Statistics 5401 Lecture 18 October 17, 2005

Confidence Intervals Continued
Model i1s Yy, = M + & + E .

Cmd> manova("y=varieties",silent:T)

D 1 S p 1 ag S for S t at 1 S t iC S 5 4 O ‘] / 8 4 O ‘] Cmd> stats <- secoefs()#info on last regress(),anova(),manova()
Cmd> stats
component: CONSTANT Estimates and their standard errors
component: coefs Least squares estimates of p
SepLen  SepWid PetLen  PetWid
LeCt ure ‘I 8 (1) 58433 3.0573 3.758 1.1993 VY
component: se Their standard errors

SepLen  SepWid PetLen PetWid
(1) 0.042032 0.027735 0.035137 0.01671
component: varieties
October 17. 2005 component: coefs Least squares of variety effects

! SepLen  SepWid PetLen  PetWid
(1) -0.83733 037067 -2.296 -0.95333 a
(2) 0.092667 -0.28733 0.502 0.12667 (0|
(3) 0.74467 -0.083333 1.794 0.82667 o
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Christopher Bingham, Instructor
component: se Their standard errors
SepLen  SepWid PetLen PetWid
(1) 0.059443 0.039224 0.049691 0.023631
(2) 0.059443 0.039224 0.049691 0.023631

(3) 0.059443 0.039224 0.049691 0.023631
61 2-625- 1 O 2 4 ! kb@ umn.edu Cmd> alphahatl <- vector(stats$varieties$coefs[1,]); alphahatl
372 Ford Hall (1) -0.83733 0.37067 -2.296 -0.95333

Cmd> ses <- vector(stats$varieties$se[1,]); ses # std errors
(1) 0.059443 0.039224 0.049691 0.023631

e stats$varieties$coefs[1,] gets the
first row o of the matrix of

estimated variety effect coefficients.

e stats$varieties$se[l,] gets their
standard errors.
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[ will calculate several types of 99%
confidence limits for the p = 4 elements
o, Of o,

Cmd> n <- nrows(y); p <- ncols(y)
Cmd> g <- 3 # number of groups
Cmd> fe <- reverse(DF)[1] # or DF[3] or n-g

Cmd> vector(n, p, fe, g)
1) 150 47 147 3

All confidence intervals are of the form
&, + KxSEle ], (SE means estimated SE)

Individual (non simultaneous)
confidence limits

Use ordinary Student’s t, K = t («/2)

Cmd> alpha <-.01#.99 =1 - alpha

Cmd> teritl <- invstu(alpha/2, fe, upper:T); teritl
1) 2.6097 non-bonferronized critical value

Cmd> alphahatl + vector(-1,1)*tcrit1*ses
(1,1) -0.99246 -0.68221
(2,1) 0.2683 0.47303
(3,1) -2.4257 -2.1663
(4,1) -1.015 -0.89166
Lower Upper limits

vector(-1,1)' codes for #1.

The transpose 1s needed so the result
comes out in 2 columns.
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Simultaneous limits for « , o, o, o,

1! 12! 13!

(elements of o), ignoring o, and o..
Bonferronize by p = 4: K = t. ((=¢/4)/2)

Cmd> tcrit2 <- invstu((alpha/p)/2,fe,upper:T); tcrit2
(1) 3.0763

Cmd> alphahatl + vector(-1,1)*tcrit2*ses
(1,1) -1.0202 -0.65447

2,1) 0.25 0.49133

(3,1) -2.4489 -2.1431

(4,1 -1.026 -0.88064

These limits are 18% wider than non-
Bonferronized limits (3.076 > 2.610).

Simultaneous limits for all 12 = gxp
effects

Bonferronize by gp = 12: K =t ((=t/12)/2)

Cmd> tcrit3 <- invstu((alpha/(g*p))/2,DF[3],upper:T); tcrit3
(1) 3.4119

Cmd> alphahatl + vector(-1,1)*tcrit3*ses
(1,1) -1.0401 -0.63452
(2,1) 0.23684 0.5045
(3,1) -24655 -2.1265
(4,1) -1.034 -0.87271

These limits are wider still, 31% larger
than non-simultaneous limits and 11%
wider than the Bonferronized by 4 limits.
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Limits simultaneous for
(elements of o ): K =

JT(), TA () a critical value for T2

Cmd> fel <- fe-p+1 ; teritd <-\
sqrt((p*fe/fel)*invF(alpha,p,fel,upper:T)); tcrit4
(1) 3.7545

Cmd> alphahatl + vector(-1,1)*tcrit4*ses
(1,1) -1.0605 -0.61415
(2,1) 0.2234 0.51793
(3,1) -2.4826 -2.1094
(4,1) -1.0421 -0.86461

These are simultaneous for all Dossmle
linear combinations of & ., & ., & .. and

1’ 127 137

& .. They are 22% wider than Bonfer-

14

ronized by 4 limits.

"Ellipsoidal”
A, A, A, A,

1m? 12' 13!

How do you extend this approach to all 12
7

One way is to Bonferronize these limits.
by g = 3: K = T (/3)

Cmd> tcrits <- sgrt((p*fe/fel)*invF(alpha/g,p,fel,upper:T));\

terits
(1) 4.1108

Cmd> alphahatl + vector(-1,1)*tcrit5*ses
(1,1) -1.0817 -0.59297

(2,1) 0.20942 0.53191

(3,1) -25003 -2.0917

(4,1) -1.0505 -0.85619
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Testing Multivariate Linear Hypotheses

The k+1 by p matrix B of coefficients has
columns b, and rows 8 "

B-[b.b,..bl=108.8,..
Some linear hypotheses are:
e H: B =0 (y, does not depend on Z for
Q=1,2,....p)
You can express this as
H: 8B =0,2"=[0..0 1 0..0]
1

k

B

0 IR S
« H: B, =B, (equal coefficients of Z and
Z, for all p variables)
You can express this as
H: 4B =0,2=[0 1 -1 0..0]
e H: B =8, =..=8, =0 (noeffect of
Z., .., Z Onany variable.

1
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e General H: LB =0,L=1[2,..27, The alternative hypothesis considered is
i Q_]’ T H1:LB z 0
L= | &) H, 1s true if at least one of the rxp linear
combinations in LB 1s not zero.
L1 Here's what L is for the examples
Each row &' of L defines a linear o H.: ,BJ. =0
combination H: B8, = 0 for at least one &
1B =248/ r=1endlL=000..010..0]
of the rows 8.’ of B. Also
0'B=[8'b b, ...0D ] * H: B =B,

.,z B,, for at least one &

B, =

b, = LB B
ZO<J<k IJBJQ =landL=[0 1 -1 0 0... O]

3

B

where b, BOQ B, ... 8,1 1s the
vector of coefficients for y,. * Hy

,=B,=...=8

. . . . O for at least one | and &
The linear combination of coefficients T J

is the same for every variable. (010 ... 0 0]
H, declares that rxp linear combina- r=kL=[01l=]001 ..00
tions are 0. e e

| 0O 0 O 0O T
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Because the same L applies to every
variable, this formulation does not
include some hypotheses you might think
of as “linear.”

Example:
HO: 512 - O
(variable 2 doesn’t depend on Z))

You can't express this as LB = 0 for any
L and can’t test is by the methods | am
about to discuss.

These methods do allow testing
HO: 7811 = 7812 = e T B1p =0

(no variable depends on Z.).
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Consider null and alternative linear
hypotheses H: LB = 0 and H: LB =z O.

Suppose

o B° estimates B assuming H_ is true,
that 1s, by least squares, restricted so
that LB® = O

e B' estimates B without assuming H_ is
true so LB' z 0.

Define matrices of sums of squares and
products of residuals

RCP(HO) - Z1§i§N(gi B g'o)(gi - gio)'

1

RCP(H1) - Z1515N(yi B g1)(g1 - g’?)'

1

where fitted values y° and y' are com-

puted using B° and B'. That is
[0, G0 e G = V0= 2B = T Z(BO)
0 e G729 =26 = T2 (8

10
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The hypothesis matrix for H_ is
H = RCP(H,) - RCP(H,)
e the reduction of RCP(H,) achieved by
not imposing restrictions of H,
o or the increase in RCP(H,) resulting
from 1mposing those restrictions.

The error matrix is
E=RCP(H) =3(y -4y -4

In the one-way MANOVA case, H = B In
and E = W J&W's notation.

e H is always positive semi-definite (all
eigenvalues > 0).

e When £ 1s non-singular and the error
d.f.=f_>p-1(f-p+1 >0), E is
positive definite (all eigenvalues > 0).

e When f_ <p-1(f-p+1 <0)Eis not in-
vertible but is positive semi-definite

11

Statistics 5401 Lecture 18 October 17, 2005

A matrix principle of reduction in
residual sums of squares and products

The "larger” H is compared to E, the
better H, fits the data than H..

The testing principle is:

Reject H, in favor of H, when H is
"large” as compared to E
This 1dea underlies all the tests we will
consider: Wilks’ (likelihood ratio),
Hotelling’'s generalized T?, Pillai's trace
and Roy’'s maximum eigenvalue.

They are bassed on different answers to
the important question

How do you compare H with E?

12
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Q How do you compare H with E?
There is no single good way to compare H

with E.

Things are simplest whenp = 1 or f = 1.

When p = 1. This is the univariate
case and you can choose between an F-
test and Bonferronized t-tests.

When f = 1, this 1s essentialy the case
of a hypothesis about single vector of
parameters & such as & = 4 (1 sample)
or & = ) - W (2 sample).

Your choice is between a test based on
T2 = §'VI[¥1'8, & = LB and Bonferron-
ized t, = ¥,/SE[T,1. 1 < 0 < p.

Things are more complicated when p > 1
and f_ > 1.

13
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Summarize
e The hypothesis matrix

H = RCP(H,) - RCP(H))

s a difference of matrices of sums of
squares and products of residuals when
H, and H, are fitted.

The error matrix

E = RCP(H) = 5(y - gy, -y
1s the matrix of sums of squares and
products of residuals when H, is fitted.

We reject H, when H is "large” when
compared to E.

14
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One-way MANOVA
The linear model is

H: ot z &, some |, z ]

j 1 2
(same as univariate)
N - g (same as univariate)

e H = RCP(H,) - RCP(H )

[ ) [ )

—s —h

I I
Qa o
|
—

>n(y, -y)y -y) B (J&W),
Where
y,=0/n)¥, .4, = group j mean
y = (I/NZTY, = 1/NZ NG
= mean of all cases.
E = RCP(H ZZ ll-g Uj_g_,j)‘
= Win J&W notation.

15

224,79 )y, -y )2 2 y” y iy, -g)
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Compare these with the univariate (p = 1)
formulas:

e H=S8S =3n(y -y )

C E5S.- ¥y ”—g

To get expressions for H and E from SS,
and SS_, you replace terms of the form
(...)> by terms of the form (...)(...)".

Cmd> manova("y=varieties",silent.T)

Cmd> list(SS)
SS REAL 3 4 4 (labels)

Cmd> h <- matrix(SS[2,,]) # hypothesis matrix
Cmd> e <- matrix(SS[3,,] }# error matrix

Cmd> diag(h) # hypothesis SS for each variable
(1) 63212 11.345 437.1  80.413

Cmd> diag(e) # error SS for each variable
(1) 3895 16.962 27.223  6.1566

The last two lines of output are hypo-
thesis and error SS from four univariate
ANOVAs, one for each variable. You can
compute F-statistics from them.

16
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SS for a Linear Combination of
Response Variables

Let y, =u'y =2 , Uy, bealinear com-
bination of response variables, where u =

[u].,., 1s a vector of p weights or coeffi-
cients.
Then the N by 1 vector of all N values of
y, 1s [y, 'ul
Yo=Yu= | o | =%..4Y,
[y, 'u ]
Example: u' =[1 -1 1 -1] for which
Y, =4, - Y, + Y, - Y,
Facts:

The univariate ANOVA SS for Y are
o SS (Y,) = u'Hu, ANOVA hypothesis SS
e SS_(Y,) = UEU, ANOVA error SS

17
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Example with u = [1, -1, 1, -1T
Cmd> u <- vector(1,-1,1,-1)
Cmd>y u<-y%*%u

Cmd> anova('y_u = varieties") # univariate ANOVA
Model used is y_u = varieties
DF SS MS
CONSTANT 1 4284.8 4284.8
varieties 2 51498 257.49

ERROR1 147 80.828 0.54985
Cmd> u' %*% h %*% u # SS for varieties
(1)
(1) 514.98 varieties SS in ANOVA output
Cmd> u' %*% e %*% u # SS for error
(1)
(1) 80.828 ERROR1 SS in ANOVA output

e An ANOVA consists of computing one
or more hypothesis sums of squares
SS, . 99, . ... and one or more error

sums of squares SS_, SS,_, ... .

e A MANOVA consist of computing one or
more hypothesis matrices H, H,, ... and

one or more error matrices E , E ,

You.c'an extract ANOVAs for all variables
and of all linear combinations of var-
iables from MANOVA H and E matrices.

18
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With byvar:T and fstat.:T , ,anova() gives
all the univariate ANOVAs automatically.

Cmd> manova("y=varieties",byvar:T,fstat:.T)
Model used is y=varieties byvar:T => separate ANOVA tables
WARNING: summaries are sequential

h,, = SS,(y,) and e ,= SS_(y,) . oF S8 ws
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Comparing H and E
There are several ways.
e Compare diagonal elements

F P-value
CONSTANT 1 5121.7 5121.7 19326.50528 < 1e-08
. " . " varietes 2 63.212 31.606 119.26450 <1e-08
That 1s, say "H 1s large compared to E ERRORL 147 38956 026501
epWi
1 ' _ DF SS MS F P-value
When maxg{hu/eu} 1S large’ Or eqUI\/a CONSTANT 1 1402.1 1402.112151.14260 < 1e-08
. varietes 2 11.345 5.6725 49.16004 < 1e-08
lently, when max,F, 1s large, where ERRORL 147 16962 01539
DF SS MS F P-value
- - CONSTANT 1 2118.4 2118.411439.11809 < 1e-08
FQ - (hQQ/fh)/(eQQ/fe) - (fe/fh)(hQQ/eQQ) varieties 2  437.1 21855 1180.16118 < 1e-08
ERROR1 147 27.223 0.18519
. . . . - PetWid
are univariate F-statistics, 2 = 1,...,p o el e E puale
CONSTANT 1 215.76 215.76 5151.66322 < 1e-08
varieties 2 80.413 40.207 960.00715 < le-08

The critical value is F  (ot/p), @ Bon-
ferronized (by p) F-critical value

This requires only univariate norm-
ality and constant univariate var-
lances.

When f = 1, F = t* where t is a
Student’'s t-statistic.

19

ERROR1 147 6.1566 0.041882

DF and SS are computed as usual.

Cmd> list(SS,DF)
DF REAL 3 (labels)
SS REAL 3 4 4

Cmd> fth <- DF[2]; fe <- DF[3]
Cmd> h <- matrix(SS[2,,]); e <- matrix(SS[3,,]) #same as before
Cmd> fstats <- (diag(h)/fh)/(diag(e)/fe)

Cmd> fstats
(1) 119.26

(labels)

49.16 1180.2 960.01

These match the F-statistics in the

output (underlined).

20
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To get a multivariate test, you need to
Bonferronize by p.

MacAnova: Bonferronized P-values are
p*cumk(fstats,fh,fe,upper:T)

Cmd> 4*cumF(fstats,DF[2],DF[3], upper:T) #Bonferronized P-value
(1) 6.6787e-31 1.7968e-16 1.1427e-90 1.6678e-84

All are very small indicating you can
reject

H,: no treatment effect on any variable.

You can compute them directly from H
and E by

p*cumF((diag(h)/fh)/(diag(e)/fe),\
fh,fe,upper:T)

21
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By analogy with the F-statistic
(f /f)SS,/SS,
another way to compare H and E is by the

matrix "Ratio” E"'H or (f /f )E"'H

e When H, is true, (f_/f JE"'H should be
"‘close” to I (in the same way that F
should be "close” to 1).

e When H, is true (f_/f )E'H should be
“larger” than I

22
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A test would be something like
Reject H, when E"'H is "too large” as
compared to (f /f )1, or equivalently
Reject H_: when (f_/f JE'H is too large
as compared to I

Here's a problem:
E'H is a p by p matrix. What number

or numbers measure how large it is?

e det(E'H) does not work as such a
number because

det(E"'H) = det(E")det(H) = det(H)/det(E)
But when f_< p, det(H) = 0, making
det(E'H) = O so this is not helpful.

What does work are measures computed
from the eigenvalues of H relative to E,
that 1s the relative eigenvalues.

See the handout for a fairly complete
explanation.
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