Displays for Statistics 5401/8401

Lecture 18

October 17, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page

Statistics 5401 Lecture 18 October 17, 2005

I will calculate several types of 99% confidence limits for the p = 4 elements α_1 of α_1 .

All confidence intervals are of the form $\hat{\alpha}_{10} \pm \text{K} \times \text{SE}[\hat{\alpha}_{10}]$, (SE means estimated SE)

Individual (non simultaneous) confidence limits

Use ordinary Student's t, $K = t_{r}(\alpha/2)$

```
Cmd> alpha <- .01 # .99 = 1 - alpha
Cmd> tcrit1 <- invstu(alpha/2, fe, upper:T); tcrit1</pre>
        2.6097
                    non-bonferronized critical value
Cmd> alphahat1 + vector(-1,1)'*tcrit1*ses
        -0.99246
                     -0.68221
(2,1)
          0.2683
                     0.47303
          -2.4257
                      -2.1663
           -1.015
(4.1)
                    -0.89166
                      Upper limits
           Lower
```

vector(-1,1)' codes for ± 1 .

The transpose is needed so the result comes out in 2 columns.

Confidence Intervals Continued

Model is $\mathbf{y}_{ij} = \boldsymbol{\mu} + \boldsymbol{\alpha}_j + \boldsymbol{\epsilon}_{ij}$.

Cmd> manova("y=varieties",silent:T)

Cmd> stats <- secoefs()#info on last regress(),anova(),manova()

Cmd> stats

component: CONSTANT

component: Coefs

Least squares estimates of µ

SepWid SepLen PetLen PetWid 1.1993 $\hat{\mu}'$ (1) component: se Their standard errors PetWid SepWid PetLen (1) 0.042032 0.027735 0.035137 0.01671 component: varieties component: coefs Least squares of variety effects SepWid SepLen PetLen Pet.Wid

-0.837330.37067 -2.296-0.95333 0.12667 **α** (2) 0.092667 -0.287330.502 (3) 0.74467 -0.083333 1.794 0.82667 $\hat{\alpha}^{r}$ component: se Their standard errors

PetLen

SepWid

SepLen

Statistics 5401

0.059443 0.049691 0.023631 (1) 0.039224 0.059443 0.039224 0.049691 0.023631 (3) 0.059443 0.039224 0.049691 0.023631 Cmd> alphahat1 <- vector(stats\$varieties\$coefs[1,]); alphahat1</pre> (1)-0.83733 0.37067 -2.296 -0.95333 Cmd> ses <- vector(stats\$varieties\$se[1,]); ses # std errors

stats\$varieties\$coefs[1,] gets the first row $\hat{\alpha}$, of the matrix of

estimated variety effect coefficients.

 stats\$varieties\$se[1,] gets their standard errors.

ure 18 October 17, 2005

PetWid

Simultaneous limits for α_{11} , α_{12} , α_{13} , α_{14} (elements of α_{1}), ignoring α_{2} and α_{3} . Bonferronize by p = 4: $K = t_{f_a}((\alpha/4)/2)$

These limits are 18% wider than non-Bonferronized limits (3.076 > 2.610).

Simultaneous limits for all 12 = g×p effects

Bonferronize by gp = 12: K = $t_r((\alpha/12)/2)$

```
Cmd> tcrit3 < -invstu((alpha/(g*p))/2,DF[3],upper:T); tcrit3 (1) 3.4119  
Cmd> alphahat1 + vector(-1,1)'*tcrit3*ses (1,1) -1.0401 -0.63452 (2,1) 0.23684 0.5045 (3,1) -2.4655 -2.1265 (4,1) -1.034 -0.87271
```

These limits are wider still, 31% larger than non-simultaneous limits and 11% wider than the Bonferronized by 4 limits.

Statistics 5401

"Ellipsoidal" Limits simultaneous for α_{11} , α_{12} , α_{13} , α_{14} (elements of α_{1}): K = $\sqrt{T^2(\alpha)}$, $T^2(\alpha)$ a critical value for T^2 .

Lecture 18

Cmd> fe1 <- fe-p+1; tcrit4 <-\ sqrt((p*fe/fe1)*invF(alpha,p,fe1,upper:T)); tcrit4 3.7545 Cmd> alphahat1 + vector(-1,1)'*tcrit4*ses -1.0605 0.2234 -2.4826 -0.61415 0.51793 (1,1) (2,1) -1.0421

These are simultaneous for all possible <u>linear combinations</u> of $\hat{\alpha}_{11}$, $\hat{\alpha}_{12}$, $\hat{\alpha}_{13}$, and $\hat{\alpha}_{14}$. They are 22% wider than Bonferronized by 4 limits.

How do you extend this approach to all 12 α_{il} ?

One way is to Bonferronize these limits. by g = 3: $K = T^2(\alpha/3)$

Cmd> tcrit5 <- sqrt((p*fe/fe1)*invF(alpha/g,p,fe1,upper:T));\</pre> Cmd> alphahat1 + vector(-1,1)'*tcrit5*ses -1.0817

(1,1) (2,1) (3,1) 0.20942 -2.5003 -1.0505 (4,1)

Statistics 5401

October 17, 2005

General H_n: LB = O, L = [l₁,..., l_r]',

$$\mathbf{L} = \begin{bmatrix} \mathbf{l}_{1}' \\ \mathbf{l}_{2}' \\ \vdots \\ \mathbf{l}_{r}' \end{bmatrix}$$

Each row 1, of L defines a linear <u>combination</u>

$$\mathbf{l}_{i}'\mathsf{B} = \sum_{0 \leq j \leq k} \mathbf{l}_{ij} \mathbf{\beta}_{j}'$$

of the $rows \beta$, of **B**. Also

$$\mathbf{l}_{i}'\mathbf{B} = [\mathbf{l}_{i}'\mathbf{b}_{1} \ \mathbf{l}_{i}'\mathbf{b}_{2} \ \dots \ \mathbf{l}_{i}'\mathbf{b}_{p}]$$

$$\mathbf{l}_{i}'\mathbf{b}_{i} = \sum_{0 \leq j \leq k} \mathbf{l}_{ij} \mathbf{\beta}_{jl}$$

where $\mathbf{b}_{i} = [\beta_{0i}, \beta_{1i}, ..., \beta_{ki}]'$ is the vector of coefficients for y₀.

The linear combination of coefficients is the same for every variable.

H_o declares that r×p linear combinations are 0.

Testing Multivariate Linear Hypotheses

The k+1 by p matrix **B** of coefficients has columns $\mathbf{b}_{_{\mathfrak{1}}}$ and rows $\mathbf{\beta}_{_{\mathrm{i}}}$:

$$B = [b_1, b_2, ..., b_p] = [\beta_0, \beta_1, ..., \beta_k]'$$

Some <u>linear hypotheses</u> are:

- H_0 : $\beta_i = 0$ (y_i does not depend on Z_i for $\ell = 1, 2, ..., p$ You can express this as $H_0: \mathbf{l}'\mathbf{B} = 0, \mathbf{l}' = [0 \dots 0 \ 1 \ 0 \dots 0]$
- $H_0: \beta_1 = \beta_2$ (equal coefficients of \mathbf{Z}_1 and **Z**₂ for <u>all p variables</u>) You can express this as

$$H_0: \mathbf{l}'\mathbf{B} = 0, \mathbf{l}' = [0 \ 1 \ -1 \ 0 \ ... \ 0]$$

• $H_n: \beta_1 = \beta_2 = \dots = \beta_k = 0$ (no effect of $Z_1, ..., Z_k$ on any variable.

Statistics 5401

October 17, 2005

The alternative hypothesis considered is $H_1:LB \neq 0$

H, is true if at least one of the rxp linear combinations in LB is not zero.

Here's what L is for the examples

- $H_0: \beta_i = 0$ $H_1: \beta_{il} \neq 0$ for at least one lr = 1 and L = [0, 0, ..., 0, 1, 0, ..., 0]
- $H_0: \beta_1 = \beta_2$ $H_1: \beta_1 \neq \beta_2$ for at least one ℓ r = 1 and $L = [0 \ 1 \ -1 \ 0 \ 0 \dots \ 0]$
- $H_0: \beta_1 = \beta_2 = \dots = \beta_k$ $H_1: \beta_{il} \neq 0$ for at least one j and ℓ

Because the same L applies to every variable, this formulation does *not* include some hypotheses you might think of as "linear."

Example:

$$H_0: \beta_{12} = 0$$

(variable 2 doesn't depend on Z_1)

You can't express this as **LB** = 0 for any **L** and can't test is by the methods I am about to discuss.

These methods do allow testing H_0 : $\beta_{11} = \beta_{12} = ... = \beta_{1p} = 0$ (no variable depends on Z_1).

Statistics 5401 Lecture 1

October 17, 2005

The *hypothesis matrix* for H_0 is $H \equiv RCP(H_0) - RCP(H_1)$

- the reduction of RCP(H_o) achieved by not imposing restrictions of H_o
- or the *increase* in RCP(H₁) resulting from <u>imposing</u> those restrictions.

The **error matrix** is

$$\mathbf{E} = \mathsf{RCP}(\mathsf{H}_1) = \sum (\mathbf{y}_i - \hat{\mathbf{y}_i})(\mathbf{y}_i - \hat{\mathbf{y}_i})'$$

In the one-way MANOVA case, $\mathbf{H} = \mathbf{B}$ in and $\mathbf{E} = \mathbf{W}$ J&W's notation.

- **H** is always <u>positive semi-definite</u> (all eigenvalues > 0).
- When Σ is non-singular and the error d.f. = $f_e > p-1$ ($f_e-p+1 > 0$), E is positive definite (all eigenvalues > 0).
- When $f_e \le p-1$ ($f_e-p+1 \le 0$) **E** is not invertible but is positive semi-definite

Consider null and alternative linear hypotheses H_0 : **LB** = 0 and H_1 : **LB** \neq 0.

Suppose

- $\hat{\mathbf{B}}^{\circ}$ estimates \mathbf{B} assuming \mathbf{H}_{\circ} is true, that is, by least squares, restricted so that $\mathbf{L}\hat{\mathbf{B}}^{\circ} = \mathbf{0}$
- $\hat{\mathbf{B}}^1$ estimates \mathbf{B} without assuming \mathbf{H}_0 is true so $\mathbf{L}\hat{\mathbf{B}}^1 \neq 0$.

Define matrices of <u>sums of squares and</u> <u>products</u> of residuals

$$RCP(H_{0}) = \sum_{1 \le i \le N} (\mathbf{y}_{i} - \hat{\mathbf{y}_{i}^{0}})(\mathbf{y}_{i} - \hat{\mathbf{y}_{i}^{0}})'$$

$$RCP(H_{1}) = \sum_{1 \le i \le N} (\mathbf{y}_{i} - \hat{\mathbf{y}_{i}^{1}})(\mathbf{y}_{i} - \hat{\mathbf{y}_{i}^{1}})'$$

where fitted values $\hat{y_i}^0$ and $\hat{y_i}^1$ are computed using \hat{B}^0 and \hat{B}^1 . That is

$$[\hat{\mathbf{y}}_{1}^{\circ}, \hat{\mathbf{y}}_{2}^{\circ}, \dots, \hat{\mathbf{y}}_{N}^{\circ}]' = \hat{\mathbf{Y}}^{\circ} = \mathbf{Z}\hat{\mathbf{B}}^{\circ} = \sum_{j} \mathbf{Z}_{j}(\hat{\boldsymbol{\beta}}_{j}^{\circ})'$$

 $[\hat{\mathbf{y}}_{1}^{\circ}, \hat{\mathbf{y}}_{2}^{\circ}, \dots, \hat{\mathbf{y}}_{N}^{\circ}]' = \hat{\mathbf{Y}}^{\circ} = \mathbf{Z}\hat{\mathbf{B}}^{\circ} = \sum_{j} \mathbf{Z}_{j}(\hat{\boldsymbol{\beta}}_{j}^{\circ})'$

10

Statistics 5401

Lecture 18

October 17, 2005

A matrix principle of reduction in residual sums of squares and products

The "larger" ${\bf H}$ is compared to ${\bf E}$, the better ${\bf H}_1$ fits the data than ${\bf H}_0$.

The testing principle is:

Reject H_0 in favor of H_1 when H is "large" as compared to ${\bf E}$

This idea underlies all the tests we will consider: Wilks' (likelihood ratio), Hotelling's generalized T², Pillai's trace and Roy's maximum eigenvalue.

They are bassed on different answers to the important question

How do you compare H with E?

Q <u>How do you compare **H** with **E**?</u> There is no single good way to compare H with E.

Lecture 18

Things are simplest when p = 1 or $f_{b} = 1$.

- When p = 1. This is the univariate case and you can choose between an Ftest and Bonferronized t-tests.
- When f = 1, this is essentially the case of a hypothesis about single vector of parameters \mathcal{S} such as $\mathcal{S} = \mu$ (1 sample) or $\mathcal{Z} = \mu_1 - \mu_2$ (2 sample).

Your choice is between a test based on $T^2 = \hat{\boldsymbol{\delta}}' \hat{\nabla} [\hat{\boldsymbol{\delta}}]^{-1} \hat{\boldsymbol{\delta}}, \hat{\boldsymbol{\delta}}' = L\hat{\mathbf{B}}$ and Bonferronized $t_i = \hat{\mathcal{S}}_i / SE[\hat{\mathcal{S}}_i]$. $1 \le \ell \le p$.

Things are more complicated when p > 1and $f_h > 1$.

Summarize

The <u>hypothesis matrix</u>

$$\mathbf{H} \equiv RCP(H_0) - RCP(H_1)$$

Lecture 18

is a difference of matrices of sums of squares and products of residuals when H_n and H_1 are fitted.

• The error matrix

$$\mathbf{E} = \mathrm{RCP}(\mathbf{H}_1) = \sum (\mathbf{y}_i - \hat{\mathbf{y}}_i^1)(\mathbf{y}_i - \hat{\mathbf{y}}_i^1)'$$
 is the matrix of sums of squares and products of residuals when \mathbf{H}_1 is fitted.

 $\bullet~$ We reject ${\rm H_{\scriptscriptstyle 0}}$ when H is "large" when compared to \mathbf{E} .

13

Statistics 5401

Lecture 18

October 17, 2005

One-way MANOVA

The linear model is

$$\mathbf{y}_{ij} = \mu + \alpha_{j} + \epsilon_{ij}, j = 1,...,g, i = 1,...,n_{j}$$

 $\sum_{1 < i < n} \alpha_{i} = 0.$

- $H_0: \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$ H_1 : $\alpha_{j_1} \neq \alpha_{j_2}$, some $j_1 \neq j_2$
- f_b = g 1 (same as univariate)
- f_e = N g (same as univariate)
- $\mathbf{H} = RCP(H_0) RCP(H_1)$ $=\sum_{i}\sum_{i}(y_{ij}-\overline{y_{..}})(y_{ij}-\overline{y_{..}})'-\sum_{i}\sum_{i}(y_{ij}-\overline{y_{.i}})(y_{ij}-\overline{y_{..}})'$ $= \sum_{i} n_{i} (\overline{\mathbf{y}_{i}} - \overline{\mathbf{y}_{i}}) (\overline{\mathbf{y}_{i}} - \overline{\mathbf{y}_{i}})' = \mathbf{B} (J\&W),$ where

$$\frac{\overline{\mathbf{y}}_{,j}}{\mathbf{y}_{,j}} = (1/n_{j}) \sum_{1 \le i \le n_{j}} \mathbf{y}_{ij} = \text{group j mean}$$

$$\overline{\mathbf{y}}_{,i} = (1/N) \sum_{j} \sum_{i} \mathbf{y}_{ij} = (1/N) \sum_{1 \le j \le g} n_{j} \overline{\mathbf{y}}_{,j}$$

$$= \text{mean of all cases.}$$

• $\mathbf{E} = RCP(H_1) = \sum_{i} \sum_{i} (\mathbf{y}_{ij} - \overline{\mathbf{y}_{i}}) (\mathbf{y}_{ij} - \overline{\mathbf{y}_{i}})'$ = W in J&W notation.

Statistics 5401

October 17, 2005

Compare these with the univariate (p = 1) formulas:

14

•
$$\mathbf{H} = SS_h = \sum_{j} n_j (\overline{y}_{,j} - \overline{y}_{,j})^2$$

• E =
$$SS_e = \sum_{i} \sum_{i} (y_{ii} - \overline{y}_{i})^2$$

To get expressions for H and E from SS, and SS_e, you replace terms of the form $(...)^2$ by terms of the form (...)(...)'.

The last two lines of output are hypothesis and error SS from four univariate ANOVAs, one for each variable. You can compute F-statistics from them.

SS for a Linear Combination of Response Variables

Let $y_u \equiv u'y = \sum_{1 \leq \ell \leq p} u_\ell y_\ell$ be a linear combination of <u>response variables</u>, where $u = [u_\ell]_{1 \leq \ell \leq p}$ is a vector of p weights or coefficients.

Then the N by 1 vector of all N values of $\mathbf{y}_{\mathbf{u}}$ is $\begin{bmatrix} \mathbf{y}_{\mathbf{1}}'\mathbf{u} \end{bmatrix}$

$$\mathbf{Y}_{u} \equiv \mathbf{Y}\mathbf{u} = \begin{bmatrix} \mathbf{y}_{1}'\mathbf{u} \\ \dots \\ \mathbf{y}_{N}'\mathbf{u} \end{bmatrix} = \sum_{1 \leq \ell \leq p} \mathbf{u}_{\ell} \mathbf{Y}_{\ell}.$$

Example: u' = [1 -1 1 -1] for which $y_u = y_1 - y_2 + y_3 - y_4$

Facts:

The univariate ANOVA SS for Y_{u} are

- $SS_h(Y_u) = u'Hu$, ANOVA hypothesis $SS_h(Y_u) = u'Hu$
- $SS_e(Y_u) = u'Eu$, ANOVA error SS

17

Statistics 5401 Lecture 18 October 17, 2005

Comparing H and E

There are several ways.

• Compare diagonal elements

$$h_{ii} = SS_h(y_i)$$
 and $e_{ii} = SS_e(y_i)$.

That is, say "H is large compared to E" when $\max_{i}\{h_{ii}/e_{ii}\}$ is large, or equivalently, when $\max_{i}F_{i}$ is large, where

$$F_{i} = (h_{ii}/f_{h})/(e_{ii}/f_{e}) = (f_{e}/f_{h})(h_{ii}/e_{ii})$$

are univariate F-statistics, $\ell=1,...,p$ The critical value is $F_{f_h,f_e}(\alpha/p)$, a Bonferronized (by p) F-critical value

This requires only *univariate* normality and constant *univariate* varaiances.

When $f_h = 1$, $F = t^2$ where t is a Student's t-statistic.

Example with u = [1, -1, 1, -1]

October 17, 2005

Cmd> u <- vector(1,-1,1,-1)

Cmd> y_u <- y *** u

Cmd> anova("y_u = varieties") # univariate ANOVA

Model used is y_u = varieties

DF S MS

CONSTANT 1 4284.8 4284.8

varieties 2 514.98 257.49

ERROR1 147 80.828 0.54985

Cmd> u' *** h *** u # SS for varieties

(1)

(1) 514.98 varieties SS in ANOVA output

Cmd> u' **e *** u # SS for error

(1)

(1) 80.828 ERROR1 SS in ANOVA output

- An ANOVA consists of computing one or more hypothesis <u>sums of squares</u> SS_{h1}, SS_{h2}, ... and one or more error <u>sums of squares</u> SS_{e1}, SS_{e2},
- A MANOVA consist of computing one or more hypothesis <u>matrices</u> H₁, H₂, ... and one or more error <u>matrices</u> E₁, E₂,

...

Model used is y=varieties

You can extract ANOVAs for all variables and of all linear combinations of variables from MANOVA H and E matrices.

Statistics 5401 Lecture 18 October 17, 2005

With byvar: T and fstat: T, ,anova() gives

all the univariate ANOVAs automatically.

Cmd> manova("y=varieties", byvar:T,fstat:T)

byvar:T => separate ANOVA tables

WARNING:	summaries	are sequential							
SepLen									
	DF	SS	MS	F	P-value				
CONSTANT	1	5121.7	5121.7	19326.50528	< 1e-08				
varieties	s 2	63.212	31.606	119.26450	< 1e-08				
ERROR1	147	38.956	0.26501						
SepWid									
	DF	SS	MS	F	P-value				
CONSTANT	1	1402.1	1402.1	12151.14260	< 1e-08				
varieties	s 2	11.345	5.6725	49.16004	< 1e-08				
ERROR1	147	16.962	0.11539						
PetLen									
	DF	SS	MS	F	P-value				
CONSTANT	1	2118.4	2118.4	11439.11809	< 1e-08				
varieties	s 2	437.1	218.55	1180.16118	< 1e-08				
ERROR1	147	27.223	0.18519						
PetWid									
	DF	SS	MS	F	P-value				
CONSTANT	1	215.76	215.76	5151.66322	< 1e-08				
varieties	s 2	80.413	40.207	960.00715	< 1e-08				
ERROR1	147	6.1566	0.041882						

DF and ss are computed as usual.

	Cmd> DF SS			(labels)		s)			
Cmd> fh <- DF[2]; fe <- DF[3]									
	Cmd>	h <- matrix(SS[2,,]);	e <- matri	x(SS[3,,])	#same as	before		
<pre>Cmd> fstats <- (diag(h)/fh)/(diag(e)/fe)</pre>									
		fstats 119.26	49.1	6 1180	.2 960	0.01			

These match the F-statistics in the output (underlined).

October 17, 2005

Statistics 5401 Lecture 18 October 17, 2005

To get a multivariate test, you need to Bonferronize by p.

Lecture 18

MacAnova: Bonferronized P-values are p*cumF(fstats,fh,fe,upper:T)

Cmd> 4*cumF(fstats,DF[2],DF[3], upper:T) #Bonferronized P-value (1) 6.6787e-31 1.7968e-16 1.1427e-90 1.6678e-84

All are very small indicating you can reject

H_a: no treatment effect on any variable. You can compute them directly from H and E by

p*cumF((diag(h)/fh)/(diag(e)/fe),\ fh,fe,upper:T)

By analogy with the F-statistic (f /f)SS /SS

another way to compare H and E is by the matrix "Ratio" E-1H or (f_a/f_b)E-1H

- When H_n is true, (f_e/f_b)E⁻¹H should be "close" to I (in the same way that F should be "close" to 1).
- When H₁ is true (f_a/f_b)E⁻¹H should be "larger" than I

21

Statistics 5401

Lecture 18

October 17, 2005

A test would be something like Reject H₀ when E⁻¹H is "too large" as compared to $(f_{_{\rm h}}/f_{_{\rm e}})I_{_{\rm D}}$, or equivalently Reject H_0 : when $(f_a/f_b)E^{-1}H$ is too large as compared to I

Here's a problem:

 $\mathbf{E}^{-1}\mathbf{H}$ is a p by p matrix. What number or numbers measure how large it is?

 det(E⁻¹H) does not work as such a number because

 $det(E^{-1}H) = det(E^{-1})det(H) = det(H)/det(E)$ But when $f_h < p$, det(H) = 0, making $det(\mathbf{E}^{-1}\mathbf{H}) = 0$ so this is *not* helpful.

What does work are measures computed from the eigenvalues of H relative to E, that is the *relative eigenvalues*.

See the handout for a fairly complete explanation.

22