data <- read("manovadata.txt","data")
data 50 5 LABELS
) Artificial one-way MANOVA data with p = 4 variables and
) g = 4 groups
) n_1 = 3, n_2 = 11, n_3 = 16, n_4 = 10
) Col. 1: Factor group with levels 1, 2, 3, 4
) Col. 2: Response Y1
) Col. 3: Response Y2
) Col. 4: Response Y3
) Col. 5: Response Y3
) Col. 5: Response Y4
Read from file "TP1:Stat5401:Stat5401F05:Data:manovadata.txt"
Cmd> addmacrofile("") # get new version of mulvar.mac
Cmd> group <- factor(data[,1])
Cmd> Y <- data[,-1] # 50 by 4 matrix of response variables
Cmd> p <- ncols(Y) # number of dimensions
```

6

Statistics 5401 Lecture 19 October 19, 2005

Now find eigenvalues. Not this way:

Cmd> eigvals <- eigenvals(e_inv_h) # doesn't work ERROR: 1st argument to eigenvals() must be symmetric REAL matrix

You can't use eigen() Or eigenvals() since they work only with symmetric matrices and E⁻¹H is not symmetric. Use releigen() and releigenvals() instead.

```
Cmd> eigs <- releigen(h,e); eigs
                         or eigs[1]
0.0034282 1.4755e-16
s eigs$vectors or eigs[2]
(2) (3) (4)
-0.10812 0.10275
   component: values eigs$values or eigs[1]
(1) 0.69325 0.073323 0.0034282 1.4755e-16
   component: vectors
          0.051256
                        -0.053316
0.038661
                                                     -0.0099296
          0.064869
                                         -0.13646
                                     -0.0010638
          0.074768
                         0.057023
                                        0.061523
   Cmd> eigvals <- eigs$values;
   Cmd> lambdamax <- eigvals[1]; lambdamax (1) 0.69325
   Cmd> trace(e_inv_h) # sum of diagonals of E^(-1)H
   Cmd> sum(eigvals) # same as trace(e_inv_h)
   Cmd> t0sq \leftarrow fe*trace(e_inv_h); t0sq # Hotelling's T_0^2 (1) 35.42
t0sq = T_0^2 tests
```

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

which is the same as

$$H_0: \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$$

Cmd> cumchi(t0sq,p*fh,upper:T) # chi-squared(12) P-value
(1) 0.00040136 Very small P-value => Reject H_0

Compute the modified value which has the more accurate χ^2 approximation.

Cmd>
$$m2 < -fe - p - 1$$
; $m2 \# optimal replacement for fe = 147 (1) 41$
Cmd> $m2*trace(e_inv_h) \# Improved Trace test statistic (1) 31.57$
Cmd> $cumchi(m2*trace(e_inv_h),p*fh,upper:T)\#chi-sq(12) P-val (1) 0.0016117 Better large sample P-value$

cumtrace() in the new version of Mulvar.mac uses an asymptotic series to find a yet more accurate P-value.

Cmd> cumtrace(trace(e_inv_h),fh,fe,p,upper:T)
(1) 0.0047263

Note this is about 10 times larger than crudest P-value from f trE-1H and about 3 times larger than the "better" large sample P-value from matrE-H.

Statistics 5401 Lecture 19 October 19, 2005

A better multiplier of $-\log\Lambda$ than N

$$M_1 \equiv f_e - (p - f_h + 1)/2,$$

so the standard form for the likelihood ratio test statistic is

$$(f_e - (p - f_h + 1)/2)\log \det(I_p + E^{-1}H)$$

= $(f_e - (p-f+1)/2) (\log(\det(H+E)/\det(E))$
= $(f_e - (p-f+1)/2) \sum_i \log(1 + \hat{\lambda}_i)$
= $\chi_{f,p}^2$

There are other approximations described in the handout on MANOVA tests and implemented in macro cumwilks()..

```
Cmd> N <- nrows(Y) # sample size
Cmd> I_p \leftarrow dmat(p,1) \# identity matrix
Cmd> m1 \leftarrow (fe - (p - fh + 1)/2); m1
(1) 45
\label{eq:cmd} \mbox{Cmd> wilks <- m1*log(det(I_p + e_inv_h)); wilks}
     27.037
Cmd> cumchi(wilks,fh*p,upper:T) # approximate P-value
```

Statistics 5401

Likelihood Ratio test (Wilks or Rao)

When errors are $N_n(\mathbf{0}, \mathbf{\Sigma})$, the <u>likelihood</u> ratio statistic to test Ho vs Ho is

$$\lambda = \det(\mathbf{E}^{-1}(\mathbf{E} + \mathbf{H}))^{-N/2} = (\Lambda^*)^{N/2}$$

$$\Lambda^* \equiv 1/\det(\mathbf{I}_p + \mathbf{E}^{-1}\mathbf{H}) = \det(\mathbf{E})/\det(\mathbf{H} + \mathbf{E})$$
 Then

-2 log
$$\lambda$$
 = N log det(I_p + $E^{-1}H$) = -N log Λ^*
= N $\sum_{1 \le j \le p} log(1 + \hat{\lambda}_j)$

The theory of LR tests says

$$-2 \log \lambda = N \log \det(I_D + E^{-1}H)$$

should be approximately χ^2 in large samples when H_n is true, where $f = f_p p$.

This is Wilks' or Rao's test.

Note f = f p is the same as for Hotelling's trace test.

Statistics 5401 Lecture 19 October 19, 2005

cumwilks() computes a more accurate Pvalue based on an F-statistic computed from a power of Λ^* . See the handout for details.

```
Cmd> cumwilks(det(e)/det(h+e),fh,fe,p)
(1) 0.0077151
Cmd> cumwilks(1/prod(1+eigvals),fh,fe,p)
```

This is very close to the P-value 0.00763 computed from χ_{f}^{2} .

H_n may be rejected at the 1% level of significance.

Statistics 5401

Important facts

p by p matrix H has rank
 s - min(f n)

$$s = \min(f_h, p).$$

$$f_h = 1 \Rightarrow s = 1.$$

$$p = 1 \Rightarrow s = 1.$$

- There are only s non-zero relative eigenvalues of **H** relative to **E**.
- When $p > f_h$, $s = f_h$ and $\hat{\lambda}_{f_{h+1}} = \hat{\lambda}_{f_{h+2}} = \dots = \hat{\lambda}_p = 0.$
- When $p > f_h$, **H** is singular.
- A relative eigenvalue $\hat{\lambda}$ satisfies $\hat{\mathbf{H}}\hat{\mathbf{u}} = \hat{\lambda}\hat{\mathbf{E}}\hat{\mathbf{u}}$ for some vector $\hat{\mathbf{u}}$. Which implies

$$\mathbf{E}^{-1}\mathbf{H}\hat{\mathbf{u}} = \hat{\lambda}\hat{\mathbf{u}}$$

• $\hat{\mathbf{u}}$ is a relative eigenvector of \mathbf{H} relative to \mathbf{E} with relative eigenvalues $\hat{\lambda}$.

13

Statistics 5401 Lecture 19 October 19, 2005

Example continued

Cmd> u_1 <- eigs\$vectors[,1]; z1 <- Y %*% u_1 # Canonical var</pre> Cmd> u_2 <- eigs\$vectors[,2]; z2 <- Y %*% u_2 Cmd> u_3 <- eigs\$vectors[,3]; z3 <- Y %*% u_3 Cmd> anova("z1 = group", silent:T); SS CONSTANT group 0.69325 3809.1 Cmd> anova("z2 = group", silent:T); SS CONSTANT 0.073323 208.54 Cmd> anova("z3 = group", silent:T); SS CONSTANT group 39.422 <u>0.0034282</u> Cmd> eigvals 0.69325 <u>0.073323</u> <u>0.0034282</u> 1.4755e-16

Note:

- SS_h in the analyses of the $\hat{z_j}$'s match the relative eigenvalues in eigvals.
- SS are all 1

Define $\hat{z_j} = \hat{u_j}'y$ where $\hat{u_j} = j^{th}$ relative eigenvector.

 $\hat{z_{\rm j}}$ is the jth MANOVA canonical variable associated with hypothesis ${\rm H_0}.$

- $\hat{z_j} = \sum_{1 \le k \le p} \hat{u_{kj}} y_j$ is a linear combination of the response variables $y_1, y_2, \dots y_p$ with coefficients from the relative eigenvector $\hat{u_i}$.
- $\hat{\mathbf{u}_j}'H\hat{\mathbf{u}_j} = \hat{\lambda_j} = SS_h(\hat{z_j}) = ANOVA$ hypothesis SS computed from $\hat{z_j}$ as if it were a new response variable.
- $\hat{\mathbf{u}_j}'\mathbf{E}\hat{\mathbf{u}_j} = 1 = SS_e(\hat{z_j}) = ANOVA$ error SS computed from $\hat{z_i}$

Statistics 5401 Lecture 19 October 19, 2005

Do MANOVA computations on matrix of all 4 canonical variables:

Cmd> $z \leftarrow Y$ %*% eigs\$vectors; list(z) # all 4 canvar z REAL 50 4 (labels) Cmd> manova("z = group", silent:T)

- Diagonal elements $\hat{\mathbf{u}_j}$ 'H $\hat{\mathbf{u}_j}$ = $\hat{\lambda_j}$
- Off diagonal elements û_i'Hû_k = 0, j ≠ k

Cmd> round(SS	3[2,,],12)	# H for Z to	12 decimals	
	(1)	(2)	(3)	(4)
group (1)	0.69325	0	0	0
(2)	0	0.073323	0	0
(3)	0	0	0.0034282	0
(4)	0	0	0	0

(round(SS[2,,],12) suppresses small numbers like 1.242e-16 which are really zeros in disguise.)

- Diagonal elements $\hat{\mathbf{u}}_i'\mathbf{E}\hat{\mathbf{u}}_i = 1$
- Off diagonal elements $\hat{\mathbf{u}}_{j}'\mathbf{E}\hat{\mathbf{u}}_{k} = 0$, j \neq k

Cmd> round(SS[3,	,],12) # 1	E for z to 12	decimals	
	(1)	(2)	(3)	(4)
ERROR1 (1)	1	0	0	0
(2)	0	1	0	0
(3)	0	0	1	0
(4)	0	0	0	1

The canonical correlations have 0 within group correlation.

Statistics 5401 Lecture 19 October 19, 2005

An important fact is

- $\hat{\lambda}_1 = SS_h(\hat{z_j})/SS_e(\hat{z_j})$ = max_SS_h(u'y)/SS_e(u'y)
- $(f_h/f_e)\hat{\lambda}_1 = F_{max} = largest possible F-statistic computed from any linear combination <math>y_u = u'y$.

That is, for any vector \mathbf{u} defining a linear combination of the variables in \mathbf{y} , in a <u>univariate</u> ANOVA of $\mathbf{y}_{\mathbf{u}} = \mathbf{u}'\mathbf{y}$, the ANOVA F-statistic must satisfy

$$F = (SS_h(\mathbf{u}'\mathbf{y})/f_h)/(SS_e(\mathbf{u}'\mathbf{y})/f_e) \le f_e \hat{\lambda}_1/f_h$$

This suggests that the "pseudo-F-statistic" $f_e \hat{\lambda}_1/f_h$ or even just $\hat{\lambda}_1$ might be a good candidate for a statistic to test H_o . Warning: When p > 1, $(f_h/f_e)\hat{\lambda}_1$ does not have a F-distribution.

17

Statistics 5401

Lecture 19

October 19, 2005

Roy's maximum root test

Reject H_0 when $\hat{\lambda}_1 = \hat{\lambda}_{max}$ is "large" I found estimates of $\hat{\lambda}_{max}(.10)$, $\hat{\lambda}_{max}(.05)$ and $\hat{\lambda}_{max}(.01)$ from the 5000 simulated values in lambda_max.

Cmd> lambda_max[round(vector(.90,.95,.99)*M)]
(1) 0.076562 0.090821 0.12154

Actually **Roy** proposed the <u>canonical</u> correlation form of the statistic

$$\hat{\Theta_{_1}} = \hat{\Theta_{_{max}}}$$
 where $\hat{\Theta_{_j}} = \hat{\lambda_{_j}}/(1 + \hat{\lambda_{_j}}), j = 1, ..., p$

Cmd> theta_max <- lambda_max/(1 + lambda_max)
Cmd> theta_max[round(vector(.90,.95,.99)*M)] # critical vals
(1) 0.071117 0.083259 0.10837 10%, 5%, 1%

These last are estimated critical values for $\hat{\theta}_{max}$.

This approach by simulation is always available with the right software.

Statistics 5401 Lecture 19

I did a small simulation of the null distribution (distribution when H_0 is true) of $(f_h/f_e)\hat{\lambda}_1$ that shows this clearly.

October 19, 2005

lambda_max is a vector of $\hat{\lambda}_{_1}$'s computed from M = 5,000 simulated samples .

 $F_{2.147}(.05)$ is closer to the median of simulated values than to the upper 5% point.

18