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I will calculate several types of 99%
confidence limits for the p = 4 elements
o, Of ot .

Cmd> n <- nrows(y); p <- ncols(y)
Cmd> g <- 3 # number of groups
Cmd> fe <- reverse(DF)[1] # or DF[3] or n-g

Cmd> vector(n, p, fe, g)
@1 150 47 147 3

All confidence intervals are of the form
o, + KxSElet ], (SE means estimated SE)

Individual (non simultaneous)
confidence limits

Use ordinary Student's t, K = t, (ct/2)

Cmd> alpha<-.01#.99 =1 - alpha
Cmd> teritl <- invstu(alpha/2, fe, upper:T); tcritl
(1) 2.6097 non-bonferronized critical value

Cmd> alphahatl + vector(-1,1)*tcrit1*ses
(1,1) -0.99246 -0.68221
(2,1) 0.2683 0.47303
(3,1) -2.4257 -2.1663
(41) -1.015 -0.89166
Lower Upper limits

vector(-1,1)’ codes for 1.

The transpose is needed so the result
comes out in 2 columns.
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Confidence Intervals Continued
Model is Y, = L + ot + E .

Cmd> manova("y=varieties",silent:T)
Cmd> stats <- secoefs()#info on last regress(),anova(),manova()

Cmd> stats

component: CONSTANT Estimates and their standard errors

component: coefs Least squares estimates of u
SepLen  SepWid PetLen PetWid

(1) 58433 30573 3758 1.1993 ﬁ’

component: se Their standard errors
SepLen SepWid PetLen PetWid

(1) 0.042032 - 0.027735 0.035137 0.01671

component: varieties

component: coefs Least squares of variety effects
SepLen SepWid PetLen  PetWid

(1) -0.83733 0.37067 -2.296 -0.95333 a

(2) 0.092667 -0.28733 0.502 0.12667 o

(3) 0.74467 -0.083333 1.794 0.82667 o

component: se Their standard errors
SepLen SepWid PetLen PetWid
(1) 0.059443 0.039224 0.049691 0.023631
(2) 0.059443 0.039224 0.049691 0.023631
(3) 0.059443 0.039224 0.049691 0.023631

Cmd> alphahatl <- vector(stats$varieties$coefs[1,]); alphahatl
(1) -0.83733 0.37067 -2.296 -0.95333

Cmd> ses <- vector(stats$varieties$se[1,]); ses # std errors
(1) 0.059443 0.039224 0.049691 0.023631

e stats$varieties$coefs[1,] gets the
first row & of the matrix of

estimated variety effect coefficients.

e stats$varieties$se[1,] gets their

standard errors.

2

Statistics 5401 Lecture 18 October 17, 2005

Simultaneous limits for ot , ot , o,
(elements of o ), ignoring o, and o..
Bonferronize by p = 4: K = t, ((x/4)/2)

0(14

Cmd> tcrit2 <- invstu((alpha/p)/2,fe,upper:T); tcrit2
(1) 3.0763

Cmd> alphahatl + vector(-1,1)*tcrit2*ses
(1,1) -1.0202 -0.65447

2,1 0.25 0.49133

(31) -2.4489 -2.1431

(4,1) -1.026 -0.88064

These limits are 18% wider than non-
Bonferronized limits (3.076 > 2.610).

Simultaneous limits for all 12 = gxp
effects

Bonferronize by gp = 12: K = t, ((x/12)/2)

Cmd> tcrit3 <- invstu((alpha/(g*p))/2,DF[3],upper:T); tcrit3
(1) 34119

Cmd> alphahatl + vector(-1,1)*tcrit3*ses
(1,1) -1.0401 -0.63452
(2,1) 0.23684 0.5045
(31) -2.4655 -2.1265
(4,1) -1.034 -0.87271

These limits are wider still, 31% larger
than non-simultaneous limits and 11%
wider than the Bonferronized by 4 limits.
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“Ellipsoidal” Limits simultaneous for
X, K, oA, &, (elements of o): K =
VT ), T () a critical value for T2

Cmd> fel <- fe-p+1 ; teritd <A\
sqrt((p*fe/fel) invF(alpha,p,fel,upper:T)); tcrit4
(1) 3.7545

Cmd> alphahatl + vector(-1,1)*tcrit4*ses
(1,1) -1.0605 -0.61415
(21) 0.2234 051793
(31) -2.4826 -2.1094
(4,1) -1.0421 -0.86461

These are simultaneous for all possible
linear combinations of &, &, ., and
.. They are 22% wider than Bonfer-
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ronized by 4 limits.

How do you extend this approach to all 12
X, ?

One way is to Bonferronize these limits.
by g = 3: K = T*(ot/3)

Cmd> tcrit5 <- sqrt((p*fe/fel)*invF(alpha/g,p,fel,upper:T)),\
tcrits
(1) 4.1108

Cmd> alphahatl + vector(-1,1)*tcrit5*ses
(1,1) -1.0817 -0.59297

(2,1) 0.20942 0.53191

(31) -2.5003 -2.0917

(4,1) -1.0505 -0.85619
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e General H: LB=0,L=1[2,..,27,
[ 2]

October 17, 2005

Each row &' of L defines a linear
combination
1B = ZogﬁinJ’BJ'
of the rows B ' of B. Also
a'B=[2'b &'b,... 2D ]
1b, = 200428,
where b, = [, $,,. .... B,,]' is the
vector of coefficients for y,.

The linear combination of coefficients
Is the same for every variable.

H, declares that rxp linear combina-
tions are 0.
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Testing Multivariate Linear Hypotheses

The k+1 by p matrix B of coefficients has
columns b, and rows $":

B=1[b,b, ..bl=[8, B, ..8]T
Some linear hypotheses are:
* Hy: B, =0 (y, does not depend on Z for

Q=1,2,..p)

You can express this as

H: 8B =0,2"=[0...0 1 0..0]
1

0 -1 e k
o H: B, =B, (equal coefficients of Z and
Z, for all p variables)

You can express this as

H: 8@B=0,28=[0 1 -1 0..0]
e H: B =8,=..=8 =0 (noeffect of
Z., ... Z,0onany variable.
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The alternative hypothesis considered is
H:LB =z O
H. is true if at least one of the rxp linear

1

combinations in LB is not zero.
Here's what L is for the examples

e H: B =0
H: B, = 0 for at least one
r=1andL=[00.. 010 ...0]
01 -1 g+l k

8 =8,

: B, =z B, for at least one ¢
r=1landL=[0 1 -1 0 0... O]
B, -

B

O
=B = B
z 0 for at least one j and ¢

(010 ..00]T
r=k,L=[01]=]0 0 1 00 |

O

je
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Because the same L applies to every
variable, this formulation does not
include some hypotheses you might think
of as "linear.”

Example:
H:8,=0
(variable 2 doesn't depend on Z,)

You can’'t express this as LB = O for any
L and can’t test is by the methods I am
about to discuss.

These methods do allow testing
Ho: ‘BH - 512 T e T ‘Bw =0

(no variable depends on Z.).
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The hypothesis matrix for H is
H = RCP(H,) - RCP(H))
e the reduction of RCP(H_) achieved by

0

not imposing restrictions of H_
e or the increase in RCP(H,) resulting

1

from imposing those restrictions.

The error matrix is
E =RCP(H,) = ¥(y, - 4y -9

In the one-way MANOVA case, H = B in
and E = W J&W's notation.

e H is always positive semi-definite (all
eigenvalues > 0).

e When ¥ is non-singular and the error
d.f.=f >p-1(f-p+1>0), Eis
positive definite (all eigenvalues > 0).

o When f_ <p-1(f-p+1 <0) E is not in-
vertible but is positive semi-definite
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Consider null and alternative linear
hypotheses H: LB = 0 and H,: LB =z 0.

Suppose
« B® estimates B assuming H, is true,

that is, by least squares, restricted so
that LB® = O

« B' estimates B without assuming H, is
true so LB' z 0.

Define matrices of sums of squares and
products of residuals

RCP(H,) = & .0y, - 40y, - y°)’

RCP(H) = & .0y, - 4 )y, - g')
where fitted values y° and y' are com-
puted using B° and B'. That is

U’ u,° ., u’l =Y =2ZB" =3 Z(B°)

'y, .. y,'l )

Y =2ZB'=3Z(8

]
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A matrix principle of reduction in
residual sums of squares and products

The "larger” H is compared to E, the
better H, fits the data than H,.

The testing principle is:

Reject H_ in favor of H when H is
“large” as compared to E
This idea underlies all the tests we will
consider: Wilks’ (likelihood ratio),
Hotelling’'s generalized T?, Pillai's trace
and Roy's maximum eigenvalue.

They are bassed on different answers to
the important question

How do you compare H with E?

12
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Q How do you compare H with E?
There is no single good way to compare H

with E.

Things are simplest whenp = 1 or f = 1.

e Whenp = 1. This is the univariate
case and you can choose between an F-
test and Bonferronized t-tests.

e When f =1, this is essentialy the case
of a hypothesis about single vector of
parameters & such as & = p (1 sample)
or & =y -y, (2 sample).

Your choice is between a test based on
= 'VI¥I'¥, & = LB and Bonferron-
ized t, = §,/SEIT,]. 1 < 0 <p.
Things are more complicated when p > 1
and f > 1.
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One-way MANOVA
The linear model is
Yy, = B+ ot +ej,'

October 17, 2005

Z:1<J<Q°‘J - 0
.H0d1_d2: :dQ:O
H:ot =z o, some j =z ],
e f. =g -1 (same as univariate)
e f_=N- g (same as univariate)
e H =RCP(H) - RCP(H )
= 224,00, -0 ) -5 5 (Y -0 )Y -G
= Zjnj S ..)(g.J - U__) (J W),
where

y - (1/nj)z1$njgij = group j mean
y = /N2y, = (0/N2 . ny,
= mean of all cases.

e E=RCP(H) =X 2.(y, -y)y, -y)
= Win J&W notation.
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Summarize
e The hypothesis matrix

H = RCP(H,) - RCP(H,)

is a difference of matrices of sums of
squares and products of residuals when
H, and H, are fitted.
e The error matrix
E = RCP(H,) = >(y, - 4y, - 4.’
s the matrix of sums of squares and
products of residuals when H, is fitted.

“large” when

e Wereject H when H is
compared to E.
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Compare these with the univariate (p = 1)
formulas:

e H=SS =3n(y, -y )

. E—SS—ZZ ”-u

To get expressions for H and E from SS,
and SS_, you replace terms of the form
(...)* by terms of the form (...)(...)".

Cmd> manova("y=varieties",silent:T)

Cmd> list(SS)
ss REAL 3 4 4 (labels)

Cmd> h <- matrix(SS[2,,]) # hypothesis matrix
Cmd> e <- matrix(SS[3,,] )# error matrix

Cmd> diag(h) # hypothesis SS for each variable
(1) 63212 11.345 437.1 80413

Cmd> diag(e) # error SS for each variable
(1) 38956 16962 27.223  6.1566

The last two lines of output are hypo-
thesis and error SS from four univariate
ANOVAs, one for each variable. You can
compute F-statistics from them.
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SS for a Linear Combination of
Response Variables

Let y, =uy = 2 .Uy, bea linear com-
bination of response variables, where u =
[ul.,., is a vector of p weights or coeffi-
cients.
Then the N by 1 vector of all N values of
y, is [y, u]
Yo=Yus= | | =30,

[y, 'u]
Example: u' =[1 -1 1
yo= 4, - Y, + 4y, - Y,
Facts:
The univariate ANOVA SS for Y are

o SS (Y,) = u'Hu, ANOVA hypothesis SS
o SS (Y,) = U'Eu, ANOVA error SS

-1] for which

17

Statistics 5401 Lecture 18 October 17, 2005

Comparing H and E
There are several ways.
e Compare diagonal elements
h,, = SS,(y,) and e,,= SS_(y,) .
That is, say "H is large compared to E”
when max,{h /e, }is large, or equiva-
lently, when max,F is large, where

F, = (h,7f)/(e, /f) = (f /1), 7e,)
are univariate F-statistics, £ = 1,....p
The critical value is F,  (o/p), a Bon-

ferronized (by p) F-critical value

This requires only univariate norm-
ality and constant univariate var-
lances.

When f = 1,F = t* where t is a
Student’'s t-statistic.
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Example with u = [1, -1, 1, -1T
Cmd> u <- vector(1,-1,1,-1)
Cmd>y _u<-y%*%u

Cmd> anova("y_u = varieties") # univariate ANOVA
Model used is y_u = varieties
DF SS MS
CONSTANT 1 42848 42848
varieties 2 514.98 257.49
ERROR1 147 80.828 0.54985

Cmd> u' %*% h %*% u # SS for varieties
1)
(1) 514.98 varieties SS in ANOVA output

Cmd> u' %*% e %*% u # SS for error
@ 8%.)828
e An ANOVA consists of computing one
or more hypothesis sums of squares
SS, . SS, . ... and one or more error

ERROR1 SS in ANOVA output

sums of squares SS_, SS_, ... .

e A MANOVA consist of computing one or
more hypothesis matrices H, H,, ... and

one or more error matrices E, E,

Yoﬁ“c.an extract ANOVAs for all variables
and of all linear combinations of var-
lables from MANOVA H and E matrices.
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With byvar: T and fstatT , ,anova() gives
all the univariate ANOVAs automatically.

Cmd> manova("y=varieties",byvar:T fstat:T)
Model used is y=varieties byvar:T => separate ANOVA tables
WARNING: summaries are sequential
SepLen
DF SS MS F  P-value
CONSTANT 1 51217 5121.719326.50528 < le-08

October 17, 2005

varietes 2 63.212 31.606 119.26450 < 1le-08
ERROR1 147 38956 0.26501
SepWid
DF SS MS F  P-value
CONSTANT 1 14021 1402.112151.14260 < 1e-08
varietes 2 11.345 5.6725 49.16004 < 1le-08
ERROR1 147 16.962 0.11539
PetLen
DF SS MS F  P-value
CONSTANT 1 21184 2118.411439.11809 < 1e-08
varieties 2 437.1 21855 1180.16118 < 1le-08
ERROR1 147 27.223 0.18519
Petwid
DF SS MS F P-value
CONSTANT 1 21576 215.76 5151.66322 < 1e-08
varieties 2 80.413  40.207 960.00715 <1e-08

ERROR1 147 6.1566 0.041882

DF and SS are computed as usual.

Cmd> list(SS,DF)
DF REAL 3 (labels)
Ss REAL 3 4 4 (labels)

Cmd> fth <- DF[2]; fe <- DF[3]
Cmd> h <- matrix(SS[2,,]); e <- matrix(SS[3,,]) #same as before
Cmd> fstats <- (diag(h)/fh)/(diag(e)/fe)

Cmd> fstats
(1) 11926 49.16 1180.2 960.01

These match the F-statistics in the
output (underlined).
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To get a multivariate test, you need to
Bonferronize by p.

MacAnova: Bonferronized P-values are
p*cumF(fstats,fh,fe,upper:T)

Cmd> 4*cumF(fstats,DF[2],DF[3], upper:T) #Bonferronized P-value
(1) 6.6787e-31 1.7968e-16 1.1427e-90 1.6678e-84

All are very small indicating you can
reject
H : no treatment effect on any variable.

0

You can compute them directly from H
and E by
p*cumF((diag(h)/fh)/(diag(e)/fe),\
fh,fe,upper:T)
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A test would be something like
Reject H, when E"'H is "too large” as
compared to (f /f)1, or equivalently
Reject H: when (f /f )E"'H is too large
as compared to [

Here's a problem:

E'H is a p by p matrix. What number
or numbers measure how large it is?

e det(E'H) does not work as such a
number because

det(E"'H) = det(E")det(H) = det(H)/det(E)
But when f, < p, det(H) = 0, making
det(E"'H) = 0 so this is not helpful.

What does work are measures computed
from the eigenvalues of H relative to E,
that is the relative eigenvalues.

See the handout for a fairly complete
explanation.
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By analogy with the F-statistic
(f /f)SS,/SS,

another way to compare H and E is by the
matrix "Ratio” E"'H or (f_/f )E'H

e When H_ is true, (f_/f )E'H should be
‘close” to I (in the same way that F
should be "close” to 1).

e When H, is true (f_/f )E"'H should be
“larger” than I
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