Displays for Statistics 5401/8401

Lecture 19

October 19, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page

http://www.stat.umn.edu/~kb/classes/5401 © 2005 by Christopher Bingham Statistics 5401 Lecture 19 October 19, 2005

All tests of multivariate linear hypotheses are derived from different ways of comparing \mathbf{H} and \mathbf{E} . A particularly important class of tests are based on $\mathbf{E}^{-1}\mathbf{H}$. Such tests have the following form:

- Reject H₀ when E⁻¹H is "too large" compared to (f_b/f_e)I_D,
- or equivalently
- Reject H_0 : when the "multivariate F" $(f_e/f_h)E^{-1}H$ is too large compared to I_p

Here's a problem:

E⁻¹H is a p by p <u>matrix</u>. What number or numbers measure how large it is?

 det(E⁻¹H) is not a useful number because

$$det(E^{-1}H) = det(E^{-1})det(H) = det(H)/det(E)$$

But when $f_h < p$, det(H) = 0, making $det(E^{-1}H) = 0$ so this is *not* helpful.

What are helpful are measures computed from the *eigenvalues* of **H** relative to **E**, that is the *relative eigenvalues*.

See the handout for a fairly complete explanation.

Vocabulary

The <u>relative eigenvalues</u> of **H** relative to **E** are the <u>ordinary</u> eigenvalues of **E**⁻¹**H**

$$\hat{\lambda}_{1} \geq \hat{\lambda}_{2} \geq \dots \geq \hat{\lambda}_{p} \geq 0$$

You can use relative eigenvalues to express and compute several standard test statistics for multivariate linear hypothesis.

The <u>relative eigenvectors</u> $\hat{\mathbf{u}}_{_{1}}$, $\hat{\mathbf{u}}_{_{2}}$, ..., $\hat{\mathbf{u}}_{_{p}}$ of H relative to E are the <u>ordinary</u> eigenvectors of $\mathbf{E}^{_{-1}}\mathbf{H}$. They satisfy

$$\mathbf{E}^{-1}\mathbf{H}\hat{\mathbf{u}}_{j} = \hat{\lambda}_{j}\hat{\mathbf{u}}_{j}$$

The standard normalization, which I always assume, is $\hat{\mathbf{u}}_i \cdot \mathbf{E} \hat{\mathbf{u}}_i = 1$.

These are all measure that are helpful:

Lecture 19

- Hotelling's generalized T^2 (trace test) based on tr $E^{-1}H = \sum_i \hat{\lambda}_i$
- Roy's maximum root test based on $\hat{\lambda}_{\max} = \hat{\lambda}_{1}$.
- Likelihood ratio test (Wilks' or Rao's test) based on $1/\det(\mathbf{I}_p + \mathbf{E}^{-1}\mathbf{H}) = 1/\Pi_i(1 + \hat{\lambda}_i) \text{ or } \log(\det(\mathbf{I}_n + \mathbf{E}^{-1}\mathbf{H})) = \sum_i \log(1 + \hat{\lambda}_i)$
- Pillai's trace test based on $tr ((\mathbf{H} + \mathbf{E})^{-1}\mathbf{H}) = tr(\mathbf{I} + \mathbf{E}^{-1}\mathbf{H})^{-1}\mathbf{E}^{-1}\mathbf{H} = \sum_i \hat{\lambda}_i / (1 + \hat{\lambda}_i)$

When p = 1, there is only one $\hat{\lambda}$ so they are functions of $\hat{\lambda}_1 = SS_h/SS_e = (f_h/f_e)F$. In particular $\hat{\lambda}_1/(1 + \hat{\lambda}_1) = SS_h/(SS_h+SS_e)$.

When p > 1 and $f_h > 1$ they are all different.

Statistics 5401

Lecture 19

October 19, 2005

Hotelling's generalized T²

$$T_0^2 = f_e \sum_i \hat{\lambda}_i = f_e tr(\mathbf{E}^{-1}\mathbf{H}) = tr(\mathbf{S}^{-1}\mathbf{H})$$

where $\mathbf{S} = (1/f_e)\mathbf{E} = \hat{\mathbf{\Sigma}}$.

When H₀ is true, in large samples, T₀² is approximately χ_f^2 , where f = f_p.

f = f p is the total number of scalar parameters (or linear combinations of scalar parameters) under test. There are f for each of p dimensions.

- 1-way MANOVA with g groups $f_{b} = g-1, f = (g-1)p$
- Testing two-way interaction in MANOVA. with $f_b = (a-1)(b-1), f = (a-1)(b-1)p$ where a and b are the numbers of levels in the two factors.
- Testing $\beta_1 = \beta_2 = 0$, $f_1 = 2$ and f = 2p.

You get a match to χ_{i}^{2} if you replace f_{i} by $m_2 \equiv f_p - p - 1$, so the usual form of this test is

 $T = (f_p - p - 1)tr(E^{-1}H) = (1 - (p+1)/f_p)T_0^2$. Note that the 1 - $(p+1)/f_p \rightarrow 1$ as $f_p \rightarrow \infty$, so with large enough f using m, makes little difference.

For an example I created some artificial data with g = 4 groups and p = 4 variables. You can download the data from

www.stat.umn.edu/~kb/classes/5401/datafiles.html

```
Cmd> data <- read("manovadata.txt","data")</pre>
                     5 LABELS
) Artificial one-way MANOVA data with p = 4 variables and
 n_1 = 3, n_2 = 11, n_3 = 16, n_4 = 10
 Col. 1: Factor group with levels 1, 2, 3, 4
 Col. 2: Response Y1
) Col. 3: Response Y2
) Col. 4: Response Y3
) Col. 5: Response Y4
Read from file "TP1:Stat5401:Stat5401F05:Data:manovadata.txt"
Cmd> addmacrofile("") # get new version of mulvar.mac
Cmd> group <- factor(data[,1])</pre>
Cmd> Y <- data[,-1] # 50 by 4 matrix of response variables
Cmd> p <- ncols(Y) # number of dimensions
```

Cmd> manova("Y=group") Model used is Y=group

WARNING: summaries are sequential

SS and SP Matrices

Lecture 19

				and SP	Matrices		
			DF				
CONSTANT		1					
		Y1		Y2	Y3	Y4	
	Y1	48157		47709	47960	47828	
	Y2	47709		47265	47514	47383	
	Y3	47960		47514	47765	47633	
	Y4	47828		47383	47633	47501	
	group		3				
		Y1		Y2	Y3	Y4	
	Y1	4.9987		5.3629	5.6136	3.7318	
	Y2	5.3629		7.2951	9.5705	7.042	= H
	Y3	5.6136		9.5705	15.473	12.081	
	Y4	3.7318		7.042	12.081	9.578	
	ERROR1		46				
		Y1		Y2	Y3	Y4	
	Y1	42.715		6.0666	1.1321	-8.952	
	Y2	6.0666		42.181	-5.4086	7.4368	= E
	Y3	1.1321		-5.4086	51.907	2.5298	
	Y4	-8.952		7.4368	2.5298	44.303	
		0.000		2000	2.5270	11.505	

Extract H and E and compute univariate F-statistics. their Bonferronized Pvalues and $E^{-1}H$.

```
Cmd> h \leftarrow matrix(SS[2,,]); fh \leftarrow DF[2]
Cmd> e <- matrix(SS[3,,]); fe <- DF[3]</pre>
Cmd> fstats <- (fe/fh)*diag(h)/diag(e); fstats</pre>
         1.7944
                       2.6519
                                     4.5706
                                                    3.315
Cmd> p*cumF(fstats,fh,fe,upper:T) # Bonferronized P-values
        0.64589
                      0.23903
                                  0.027837
                                                 0.11202
```

1 P-value < .05 so reject H_a at 5% level

Cmd>	e_inv_h <-	<pre>solve(e,h);</pre>	e_inv_h # E	^(-1)H
	Y1	Y2	Y3	Y4
Y1	0.11565	0.13005	0.14767	0.10174
Y2	0.11045	0.1524	0.20021	0.14761
Y3	0.11311	0.19017	0.30346	0.23624
Υ4	0.082606	0.14879	0.2516	0.19848

Now find eigenvalues. Not this way:

Cmd> eigvals <- eigenvals(e_inv_h) # doesn't work ERROR: 1st argument to eigenvals() must be symmetric REAL matrix

You can't use eigen() or eigenvals() since they work only with symmetric matrices and E⁻¹H is not symmetric. Use releigen() and releigenvals() instead.

```
Cmd> eigs <- releigen(h,e); eigs</pre>
component: values
                         eigs$values or eigs[1]
       0.69325
                   0.073323 0.0034282 1.4755e-16
component: vectors
                         eigs$vectors or eigs[2]
           (1)
                                   (3)
     0.051256
                  -0.10812
                               0.10376
     0.064869
                 -0.053316
                              -0.13646
                                        -0.0099296
     0.091838
                  0.038661
                           -0.0010638
                                          0.098878
     0.074768
                  0.057023
                              0.061523
                                           -0.11043
Cmd> eigvals <- eigs$values;
```

Cmd> lambdamax <- eigvals[1]; lambdamax</pre>

(1)0.69325

Statistics 5401

Cmd> trace(e_inv_h) # sum of diagonals of E^(-1)H (1)

Cmd> sum(eigvals) # same as trace(e_inv_h)

(1)

Cmd> t0sq <- fe*trace(e_inv_h); t0sq # Hotelling's T_0^2

$$t0sq = T_0^2 tests$$

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

which is the same as

$$H_0: \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$$

Cmd> cumchi(t0sq,p*fh,upper:T) # chi-squared(12) P-value (1) 0.00040136 Very small P-value => Reject H_0

Statistics 5401

Compute the modified value which has the more accurate χ^2 approximation.

```
Cmd> m2 < - fe - p - 1; m2 # optimal replacement for fe = 147 (1) 41 

Cmd> m2*trace(e\_inv\_h) # Improved Trace test statistic (1) 31.57 

Cmd> cumchi(m2*trace(e\_inv\_h),p*fh,upper:T)#chi-sq(12) P-val (1) 0.0016117 Better large sample P-value
```

cumtrace() in the new version of Mulvar.mac uses an asymptotic series to find a yet more accurate P-value.

```
Cmd> cumtrace(trace(e_inv_h),fh,fe,p,upper:T)
(1)  0.0047263
```

Note this is about 10 times larger than crudest P-value from $f_e tr \mathbf{E}^{-1} \mathbf{H}$ and about 3 times larger than the "better" large sample P-value from $m_a tr \mathbf{E}^{-1} \mathbf{H}$.

Likelihood Ratio test (Wilks or Rao) When errors are $N_p(\mathbf{0}, \mathbf{\Sigma})$, the <u>likelihood</u> ratio statistic to test H_o vs H_o is

$$\lambda = \det(\mathbf{E}^{\text{-1}}(\mathbf{E} + \mathbf{H}))^{\text{-N/2}} = (\Lambda^*)^{\text{N/2}}$$

$$\Lambda^* \equiv 1/\det(\mathbf{I}_{\text{p}} + \mathbf{E}^{\text{-1}}\mathbf{H}) = \det(\mathbf{E})/\det(\mathbf{H} + \mathbf{E})$$
 Then

$$-2 \log \lambda = N \log \det(\mathbf{I}_{p} + \mathbf{E}^{-1}\mathbf{H}) = -N \log \Lambda^{*}$$
$$= N \sum_{1 \le j \le p} \log(1 + \hat{\lambda}_{j})$$

The theory of LR tests says

$$-2 \log \lambda = N \log \det(\mathbf{I}_p + \mathbf{E}^{-1}\mathbf{H})$$

should be approximately χ_f^2 in large samples when H_0 is true, where $f = f_h p$.

This is Wilks' or Rao's test.

Note $f = f_n p$ is the same as for Hotelling's trace test.

A better multiplier of -log∧ than N

$$m_1 \equiv f_e - (p - f_h + 1)/2,$$

so the standard form for the likelihood ratio test statistic is

$$(f_{e} - (p - f_{h} + 1)/2) \log \det(I_{p} + E^{-1}H)$$

$$= (f_{e} - (p-f+1)/2) (\log(\det(H+E)/\det(E))$$

$$= (f_{e} - (p-f+1)/2) \sum_{i} \log(1 + \hat{\lambda}_{i})$$

$$= \chi_{f_{h}p}^{2}$$

There are other approximations described in the handout on MANOVA tests and implemented in macro cumwilks()..

cumwilks() computes a more accurate P-value based on an F-statistic computed from a power of Λ^* . See the handout for details.

```
Cmd> cumwilks(det(e)/det(h+e),fh,fe,p)
(1)    0.0077151
Cmd> cumwilks(1/prod(1+eigvals),fh,fe,p)
(1)    0.0077151
```

This is very close to the P-value 0.00763 computed from χ_r^2 .

 ${\rm H_0}$ may be rejected at the 1% level of significance.

Statistics 5401 Lecture 19

October 19, 2005

Important facts

p by p matrix H has rank
 s ≡ min(f, p).

$$f_h = 1 \Rightarrow s = 1$$
.

$$p = 1 \Rightarrow s = 1$$
.

- There are only s non-zero relative eigenvalues of **H** relative to **E**.
- When $p > f_h$, $s = f_h$ and $\hat{\lambda}_{f_{h+1}} = \hat{\lambda}_{f_{h+2}} = \dots = \hat{\lambda}_p = 0.$
- When $p > f_h$, H is singular.
- A relative eigenvalue $\hat{\lambda}$ satisfies $\hat{\mathbf{H}}\hat{\mathbf{u}} = \hat{\lambda}\hat{\mathbf{E}}\hat{\mathbf{u}}$ for some vector $\hat{\mathbf{u}}$. Which implies

$$\mathbf{E}^{-1}\mathbf{H}\hat{\mathbf{u}} = \hat{\lambda}\hat{\mathbf{u}}$$

• $\hat{\mathbf{u}}$ is a relative eigenvector of H relative to E with relative eigenvalues $\hat{\lambda}$.

Define $\hat{z_j} = \hat{u_j}' y$ where $\hat{u_j} = j^{th}$ relative eigenvector.

 $\hat{z_j}$ is the jth MANOVA canonical variable associated with hypothesis H_0 .

- $\hat{z_j} = \sum_{1 \leq \ell \leq p} \hat{u_{\ell j}} y_j$ is a linear combination of the response variables $y_1, y_2, \dots y_p$ with coefficients from the relative eigenvector $\hat{u_j}$.
- $\hat{\mathbf{u}_j}'H\hat{\mathbf{u}_j} = \hat{\lambda_j} = SS_h(\hat{z_j}) = ANOVA$ hypothesis SS computed from $\hat{z_j}$ as if it were a new response variable.
- $\hat{\mathbf{u}}_{j}'\mathbf{E}\hat{\mathbf{u}}_{j} = 1 = SS_{e}(\hat{z}_{j}) = ANOVA \text{ error SS}$ computed from \hat{z}_{i}

October 19, 2005

Example continued

```
Cmd> u_1 <- eigs$vectors[,1]; z1 <- Y %*% u_1 # Canonical var
Cmd> u_2 <- eigs$vectors[,2]; z2 <- Y %*% u_2
Cmd> u_3 <- eigs$vectors[,3]; z3 <- Y %*% u_3
Cmd> anova("z1 = group", silent:T); SS
    CONSTANT
                   group
      3809.1
                 0.69325
Cmd> anova("z2 = group", silent:T); SS
    CONSTANT
                   group
                               ERROR1
      208.54
                0.073323
Cmd> anova("z3 = group", silent:T); SS
    CONSTANT
                              ERROR1
                   group
      39.422
               0.0034282
Cmd> eigvals
        0.69325
                   0.073323
                              0.0034282 1.4755e-16
```

Note:

- SS_h in the analyses of the $\hat{z_j}$'s match the relative eigenvalues in eigvals.
- SS_e are all 1

Do MANOVA computations on matrix of all 4 canonical variables:

```
Cmd> z \leftarrow Y %*% eigs$vectors; list(z) # all 4 canvar z REAL 50 4 (labels) Cmd> manova("z = group", silent:T)
```

• Diagonal elements $\hat{\mathbf{u}}_{j}'\mathbf{H}\hat{\mathbf{u}}_{j} = \hat{\lambda}_{j}$

Statistics 5401

Off diagonal elements u

_j'Hu

_k = 0, j ≠ k

(round(SS[2,,],12) suppresses small numbers like 1.242e-16 which are really zeros in disguise.)

- Diagonal elements $\hat{\mathbf{u}}_i'\mathbf{E}\hat{\mathbf{u}}_i = 1$

```
Cmd> round(SS[3,,],12) # E for z to 12 decimals

(1) (2) (3) (4)

ERROR1 (1) 1 0 0 0

(2) 0 1 0 0

(3) 0 0 1 0

(4) 0 0 0 1
```

The canonical correlations have 0 within group correlation.

An important fact is

- $\hat{\lambda}_1 = SS_h(\hat{z_j})/SS_e(\hat{z_j})$ = $max_uSS_h(\mathbf{u}'\mathbf{y})/SS_e(\mathbf{u}'\mathbf{y})$
- $(f_n/f_e)\hat{\lambda}_1 = F_{max} = largest possible F-statistic computed from any linear combination <math>y_{\parallel} = \mathbf{u}'\mathbf{y}$.

That is, for any vector \mathbf{u} defining a linear combination of the variables in \mathbf{y} , in a <u>univariate</u> ANOVA of $\mathbf{y}_{\mathbf{u}} = \mathbf{u}'\mathbf{y}$, the ANOVA F-statistic must satisfy

$$F = (SS_h(\mathbf{u}'\mathbf{y})/f_h)/(SS_h(\mathbf{u}'\mathbf{y})/f_h) \le f_h \hat{\lambda}_1/f_h$$

This suggests that the "pseudo-F-stat-istic" $f_e \hat{\lambda}_1/f_h$ or even just $\hat{\lambda}_1$ might be a good candidate for a statistic to test H_o .

Warning: When p > 1, $(f_h/f_e)\hat{\lambda}_1$ does *not* have a F-distribution.

I did a small simulation of the null distribution (distribution when H_0 is true) of $(f_h/f_e)\hat{\lambda}_1$ that shows this clearly.

Lecture 19

lambda_max is a vector of $\hat{\lambda}_1$'s computed from M = 5,000 simulated samples .

 $F_{2,147}(.05)$ is closer to the median of simulated values than to the upper 5% point.

Statistics 5401 Lecture 19 October 19, 2005

Roy's maximum root test

Reject H_0 when $\hat{\lambda}_1 = \hat{\lambda}_{max}$ is "large" I found estimates of $\hat{\lambda}_{max}(.10)$, $\hat{\lambda}_{max}(.05)$ and $\hat{\lambda}_{max}(.01)$ from the 5000 simulated values in lambda_max.

Cmd> lambda_max[round(vector(.90,.95,.99)*M)] (1) 0.076562 0.090821 0.12154

Actually **Roy** proposed the <u>canonical</u> <u>correlation form</u> of the statistic

$$\hat{\theta_{1}} = \hat{\theta_{max}}$$
 Where $\hat{\theta_{j}} = \hat{\lambda_{j}}/(1 + \hat{\lambda_{j}})$, $j = 1, ..., p$ Cmd> theta_max <- lambda_max/(1 + lambda_max) Cmd> theta_max[round(vector(.90,.95,.99)*M)] # critical vals (1) 0.071117 0.083259 0.10837 10%, 5%, 1%

These last are estimated critical values for $\hat{\theta}_{\text{max}}$.

This approach by simulation is always available with the right software.