Lecture 17

October 14, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page

Statistics 5401

Lecture 17

October 14, 2005

Statistics 5401 Lecture 17

October 14, 2005

You can also parametrize the one-way MANOVA model in terms of group mean vectors

 $\mu_1 = \mu + \alpha_1, ..., \mu_g = \mu + \alpha_g$ instead of a grand mean μ and effects α_i :

$$\mathbf{y}_{ij} = \boldsymbol{\mu}_{j} + \boldsymbol{\epsilon}_{ij}$$

 \mathbf{y}_{ij} , $\boldsymbol{\mu}_{i}$, $\boldsymbol{\epsilon}_{ij}$ all $p \times 1$.

MANACOVA - Multivariate ANACOVA

$$\mathbf{y}_{ij} = \boldsymbol{\mu} + Z_{ij,1} \boldsymbol{\beta}_1 + Z_{ij,2} \boldsymbol{\beta}_2 + \dots + Z_{ij,k} \boldsymbol{\beta}_k + \boldsymbol{\alpha}_i + \boldsymbol{\epsilon}_{ii}$$

- The Z's are covariates
- The β 's don't differ among groups.
- $\Sigma = V[\varepsilon]$ is constant and doesn't depend on group or any of the Z_i 's.

Statistics 5401 Lecture 17 October 14, 2005

One-way MANOVA Model

• Data consist of g <u>independent</u> random samples $\{\mathbf{y}_{ij}\}_{1 \leq i \leq n_j}$ of sizes n_1, \ldots, n_g from g groups or populations

• The additive linear model is
$$\mathbf{y}_{ij} = (\boldsymbol{\mu} + \boldsymbol{\alpha}_j) + \{\boldsymbol{\epsilon}_{ij}\}, j = 1,...,g$$
 $\mathbf{y}_{ij}, \boldsymbol{\mu}, \boldsymbol{\alpha}_i$ and $\boldsymbol{\epsilon}_{ij}$ all $p \times 1$ and $\mathbf{E}[\boldsymbol{\epsilon}_{ij}] = \mathbf{0}$.

The other assumptions are:

• Equal variance matrices $\Sigma_{_{1}} = \Sigma_{_{2}} = \dots = \Sigma_{_{g}} = \Sigma = [\sigma_{_{\mathbb{R}m}}]$ with $\Sigma_{_{j}} = [\sigma_{_{\mathbb{R}m}}^{_{(j)}}] = V[\varepsilon]$ for group j.

Equality of Σ 's is strong condition: 1. Equal <u>variances</u> among groups $\sigma_{ii}^{(1)} = \sigma_{ii}^{(2)} = \dots = \sigma_{ii}^{(g)} = \sigma_{ii}, \ \ell = 1, \dots, p$

2. Equal correlations among groups
$$\rho_{\ell m}^{(1)} = \rho_{\ell m}^{(2)} = \dots = \rho_{\ell m}^{(g)} = \rho_{\ell m}, \ 1 \leq \ell \neq m \leq p$$

• Exact small sample inference requires that ϵ is N₀(0, Σ).

The standard approach to multivariate linear models assumes the <u>same model</u> <u>for every variable</u>.

Regression:

 $\begin{aligned} \boldsymbol{y}_{i} &= \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1} Z_{i1} + \ldots + \boldsymbol{\beta}_{k} Z_{ik} + \boldsymbol{\epsilon}_{i} \\ \text{is equivalent to p univariate regressions} \\ \boldsymbol{y}_{i\ell} &= \boldsymbol{\beta}_{0\ell} + \boldsymbol{\beta}_{1\ell} Z_{i1} + \ldots + \boldsymbol{\beta}_{k\ell} Z_{ik} + \boldsymbol{\epsilon}_{i\ell} \\ \boldsymbol{\ell} &= 1, \ldots \text{ p} \end{aligned}$

all with the same predictors.

2 factor MANOVA

$$\mathbf{y}_{ij} = \boldsymbol{\mu} + \boldsymbol{\alpha}_{i} + \boldsymbol{\beta}_{j} + (\boldsymbol{\alpha}\boldsymbol{\beta})_{ij} + \boldsymbol{\epsilon}_{ij}$$

is equivalent to p univariate ANOVA models

$$y_{ii} = \mu + \alpha_{i} + \beta_{i} + (\alpha \beta)_{ii} + \epsilon_{ii}$$

all with the both main effects and interaction.

The situation when different variables have different models is called <u>Seemingly Unrelated Regression</u> or **SUR**. The best estimates are *not* least squares.

For all these models, the $\mathbf{\epsilon}_{i}$'s or $\mathbf{\epsilon}_{ii}$'s are assumed to have these properties in decreasing order of importance (most important first)

Lecture 17

- 1 $E[\varepsilon] = 0$
- 2 Independent cases (data matrix rows)
- 3 $V[\epsilon] = \Sigma$ (constant variance)
- 4 ε = N_D(0, Σ) Needed for "exact" small sample inference .

Most tests and confidence procedures related to elements of **B** are resistant to non-normality - they "work as advertised" adequately even with nonnormal ε's.

The assumption that $E[\varepsilon] = 0$ is really just a statement that the fixed part of the model is correct. That's why I list it as the most important assumption.

Statistics 5401

October 14, 2005

Each <u>row</u> β , of **B** goes with a predictor $Z_{\mathfrak{g}}$. Each <u>column</u> $\mathbf{b}_{\mathfrak{m}}$ of \mathbf{B} goes with a response variable Y_m.

One-way MANOVA
$$\mathbf{B} = \begin{bmatrix} \boldsymbol{\mu}' \\ \boldsymbol{\alpha}_1' \\ \boldsymbol{\alpha}_2' \\ \vdots \\ \boldsymbol{\alpha}'_{g-1} \\ \boldsymbol{\alpha}'_g \end{bmatrix}$$

Linking with the general notation, k = g

$$\beta_0 = \mu, \beta_1 = \alpha_1, ..., \beta_g = \alpha_g$$

$$\mathbf{b}_{\ell} = \begin{bmatrix} \mu_{\ell} \\ \alpha_{1\ell} \\ \dots \\ \alpha_{n\ell} \end{bmatrix}, \ell = 1, \dots, p$$

Caution: The Z matrix for this parameter matrix is not full rank. It is, if **B** omits the last row $({\bf a}_{\tt a}')$.

You can put any multivariate linear model (regression, MANOVA, MANACOVA) in the form of a multivariate linear regression (involving "dummy" variables for MANOVA and MANACOVA).

Lecture 17

This means you can express all the models in the form

$$Y = (ZB) + \{\epsilon\}, N \text{ by } p$$

- $Y = [Y_1, Y_2, ..., Y_n]$, N by p matrix of response (dependent) variables
- $Z = [Z_0, Z_1, ..., Z_k]$ is a n by k+1 matrix of predictor (independent) variables, possibly including dummy variables

•
$$\mathbf{B} = [\beta_{jk}] = \begin{bmatrix} \beta_0' \\ \beta_1' \\ \dots \\ \beta_k' \end{bmatrix} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_p]$$

is a k+1 by p matrix of coefficients.

Statistics 5401

Lecture 17

October 14, 2005

Estimation

For normal errors, it turns out that the best way (maximum likelihood) to estimate B is by univariate ordinary least squares (OLS) for each column of B

$$\mathbf{b}_{\mathfrak{l}} = [\beta_{\mathfrak{0l}}, \beta_{\mathfrak{ll}}, \beta_{\mathfrak{ll}}, \dots, \beta_{\mathfrak{kl}}]', \mathfrak{l} = 1, \dots, p.$$
 separately.

The matrix formula for the univariate OLS estimates is

$$\widehat{\mathbf{b}}_{\mathbf{k}} \equiv [\widehat{\boldsymbol{\beta}}_{0\mathbf{k}}, \widehat{\boldsymbol{\beta}}_{1\mathbf{k}}, \dots, \widehat{\boldsymbol{\beta}}_{\mathbf{k}\mathbf{k}}]' = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}_{\mathbf{k}},$$

$$\mathbf{k} = 1, \dots, p$$

This assumes Z is of full rank so Z'Z is invertible and the coefficients are all estimable.

You can combine these into one matrix equation:

$$\hat{\mathbf{B}} = [\hat{\mathbf{b}}_{1}, \hat{\mathbf{b}}_{2}, ..., \hat{\mathbf{b}}_{p}]$$

= $(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}, k+1 \text{ by } \mathbf{p}$

• $\hat{\mathbf{B}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}$ is a "clone" of the univariate formula, that is, it has the same algebraic form.

Lecture 17

• **B** maximizes the normal likelihood. If you do the math you find that the MLE **B** minimizes the determinant of the residual cross product (RCP) matrix

$$det((Y-ZB)'(Y-ZB)) = det(RCP).$$

The matrix Y - ZB consists of residuals from the regression Math shows that $\hat{\mathbf{B}}$ also minimizes all the diagonal elements of RCP, the residual sums of squares..

In the **SUR** situation (different models for different variables), although the maximum likelihood estimates minimize det(RCP), the solution isn't the same as the univariate least squares estimates.

Statistics 5401

- October 14, 2005
- Each element $\hat{\beta}_{i,i}$ in column ℓ of $\hat{\mathbf{B}}$ is a linear combination of the elements of Υ,.
- Each column $\hat{\mathbf{b}}_{0}$ (estimated coefficients for y_{i}) is $N_{k+1}(b_{i}, \sigma_{i}(Z'Z)^{-1})$
- Each $row \beta$, (estimated coefficients of Z_{i} for all y_{i} 's) is $N_{i}(\beta_{i}, c_{i}\Sigma)$.
- All the p(k+1) elements $\hat{\beta}_{i}$ together are multivariate normal $N_{p(k+1)}$.

Sampling distribution of $\hat{\mathbf{B}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}$

If you know the univariate facts you know a lot.

- Univariate LS estimates are unbiased $(E[\hat{\mathbf{b}}] = \mathbf{b}) \Rightarrow \hat{\mathbf{B}}$ is unbiased $(E[\hat{\mathbf{B}}] = \mathbf{B})$.
- The variance matrix of a column $\hat{\mathbf{b}}_{\mathfrak{g}}$ of $\hat{\mathbf{B}}$ is (from the univariate result): $V[\hat{\mathbf{b}}_{i}] = \mathbf{O}_{i}(\mathbf{Z}'\mathbf{Z})^{-1} = \mathbf{O}_{i}\mathbf{C} = \mathbf{O}_{i}[\mathbf{c}_{i}],$ where $\mathbf{C} = [\mathbf{c}_{ij}] = (\mathbf{Z}'\mathbf{Z})^{-1}$, and $\sigma_{\Omega} = V[\epsilon_{\Omega}], \ \ell = 1,...,p.$
- The (k+1)×(k+1) matrix of covariances between elements in different columns of $\hat{\mathbf{B}}$ (coefficients for different variables) is

$$\begin{aligned} \text{Cov}[\hat{\mathbf{b}}_{\ell}, \hat{\mathbf{b}}_{m}] &= \text{E}[(\hat{\mathbf{b}}_{\ell} - \mathbf{b}_{m})(\hat{\mathbf{b}}_{m} - \mathbf{b}_{m})'] \\ p \times p &= \sigma_{\ell m} (\mathbf{Z}'\mathbf{Z})^{-1} = \sigma_{\ell m} \mathbf{C}, \\ \text{where } \sigma_{\ell m} &= \text{Cov}[\epsilon_{\ell}, \epsilon_{m}], \ \ell \neq m \end{aligned}$$

Statistics 5401 Lecture 17 October 14, 2005

What is the variance matrix of all p(k+1)estimated coefficients β_{i} ?

There a neat mathematical notation you can use to describe the variance matrix of all p×(k+1) elements β_{ij} :

 $\mathbf{b} = \text{vec}(\mathbf{B}) = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \dots \\ \mathbf{b}_p \end{bmatrix} = [\mathbf{b}_1', \mathbf{b}_2', \dots, \mathbf{b}_p']'$ Let

be the length p(k+1) vector obtained by stringing the columns $\mathbf{b}_{_{\mathbf{1}}}$ of \mathbf{B} one after the other. Similarly, let

$$\hat{\mathbf{b}} \equiv \text{vec}(\hat{\mathbf{B}}) = [\hat{\mathbf{b}}_{1}, \hat{\mathbf{b}}_{2}, \dots \hat{\mathbf{b}}_{p}].$$

Then

• \hat{b} is $N_{D(k+1)}(b, \Sigma \otimes (Z'Z)^{-1}),$ where the p(k+1) by p(k+1) matrix $V[\hat{b}] = \Sigma \otimes (Z'Z)^{-1}$ is the Kronecker product of Σ and $(Z'Z)^{-1}$.

Vocabulary: When **A** is a M by N matrix and **B** is a m by n matrix, their Kronecker product is the M×m by N×n matrix

$$\label{eq:ABB} \boldsymbol{A} \otimes \boldsymbol{B} \quad \equiv \quad \left[\begin{array}{ccc} \boldsymbol{a}_{\scriptscriptstyle 11} \boldsymbol{B} & \boldsymbol{a}_{\scriptscriptstyle 12} \boldsymbol{B} \hdots \boldsymbol{a}_{\scriptscriptstyle 1N} \boldsymbol{B} \\ \boldsymbol{a}_{\scriptscriptstyle 21} \boldsymbol{B} & \boldsymbol{a}_{\scriptscriptstyle 22} \boldsymbol{B} \hdots \boldsymbol{a}_{\scriptscriptstyle 2N} \boldsymbol{B} \\ \hdots \boldsymbol{\cdot} \\ \boldsymbol{a}_{\scriptscriptstyle M1} \boldsymbol{B} & \boldsymbol{a}_{\scriptscriptstyle M2} \boldsymbol{B} \hdots \boldsymbol{a}_{\scriptscriptstyle MN} \boldsymbol{B} \end{array} \right],$$

MacAnova example using kronecker():

<pre>matrix(run(4)</pre>	,2); a # a	rbitrary 2	by 2 matrix
1	3	M = 2, N	= 2
2	4		
matrix(vector	(1,1,1, 1,	-1,0), 3);	b # 3 by 2 matrix
1	1	m = 3, n	= 2
1	-1		
1	0		
	1 2	1 3 4 matrix(vector(1,1,1, 1, 1, 1 1)	2 4 matrix(vector(1,1,1, 1,-1,0), 3); 1 m = 3, n

Cmd> kronecker(a,b) # macro distributed with MacAnova WARNING: searching for unrecognized macro kronecker near kronecker(

(1,1)	1	1	3	3
(2,1)	1	-1	3	-3
(3,1)	1 a[1,	. 1]*b 0	3	a[1,2]*b 0
(4,1)	2	2	4	4
(5,1)	2	-2	4	-4
(6,1)	2 a[2	,1]*b 0	4	a[2,2]*b0

Cmd> dim(kronecker(a,b)) # 2*3 by 2*2 matrix
(1) 6 4

13

Statistics 5401

Lecture 17

October 14, 2005

Unbiased estimate of Σ

Define the p by p error matrix $E = \sum_{1 < i < N} (y_i - \hat{y_i})(y_i - \hat{y_i})' = (Y - Z\hat{B})'(Y - Z\hat{B})$ where $\hat{\mathbf{y}}_i = \hat{\mathbf{B}}'\mathbf{z}_i = (\mathbf{z}_i'\hat{\mathbf{B}})'$ is the predicted value based on \mathbf{z}_{i} , (row i of \mathbf{Z}).

- $Y Z\hat{B}$ is the matrix of least squares residuals.
- E is the multivariate analogue of SS in univariate ANOVA and regression. To get a formula for E, replace $(...)^2$ in a formula for SS_e by (...)(...).
- $e_{i,i} = \sum_{1 < i < N} (y_{i,i} \hat{y_{i,i}})^2 = SS_e^{(i)}$ (ANOVA residual sum of squares for y,)
- $e_{im} = e_{mi} = \sum_{1 < i < N} (y_{ii} \hat{y_{ii}})(y_{im} \hat{y_{im}})$ (residual <u>sum of products</u> for y_e and y_m)

Johnson and Wichern use W (for Within) instead of E in some contexts.

Statistics 5401 Facts

- $(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$
- $\hat{b'} \lor [\hat{b}]^{-1} \hat{b} = \text{tr } \Sigma^{-1} \hat{B'} (Z'Z)^{-1} \hat{B}$ = sum of diagonals of $\Sigma^{-1}\hat{B}'(Z'Z)^{-1}\hat{B}$

Lecture 17

Application

Suppose
$$S = \hat{\Sigma}$$
 estimates Σ . Then
$$T^2 = \hat{b'}\hat{V}[\hat{b}]^{-1}\hat{b} = \text{tr } S^{-1}(\hat{B'}(Z'Z)^{-1}\hat{B})$$

is a form of Hotelling's T² statistic that tests H_0 : **B** = **0**, that is

$$H_0: \beta_{jk} = 0, j = 0, ..., k, k = 1, ..., p$$

Under wide conditions, in large samples, the null distribution of T^2 is $\chi_{_{D(k+1)}}^{2}.$

There is no easy exact small sample distribution as there is for the twosample and paired Hotelling T^2 statistics.

When
$$k = 0$$
, $T^2 = (pf_e/(f_e-p+1))F_{p,f_e-p+1}$
When $p = 1$, $T^2 = F_{k+1,f_e}$

Statistics 5401

Lecture 17

October 14, 2005

The minimum number of linearly independent parameter vectors, each of length p, required in the model is r = rank(Z). If **Z** is of full rank, r = k+1. Thus at least rxp parameters are required in all.

Define

- $S \equiv (1/f_e)E = (1/f_e)\sum_{1 \le i \le N} (y_i \hat{y_i})(y_i \hat{y_i})'$
- $f_e = N r$ ($f_e = N-k-1$ for full rank Z) Facts:
- $E[S] = \Sigma \Rightarrow S$ is an unbiased estimate of
- When y is MVN with $V[y] = \Sigma$, E is $W_p(f_e, \Sigma) (\sigma^2 \chi_{f_e}^2 \text{ when p = 1})$

S is multivariate analog of the univarate $s^2 = (1/f_e) \sum_{1 \le i \le N} (y_i - \hat{y_i})^2$

MacAnova MANOVA Example

Cmd> irisdata <- read("","t11_05",quiet:T)</pre> Read from file "TP1:Stat5401:Data:JWData5.txt" Cmd> varieties <- factor(irisdata[,1])</pre>

Using factor() is essential to mark varieties as a categorical variable rather than a quantitative variable.

<pre>Cmd> y <- irisdata[,-1] # strip off variety numbers</pre>					
Cmd> list(varieties Y	varieties,y REAL REAL	150 1			
Model used	l is y=varie	ies") # like ties e sequential SS and SP Ma			
G037Gm3.37m	DF				
CONSTANT	1 SepLen	SepWid	Pet.Len	Pet.Wid	
SepLen	5121.7	2679.8	3293.9	1051.2	
SepWid	2679.8	1402.1	1723.4	550.01	
	3293.9				
PetWid	1051.2	550.01	676.06	215.76	
varieties	2				
	SepLen	SepWid	PetLen	PetWid	
SepLen SepWid	63.212 -19.953	-19.953 11.345	165.25 -57.24	71.279 -22.933	= H = B
Pet.Len	165.25	-57.24	437.1	186.77	= н = в
PetWid	71.279	-22.933	186.77	80.413	
ERROR1	147	22.755	100.77	00.413	
	SepLen	SepWid	PetLen	PetWid	
SepLen	38.956	13.63	24.625	5.645	
SepWid	13.63	16.962	8.1208	4.8084	= E = W
PetLen	24.625	8.1208	27.223	6.2718	
PetWid	5.645	4.8084	6.2718	6.1566	

This is default manova() output when p \leq 5.

17

Statistics 5401		Lecture 17		October	14, 2005
Cmd> SS #	3 by 4 by	4 array; also SepLen	computed by SepWid	manova() PetLen	PetWid
CONSTANT	SepLen	5121.7	2679.8	3293.9	1051.2
	SepWid	2679.8	1402.1	1723.4	550.01
	PetLen	3293.9	1723.4	<u>2118.4</u>	676.06
	PetWid	1051.2	550.01	676.06	215.76
varieties	SepLen	63.212	-19.953	165.25	71.279
	SepWid	-19.953	11.345	-57.24	-22.933
	PetLen	165.25	-57.24	<u>437.1</u>	186.77
	PetWid	71.279	-22.933	186.77	80.413
ERROR1	SepLen	38.956	13.63	24.625	5.645
	SepWid	13.63	16.962	8.1208	4.8084
	PetLen	24.625	8.1208	27.223	6.2718
	PetWid	5.645	4.8084	6.2718	6.1566

ss is a 3 dimensional array, with the first subscript indexing matrices.

Hypothesis matrix

Statistics 5401

$$H = B = \sum_{1 \le j \le q} n_j (\overline{\mathbf{y}}_{.j} - \overline{\mathbf{y}}_{.j}) (\overline{\mathbf{y}}_{.j} - \overline{\mathbf{y}}_{.j})'$$

This generalizes the univariate formula

$$SS_h = SSB = \sum_{1 \le j \le g} n_j (\overline{y}_{,j} - \overline{y}_{,j})^2$$

Error matrix is multiple of pooled variance matrix estimate

$$E = W = \sum_{1 \le j \le g} (n_j - 1)S_j$$

$$S = S_{pooled} = (N - g)^{-1} \sum_{1 \le j \le g} (n_j - 1)S_j$$

This generalizes the univariate formula $s_{pooled}^{2} = (N - g)^{-1} \sum_{1 \le i \le g} (n_i - 1) s_i^{2}$

MacAnova computes variables of, RESIDUALS and SS just as anova() and regress() do.

Cmd> list(DF,	RESIDUAL	s, ss)		
DF	REAL	3	(lak	oels)	
RESIDUALS	REAL	150	4	(lal	oels)
SS	REAL	3	4	4	(labels)
Cmd> DF # comp CONSTANT			a(); s ERF		s anova() DF

18

Statistics 5401

October 14, 2005

The diagonal elements of ss[j,,] are the univariate SS:

```
Cmd> ss <- SS # save it
Cmd> anova("{y[,3]} = varieties") # univariate ANOVA
Model used is \{y[,3]\} = varieties p
CONSTANT
                        2118.4
                                     2118.4
varieties
                         437.1
                                     218.55
               147
                        27.223
ERROR1
                                    0.18519
Cmd> ss[,3,3] # 3rd diagonal element of matrices
                      PetLen
CONSTANT PetLen
                      2118.4
varieties PetLen
          PetLen
```

MacAnova computes MANOVA as multivariate regression with dummy variables with values 0, 1 and -1. You can see what they are using through modelinfo(). Here is an example with "toy" data, g = 3, p = 3, N = 10.

```
\label{eq:cmd} \mbox{Cmd> a <- factor(1,1,1,2,2,2,3,3,3,3) \# n\_1=3, n\_2=3, n\_3=4} \\
Cmd> Y <- matrix(rnorm(30),10) \# N = 10, p = 3
Cmd> manova("Y = a", silent:T)
Cmd> xvariables() # gets the actual Z matrix used
 (2,1)
                   1
                                  1
 (3,1)
                                  0
                                 -1
                                 -1
 (8,1)
(10,1)
```

Basic confidence interval for one coefficient

A multivariate linear model can always be put in the form

$$Y = ZB + ε$$
, $E[ε] = 0$, $V[ε] = Σ$
 Y and $ε$ n by p, Z N by $k+1$,

$$B = [b_1, ..., b_p] = [\beta_0, \beta_1, ..., \beta_k]' k+1 by p$$

Let
$$\mathbf{C} = [\mathbf{c}_{ij}] = (\mathbf{Z}'\mathbf{Z})^{-1}$$
. Then $V[\hat{\mathbf{b}}_{ij}] = \sigma_{ij}\mathbf{C}, \ \ell = 1, ...,p$

In particular

$$V[\hat{\beta}_{i}] = c_{i}\sigma_{i}, j = 0, ..., k, l = 1, ..., p$$

The <u>estimated</u> standard error of β_{il} is

$$SE[\hat{\beta}_{j\ell}] = \sqrt{\{c_{jj}\hat{\sigma}_{\ell\ell}\}}$$

where $\hat{\sigma}_{,,}$ is the MSE for y_,, and is a diagonal element of $\hat{\Sigma} = S = (1/f_p)E$.

MacAnova You can use secoefs() to retrieve all $\hat{\beta}_{i}$ s and all $S\hat{E}[\hat{\beta}_{i}]$.

21

Statistics 5401

Lecture 17

October 14, 2005

Example

Cmd> manova("y=varieties", silent:T)

Cmd> coefs()#describes most recent regress(), anova(), manova() component: CONSTANT Least squares estimates of μ

(1)	SepLen 5.8433	SepWid 3.0573	PetLen 3.758	PetWid $\hat{m{\mu}}'$	
compon	ent: variet	ies Least	squares	of variety ef	fects
	SepLen	SepWid	PetLen	PetWid 🚉	
(1)	-0.83733	0.37067	-2.296	-0.95333 $\hat{\alpha}'_1$	
(2)	0.092667	-0.28733	0.502	0.12667 α ′,	
(3)	0.74467	-0.083333	1.794	0.82667 $\hat{\alpha}_{3}^{7}$	

Cmd> stats <- secoefs(); stats</pre> component: CONSTANT Estimates and their standard errors

com	ponent: coefs			
	SepLen	SepWid	PetLen	PetWid
(1)	5.8433	3.0573	3.758	1.1993
com	ponent: se			
	SepLen	SepWid	PetLen	PetWid
(1)	0.042032	0.027735	0.035137	0.01671
compo	nent: varietie	es		
com	ponent: coefs	Alphaha	ts	
	SepLen	SepWid	PetLen	PetWid
(1)	-0.83733	0.37067	-2.296	-0.95333
(2)	0.092667	-0.28733	0.502	0.12667

	SepLen	SepWid	PetLen	PetWid
(1)	-0.83733	0.37067	-2.296	-0.95333
(2)	0.092667	-0.28733	0.502	0.12667
(3)	0.74467	-0.083333	1.794	0.82667
com	ponent: se	Standard	errors of	alphahats
	SepLen	SepWid	PetLen	PetWid
(1)	0.059443	0.039224	0.049691	0.023631
(2)	0.059443	0.039224	0.049691	0.023631
(3)	0.059443	0.039224	0.049691	0.023631

(to be continued)

There are several different 100(1 - ⋈)% confidence intervals for a coefficient β_{ij} ,

Lecture 17

both "ordinary" (non-simultaneous) and simultaneous.

All have the form

 $\beta_{ij} = \hat{\beta}_{ij} \pm K_{\alpha} \sqrt{\{c_{ij}\hat{s}_{ii}\}}, \text{ with constant } K_{\alpha}$ which depends on the type of interval

- Single non-simulatneous large sample confidence interval has $K_{\alpha} = z(\alpha/2)$
- Single non-simulatneous confidence interval with normal or near normal errors has $K_{\alpha} = t_{f_{\alpha}}(\alpha/2)$.
- Simultaneous intervals for all M = (k+1)p coefficients by Bonferronizing Student's t by M:

 $K_{x} = z((\alpha/M)/2)$ or $K_{x} = t_{x}((\alpha/M)/2)$.