Displays for Statistics 5401/8401

Lecture 18

October 17, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page

http://www.stat.umn.edu/~kb/classes/5401 © 2005 by Christopher Bingham Statistics 5401 Lecture 18 October 17, 2005

Confidence Intervals Continued

Model is
$$\mathbf{y}_{ij} = \boldsymbol{\mu} + \boldsymbol{\alpha}_{j} + \boldsymbol{\epsilon}_{ij}$$
.

Cmd> manova("y=varieties", silent:T)

Cmd> stats <- secoefs()#info on last regress(), anova(), manova()

Cma>	stats								
	nent: CONSTA ponent: coef			their standestimates of					
		SepWid	DotIon	PetWid					
(7)	-	-			,				
(1)	5.8433	3.0573	3./58	1.1993 $\hat{oldsymbol{\mu}}$,				
component: se Their standard errors									
COIII		SepWid							
(1)									
. ,		0.027735	0.035137	0.016/1					
component: varieties									
com	ponent: coef	is Leas	t squares	of variety	effects				
	SepLen	SepWid	PetLen	PetWid	≙ .,				
(1)	-0.83733	0.37067	-2.296	-0.95333	α_1				
(2)	0.092667	-0.28733	0.502	-0.95333 0.12667 0.82667	$\hat{\alpha}^{\dot{c}}$				
(3)	0 74467	-0 083333	1 794	0 82667	â [/]				
(3)	0.71107	0.003333	1.701	0.02007	\mathbf{a}_3				
com	ponent: se	Their s	standard errors						
	SepLen	SepWid	PetLen	PetWid					
(1)		0.039224							
		0.039224							
(3)	0.059443								

Cmd> alphahat1 <- vector(stats\$varieties\$coefs[1,]); alphahat1</pre>

0.049691

Cmd> ses <- vector(stats\$varieties\$se[1,]); ses # std errors</pre>

- stats\$varieties\$coefs[1,] gets the first row $\hat{\alpha}_1$ of the matrix of estimated variety effect coefficients.
- stats\$varieties\$se[1,] gets their standard errors.

Statistics 5401 Lecture 18 October 17, 2005

I will calculate several types of 99% confidence limits for the p = 4 elements α_1 of α_1 .

```
Cmd> n \leftarrow nrows(y); p \leftarrow ncols(y)

Cmd> g \leftarrow 3 \# number of groups

Cmd> fe \leftarrow reverse(DF)[1] \# or DF[3] or n - g

Cmd> vector(n, p, fe, g)

(1) 150 4 147 3
```

All confidence intervals are of the form $\hat{\alpha}_{11} \pm K \times S\hat{E}[\hat{\alpha}_{11}]$, (S\hat{E} means estimated SE)

Individual (non simultaneous) confidence limits

Use ordinary Student's t, $K = t_{f_a}(\alpha/2)$

```
Cmd > alpha < - .01 # .99 = 1 - alpha
   Cmd> tcrit1 <- invstu(alpha/2, fe, upper:T); tcrit1</pre>
                       non-bonferronized critical value
   (1)
   Cmd> alphahat1 + vector(-1,1)'*tcrit1*ses
   (1,1)
           -0.99246
                       -0.68221
   (2,1)
             0.2683
                        0.47303
   (3,1)
            -2.4257
                        -2.1663
             -1.015
                       -0.89166
             Lower
                         Upper
                                limits
vector(-1,1)' codes for \pm 1.
```

The transpose is needed so the result comes out in 2 columns.

Simultaneous limits for α_{11} , α_{12} , α_{13} , α_{14} (elements of α_{1}), ignoring α_{2} and α_{3} . Bonferronize by p = 4: $K = t_{f_{2}}((\alpha/4)/2)$

Lecture 18

October 17, 2005

Statistics 5401

These limits are 18% wider than non-Bonferronized limits (3.076 > 2.610).

Simultaneous limits for all 12 = g×p effects

Bonferronize by gp = 12: K = $t_{f_p}((\alpha/12)/2)$

These limits are wider still, 31% larger than non-simultaneous limits and 11% wider than the Bonferronized by 4 limits.

"Ellipsoidal" Limits simultaneous for \bowtie_{11} , \bowtie_{12} , \bowtie_{13} , \bowtie_{14} (elements of \bowtie_1): K = $\sqrt{T^2(\alpha)}$, $T^2(\alpha)$ a critical value for T^2 .

Lecture 18

```
Cmd> fe1 <- fe-p+1; tcrit4 <-\
        sgrt((p*fe/fe1)*invF(alpha,p,fe1,upper:T)); tcrit4
(1)
         3.7545
Cmd> alphahat1 + vector(-1,1)'*tcrit4*ses
          -1.0605
                     -0.61415
(2,1)
           0.2234
                      0.51793
(3,1)
          -2.4826
                      -2.1094
(4,1)
          -1.0421
                     -0.86461
```

These are simultaneous for <u>all possible</u> <u>linear combinations</u> of $\hat{\alpha}_{11}$, $\hat{\alpha}_{12}$, $\hat{\alpha}_{13}$, and α_{14} . They are 22% wider than Bonferronized by 4 limits.

How do you extend this approach to all 12 α_{il} ?

One way is to Bonferronize these limits.

by
$$g = 3$$
: $K = T^2(\alpha/3)$
Cmd> $tcrit5 < - sgrt((p*fe/fe1)*invF(alpha/q,p,fe1,upper:T));$

```
(1)
         4.1108
Cmd> alphahat1 + vector(-1,1)'*tcrit5*ses
          -1.0817
                     -0.59297
(1,1)
(2,1)
          0.20942
(3,1)
          -2.5003
                      -2.0917
(4.1)
          -1.0505
                      -0.85619
```

Testing Multivariate Linear Hypotheses

The k+1 by p matrix **B** of coefficients has columns \mathbf{b}_{i} and rows $\mathbf{\beta}_{i}$:

$$B = [b_1, b_2, ..., b_p] = [\beta_0, \beta_1, ..., \beta_k]'$$

Some <u>linear hypotheses</u> are:

- H_n : $\beta_i = 0$ (y_i does not depend on Z_i for $\ell = 1, 2, ..., p$ You can express this as $H_0: \mathbf{l}'\mathbf{B} = 0, \mathbf{l}' = [0 \dots 0 \ 1 \ 0 \dots 0]$ j-1 j j+1 k
- $H_0: \beta_1 = \beta_2$ (equal coefficients of \mathbf{Z}_1 and **Z**₂ for <u>all p variables</u>) You can express this as H_0 : **l**'B = 0, **l**' = [0 1 -1 0 ... 0]
- \mathbf{H}_0 : $\mathbf{\beta}_1 = \mathbf{\beta}_2 = \dots = \mathbf{\beta}_k = 0$ (no effect of $Z_1, ..., Z_k$ on any variable.

• General H_0 : LB = 0, $L = [l_1, ..., l_r]'$,

$$L = \begin{bmatrix} \mathbf{l}_{1}, \\ \mathbf{l}_{2}, \\ \vdots \\ \mathbf{l}_{r}, \end{bmatrix}$$

Each row **l**' of **L** defines a linear combination

$$\mathbf{l}_{i}'B = \sum_{0 < i < k} \mathbf{l}_{ij} \mathbf{\beta}_{i}'$$

of the rows β_i of **B**. Also

$$\mathbf{l}_{i}'B = [\mathbf{l}_{i}'b_{1} \mathbf{l}_{i}'b_{2} \dots \mathbf{l}_{i}'b_{p}]$$
$$\mathbf{l}_{i}'b_{l} = \sum_{0 \leq j \leq k} \mathbf{l}_{ij}\beta_{jl}$$

where $\mathbf{b}_{i} = [\beta_{0i}, \beta_{1i}, ..., \beta_{ki}]'$ is the vector of coefficients for y_{i} .

The linear combination of coefficients is the same for every variable.

 ${\rm H}_{\rm o}$ declares that rxp linear combinations are 0.

The alternative hypothesis considered is $H_1:LB \neq 0$

Lecture 18

 H_1 is true if at least one of the rxp linear combinations in $L\mathbf{B}$ is not zero.

Here's what $oldsymbol{L}$ is for the examples

- $H_0: \beta_j = 0$ $H_1: \beta_{j\ell} \neq 0$ for at least one ℓ r = 1 and L = [0, 0, ..., 0, 1, 0, ..., 0]
- H_0 : $\beta_1 = \beta_2$ H_1 : $\beta_{1\ell} \neq \beta_{2\ell}$ for at least one ℓ r = 1 and $L = [0 \ 1 \ -1 \ 0 \ 0 \dots \ 0]$
- $H_0: \beta_1 = \beta_2 = \dots = \beta_k$ $H_1: \beta_{il} \neq 0$ for at least one j and l

$$r = k, L = [0 \ I_k] = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ & & & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

Because the same L applies to every variable, this formulation does *not* include some hypotheses you might think of as "linear."

Example:

$$H_0: \beta_{12} = 0$$

(variable 2 doesn't depend on Z_1)

You can't express this as **LB** = 0 for any **L** and can't test is by the methods I am about to discuss.

These methods do allow testing $H_0: \beta_{11} = \beta_{12} = ... = \beta_{1p} = 0$ (no variable depends on Z_1).

Consider null and alternative linear hypotheses H_0 : **LB** = 0 and H_1 : **LB** \neq 0.

Suppose

- $\hat{\mathbf{B}}^{\circ}$ estimates \mathbf{B} assuming \mathbf{H}_{\circ} is true, that is, by least squares, restricted so that $\mathbf{L}\hat{\mathbf{B}}^{\circ} = \mathbf{0}$
- $\hat{\mathbf{B}}^1$ estimates \mathbf{B} without assuming \mathbf{H}_0 is true so $\mathbf{L}\hat{\mathbf{B}}^1 \neq 0$.

Define matrices of <u>sums of squares and</u> products of residuals

RCP(H₀) =
$$\sum_{1 \le i \le N} (y_i - \hat{y_i}^0)(y_i - \hat{y_i}^0)'$$

RCP(H₁) = $\sum_{1 \le i \le N} (y_i - \hat{y_i}^1)(y_i - \hat{y_i}^1)'$

where fitted values $\hat{\mathbf{y}}_{i}^{0}$ and $\hat{\mathbf{y}}_{i}^{1}$ are computed using $\hat{\mathbf{B}}^{0}$ and $\hat{\mathbf{B}}^{1}$. That is

$$[\hat{\mathbf{y}}_{1}^{0}, \hat{\mathbf{y}}_{2}^{0}, \dots, \hat{\mathbf{y}}_{N}^{0}]' = \hat{\mathbf{Y}}^{0} = Z\hat{\mathbf{B}}^{0} = \sum_{j} Z_{j}(\hat{\boldsymbol{\beta}}_{j}^{0})'$$

 $[\hat{\mathbf{y}}_{1}^{1}, \hat{\mathbf{y}}_{2}^{1}, \dots, \hat{\mathbf{y}}_{N}^{1}]' = \hat{\mathbf{Y}}^{1} = Z\hat{\mathbf{B}}^{1} = \sum_{j} Z_{j}(\hat{\boldsymbol{\beta}}_{j}^{1})'$

The *hypothesis matrix* for H_0 is $H \equiv RCP(H_0) - RCP(H_1)$

- the reduction of RCP(H₀) achieved by not imposing restrictions of H₀
- or the *increase* in RCP(H₁) resulting from <u>imposing</u> those restrictions.

The **error matrix** is

$$E = RCP(H_1) = \sum (y_i - \hat{y_i}^1)(y_i - \hat{y_i}^1)'$$

In the one-way MANOVA case, H = B in and E = W J&W's notation.

- H is always <u>positive semi-definite</u> (all eigenvalues > 0).
- When Σ is non-singular and the error d.f. = $f_e > p-1$ ($f_e-p+1 > 0$), **E** is positive definite (all eigenvalues > 0).
- When $f_e \le p-1$ ($f_e-p+1 \le 0$) E is not invertible but is positive semi-definite

A matrix principle of reduction in residual sums of squares and products

The "larger" H is compared to E, the better H_1 fits the data than H_0 .

The testing principle is:

Reject H_0 in favor of H_1 when \boldsymbol{H} is "large" as compared to \boldsymbol{E}

This idea underlies all the tests we will consider: Wilks' (likelihood ratio), Hotelling's generalized T², Pillai's trace and Roy's maximum eigenvalue.

They are bassed on different answers to the **important question**

How do you compare H with E?

Q <u>How do you compare **H** with **E**?</u> There is no single good way to compare H with **E**.

Things are simplest when p = 1 or $f_{b} = 1$.

- When p = 1. This is the univariate case and you can choose between an Ftest and Bonferronized t-tests.
- When f_b = 1, this is essentialy the case of a hypothesis about single vector of parameters \mathcal{F} such as $\mathcal{F} = \mu$ (1 sample) or $\boldsymbol{\mathcal{T}} = \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2$ (2 sample).

Your choice is between a test based on $T^2 = \hat{\boldsymbol{\delta}}'\hat{\nabla}[\hat{\boldsymbol{\delta}}]^{-1}\hat{\boldsymbol{\delta}}, \hat{\boldsymbol{\delta}}' = L\hat{\mathbf{B}}$ and Bonferronized $t_i = \hat{\mathcal{S}}_i / S\hat{E}[\hat{\mathcal{S}}_i]$. $1 \leq \ell \leq p$.

Things are more complicated when p > 1and $f_{\scriptscriptstyle L} > 1$.

Summarize

The hypothesis matrix

$$\mathbf{H} \equiv \mathsf{RCP}(\mathsf{H}_0) - \mathsf{RCP}(\mathsf{H}_1)$$

is a difference of matrices of sums of squares and products of residuals when H_{n} and H_{1} are fitted.

The error matrix

$$\mathbf{E} = \mathrm{RCP}(\mathbf{H}_1) = \sum (\mathbf{y}_i - \hat{\mathbf{y}}_i^1)(\mathbf{y}_i - \hat{\mathbf{y}}_i^1)'$$
 is the matrix of sums of squares and products of residuals when \mathbf{H}_1 is fitted.

We reject H_n when H is "large" when compared to E.

Lecture 18 October 17, 2005

Statistics 5401

Lecture 18

October 17, 2005

One-way MANOVA

The linear model is

$$y_{ij} = \mu + \alpha_j + \epsilon_{ij}, j = 1,...,g, i = 1,...,n_j$$

 $\sum_{1 \le j \le g} \alpha_j = 0.$

- H_0 : $\alpha_1 = \alpha_2 = \dots = \alpha_g = 0$ H_1 : $\alpha_{j_1} \neq \alpha_{j_2}$, some $j_1 \neq j_2$
- f_b = g 1 (same as univariate)
- f_e = N g (same as univariate)
- $\mathbf{H} = RCP(H_0) RCP(H_1)$ = $\sum_{j} \sum_{i} (\mathbf{y}_{ij} - \overline{\mathbf{y}_{..}}) (\mathbf{y}_{ij} - \overline{\mathbf{y}_{..}})' - \sum_{j} \sum_{i} (\mathbf{y}_{ij} - \overline{\mathbf{y}_{.j}}) (\mathbf{y}_{ij} - \overline{\mathbf{y}_{.j}})'$ = $\sum_{j} n_{j} (\overline{\mathbf{y}_{.j}} - \overline{\mathbf{y}_{..}}) (\overline{\mathbf{y}_{.j}} - \overline{\mathbf{y}_{..}})' = \mathbf{B} (J\&W),$

where

$$\frac{\overline{\mathbf{y}}_{.j}}{\mathbf{y}_{.i}} = (1/n_{j}) \sum_{1 \le i \le n_{j}} \mathbf{y}_{ij} = \text{group j mean}$$

$$= (1/N) \sum_{j} \sum_{i} \mathbf{y}_{ij} = (1/N) \sum_{1 \le j \le g} n_{j} \overline{\mathbf{y}}_{.j}$$

$$= \text{mean of all cases.}$$

•
$$\mathbf{E} = RCP(\mathbf{H}_1) = \sum_{j} \sum_{i} (\mathbf{y}_{ij} - \overline{\mathbf{y}}_{.j}) (\mathbf{y}_{ij} - \overline{\mathbf{y}}_{.j})'$$

= \mathbf{W} in J&W notation.

Compare these with the univariate (p = 1) formulas:

•
$$H = SS_h = \sum_i n_i (\overline{y_i} - \overline{y_i})^2$$

•
$$\mathbf{E} = SS_e = \sum_i \sum_i (y_{ij} - \overline{y_{ij}})^2$$

To get expressions for \mathbf{H} and \mathbf{E} from SS_n and SS_e , you replace terms of the form $(...)^2$ by terms of the form (...)(...)'.

The last two lines of output are hypothesis and error SS from four univariate ANOVAs, one for each variable. You can compute F-statistics from them.

SS for a Linear Combination of Response Variables

Let $y_u \equiv u'y = \sum_{1 \leq \ell \leq p} u_\ell y_\ell$ be a linear combination of <u>response variables</u>, where $u = [u_\ell]_{1 \leq \ell \leq p}$ is a vector of p weights or coefficients.

Then the N by 1 vector of all N values of $\mathbf{y}_{\mathbf{u}}$ is $\begin{bmatrix} \mathbf{y}_{\mathbf{i}} & \mathbf{u} \end{bmatrix}$

$$\mathbf{Y}_{u} \equiv \mathbf{Y}\mathbf{u} = \begin{bmatrix} \mathbf{y}_{1}'\mathbf{u} \\ \dots \\ \mathbf{y}_{N}'\mathbf{u} \end{bmatrix} = \sum_{1 \leq \ell \leq p} \mathbf{u}_{\ell} \mathbf{Y}_{\ell}.$$

Example: u' = [1 -1 1 -1] for which $y_u = y_1 - y_2 + y_3 - y_4$

Facts:

The <u>univariate</u> ANOVA SS for Y_{u} are

- SS_h(Y_u) = u'Hu, ANOVA hypothesis
- $SS_e(Y_u) = u'Eu$, ANOVA error SS

Example with u = [1, -1, 1, -1]'

- An ANOVA consists of computing one or more hypothesis <u>sums of squares</u> SS_{h1}, SS_{h2}, ... and one or more error <u>sums of squares</u> SS_{e1}, SS_{e2},
- A MANOVA consist of computing one or more hypothesis <u>matrices</u> H₁, H₂, ... and one or more error <u>matrices</u> E₁, E₂,

...

You can extract ANOVAs for all variables and of all linear combinations of variables from MANOVA **H** and **E** matrices.

Lecture 18 October 17, 2005 Statistics 5401 Lecture 18 October 17, 2005

Comparing H and E There are several ways.

Compare diagonal elements

Statistics 5401

$$h_{ii} = SS_h(y_i)$$
 and $e_{ii} = SS_e(y_i)$.

That is, say "H is large compared to E" when $\max_{i} \{h_{ii}/e_{ii}\}$ is large, or equivalently, when $\max_{i} F_{i}$ is large, where

$$F_{i} = (h_{i}/f_{h})/(e_{i}/f_{e}) = (f_{e}/f_{h})(h_{i}/e_{i})$$

are univariate F-statistics, l = 1,...,p

The critical value is $F_{f_h,f_e}(\alpha/p)$, a Bonferronized (by p) F-critical value

This requires only *univariate* normality and constant *univariate* varaiances.

When $f_h = 1$, $F = t^2$ where t is a Student's t-statistic.

With byvar: T and fstat: T, ,anova() gives all the univariate ANOVAs automatically.

	11111111111	Daniila I CD	are begaes	10101				
SepLen								
		DF	SS	MS	F	P-value		
	CONSTANT	1	5121.7	5121.7	19326.50528	< 1e-08		
	varieties	3 2	63.212	31.606	119.26450	< 1e-08		
	ERROR1	147	38.956	0.26501				
	SepWid							
		DF	SS	MS	F	P-value		
	CONSTANT	1	1402.1	1402.1	12151.14260	< 1e-08		
	varieties	3 2	11.345	5.6725	<u>49.16004</u>	< 1e-08		
	ERROR1	147	16.962	0.11539				
PetLen								
		DF	SS	MS	F	P-value		
	CONSTANT	1	2118.4	2118.4	11439.11809	< 1e-08		
	varieties	3 2	437.1	218.55	1180.16118	< 1e-08		
	ERROR1	147	27.223	0.18519				
PetWid								
		DF	SS	MS	F	P-value		
	CONSTANT	1	215.76	215.76	5151.66322	< 1e-08		
	varieties	3 2	80.413	40.207	960.00715	< 1e-08		
	ERROR1	147	6.1566	0.041882				

DF and ss are computed as usual.

These match the F-statistics in the output (underlined).

To get a multivariate test, you need to Bonferronize by p.

MacAnova: Bonferronized P-values are
 p*cumF(fstats,fh,fe,upper:T)

Cmd> 4*cumF(fstats,DF[2],DF[3], upper:T) #Bonferronized P-value (1) 6.6787e-31 1.7968e-16 1.1427e-90 1.6678e-84

All are very small indicating you can reject

H_o: no treatment effect on any variable.

You can compute them directly from H and E by

By analogy with the F-statistic $(f_e/f_h)SS_h/SS_e$

another way to compare H and E is by the matrix "Ratio" $E^{-1}H$ or $(f_e/f_h)E^{-1}H$

- When H_0 is true, $(f_e/f_h)E^{-1}H$ should be "close" to I_p (in the same way that F should be "close" to 1).
- When H_1 is true $(f_e/f_h)E^{-1}H$ should be "larger" than I_n

Statistics 5401 Lecture 18 October 17, 2005

A test would be something like Reject H_o when $\mathbf{E}^{-1}\mathbf{H}$ is "too large" as compared to $(f_h/f_e)\mathbf{I}_p$, or equivalently Reject H_o : when $(f_e/f_h)\mathbf{E}^{-1}\mathbf{H}$ is too large as compared to \mathbf{I}_n

Here's a problem:

 $E^{-1}H$ is a p by p <u>matrix</u>. What number or numbers measure how large it is?

 det(E⁻¹H) does not work as such a number because

 $det(\mathbf{E}^{-1}\mathbf{H}) = det(\mathbf{E}^{-1})det(\mathbf{H}) = det(\mathbf{H})/det(\mathbf{E})$ But when $f_h < p$, $det(\mathbf{H}) = 0$, making $det(\mathbf{E}^{-1}\mathbf{H}) = 0$ so this is *not* helpful.

What does work are measures computed from the *eigenvalues* of H relative to E, that is the *relative eigenvalues*.

See the handout for a fairly complete

explanation.