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One-way MANOVA Model

e Data consist of g independent ran-
dom samples {y } . of sizesn, .., n

i 1<i<n; g

from g groups or populations

e The additive linear model is
y, = (B + )+ 1€} j=1,.4
Y. H o and e all px1andE[e]=0.

The other assumptions are:

e Equal variance matrices
21:22:...:29:2:[6%”]
with £ = [o, "] = V[e] for group j.

&m

Equality of ¥'s is strong condition:
1. Equal variances among groups
G V-G @ -5 9o 0 = 1 D
L S A

29 e 24

2. Equal correlations among groups
meU) — me(2) - = me(Q) _ me1 1§sz§p

e Exact small sample inference requires
that € i1s ND(O, >).
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You can also parametrize the one-way
MANOVA model in terms of group mean
vectors

Ho= B+, s o= H+ ot
Instead of a grand mean M and effects X :
4, = B+ &

Yy, . M, g allpx1.
MANACOVA - Multivariate ANACOVA

Uij - }‘l * Zij,1'B1 * Zij,2ﬁ2 T Zij,k‘Bk

+ o(j + eij

e The Z's are covariates

e The B's don't differ among groups.

e ¥ = V[e] is constant and doesn’t depend
on group or any of the Z's.
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The standard approach to multivariate
linear models assumes the same model
for every variable.

Regression:
gi - BO * ﬁ1Zi1 T 7 ﬁkZik * 8i
IS equivalent to p univariate regressions
giQ - BOQ * 'B]QZH o T BKQZik * EiQ
Q=1,..p
all with the same predictors.

2 factor MANOVA
gij = }_1 + di + Bj + (dﬁ)ij + 8”_

1S equivalent to p univariate ANOVA
models

gijQ = Mo+ dm * BJQ * (dB)ijQ * Eij!l
all with the both main effects and

interaction.

The situation when different variables
have different models is called Seemingly

Unrelated Rearession or SUR. The best

estimates are not least squares.
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For all these models, the €'s or € 's are

assumed to have these properties in
decreasing order of importance (most
important first)

1 Ele]=0

2 Independent cases (data matrix rows)

3 V[e] = £ (constant variance)

4 € = N(0, %) Needed for "exact” small
sample inference

Most tests and confidence procedures
related to elements of B are resistant to
non-normality - they "work as
advertised” adequately even with non-
normal €'s.

The assumption that E[e] = O is really
just a statement that the fixed part of
the model is correct. That's why I list it
as the most important assumption.
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You can put any multivariate linear model
(regression, MANOVA, MANACOVA) in the

form of a multivariate linear regression

(involving "dummy” variables for MANOVA
and MANACOVA).

This means you can express all the
models in the form

Y = (ZB) « {e}, Nby p
e Y=I[Y,Y, ... Y] Nbyp matrix of
response (dependent) variables
e 2=1[2,2,.. 2Z]1isanbyk+1 matrix

of predictor (independent) variables,
possibly including dummy variables

oy
1= 8" | =0 b ..b]

e B:-[B

it

| B,
Is a k+1 by p matrix of coefficients.

6
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Each row $,” of B goes with a predictor

Z,. Each column b_of B goes with a

response variable Y .

i
A,
One-way MANOVA B = | o
S
| ot
Linking with the general notation, k = g
'Bo = M, 'B1 = O 'Bg - dg
T
b, = <, |, L=1,..,p
X

| o,
Caution: The Z matrix for this parameter

matrix is not full rank. It is, if B omits
the last row (o(g‘).
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Estimation

For normal errors, it turns out that the
best way (maximum likelihood) to
estimate B is by univariate ordinary
least squares (OLS) for each column of B

= BB B Bl

separatelg.

The matrix formula for the univariate
OLS estimates is

b, =08, 8,..8,0 =222V,

This assumes Z is of full rank so Z2'Z is
invertible and the coefficients are all
estimable.

You can combine these into one matrix
equation:

B =[b,
7
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e B:-(2'2)'2'Y is a "clone” of the uni-
variate formula, that is, it has the
same algebraic form.

A\

e B maximizes the normal likelihood.

[f you do the math you find that the
MLE B minimizes the determinant of
the residual cross product (RCP)
matrix

det((Y-ZB)'(Y-ZB)) = det(RCP).

The matrix Y - ZB consists of
residuals from the regression

Math shows that B also minimizes all
the diagonal elements of RCP, the
residual sums of squares..

In the SUR situation (different models
for different variables), although the
maximum likelihood estimates minimize
det(RCP), the solution isn't the same as
the univariate least squares estimates.

9
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Sampling distribution of B = (2'2)'2'Y

[f you know the univariate facts you
know a lot.

e Univariate LS estimates are unbiased
(E[b] = b) > B is unbiased (E[B] = B).

e The variance matrix of a column b, of
B is (from the univariate result):

vib,] = ¢,(2'2)" = 5,C=0,lc,]

Q

where C = [c.]= (Z2'2)" , and

i
c,, = VIgl 2 =1,..p.
e The (k+1)x(k+1) matrix of covariances
between elements in different
columns of B (coefficients for

different variables) is
Covlb,,b 1 = E[(b, - b )(b - b )]
pxp  =0,(2'2)" = 0, C,

where ¢, = Covle e ], L =z m

10
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e Each element § ,in column & of Bisa  What is the variance matrix of all p(k+1)

linear combination of the elements of  estimated coefficients § ,?
Y

0 There a neat mathematical notation you
e Each column bAQ (estimated coeffi- can use to describe the variance matrix
cients fory,) is N._(b,, ,.(2'2)") ‘L)(‘;ta” px(k+1) eler?eb”t_s B
e Each row B]. (estimated coefficients b = vec(B) - b; = b, b, ..., b,
of Z for all y,’s) is N.(§, c ).
e All the p(k+1) elements 3JQ together L D, |

be the length p(k+1) vector obtained by
stringing the columns b, of B one after

the other. Similarly, let

A

b=vecB)=[b’' b’..b"T.

1 2 p

are multivariate normal N

p(k+1)"

Then

e bis N, (b Ze(Z'Z)"),
where the p(k+1) by p(k+1) matrix
VIb] = £0(2'2)" is the Kronecker
product of £ and (Z2'Z2)".
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Vocabulary: When A is a M by N matrix
and B is a m by n matrix, their Kronecker
product is the Mxm by Nxn matrix

a B aB..a B
AeB = | a,B aB..a,B |,
a,B a_B..a, B

MacAnova example using kronecker () :

Q> a <- natrlx(run(4) 2); a # arbitrary 2 by 2 matrix

(1,1) 3 M=2 N=2

(2,1) 2 4

Q> b <- natrlx(vector(l 1,1, 1,-1,0), 3); b # 3 by 2 matrix
(1,1) 1 m=3n=2

(2,1) 1 -1

(3,1) 1 0

Crd> kronecker (a,b) # nmacro distributed with MacAnova
WARNI NG searching for unrecogni zed macro kronecker near
kr onecker (

(1,13 1 1 3 3
(2,1) 1 -1 3 -3
(2.1 1a[1,11*> 0 i 3.a[1.2]*b 0
(4,1} 2 z P 4 4
(5,13 z -z 4 -4
(6,13 za[2,1]1*b ¢ 4 a[2,2]*b0

Crd> dln(kronecker(a b)) # 2*3 by 2*2 matrix
(1) 4

13
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Facts
e (AeB)' = A'eB"
e b'V[b]'b = tr £'B'(2'2)"'B
- sum of diagonals of £'B'(2'2)"'B
Application
Suppose S = ¥ estimates £. Then
= b'V[b]'b = tr S(B'(2'Z)"'B)

is a form of Hotelling’s T? statistic that
tests H: B = 0, that is

H:B8,=0,7=0, ...k, 2=1, ....p
Under wide conditions, in large samples,
the null distribution of T* is X, .°.

There 1s no easy exact small sample
distribution as there is for the two-
sample and paired Hotelling T? statistics.

When k = 0, T> = (pf /(f -p+1))F
Whenp =1, T?=F,_

p.fe-p+1

14
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Unbiased estimate of £
Define the p by p error matrix

E= >, .0 - Uy -y) = (Y-ZB)(Y-ZB)
where §y = B'z = (z'B)’ is the predicted
value based on z', (row i of Z).

October 14, 2005

e Y - ZB is the matrix of least squares
residuals.

e E is the multivariate analogue of SS_in
univariate ANOVA and regression. To

get a formula for E, replace (...)" in a
formula for SS_ by (...)(...)".

° eu - Z1§i§N(giQ B giQ)2 - Ssem (ANOVA
residual sum of squares for y,)

T T Z15i5N(giQ - gm)(gim - gim)
(residual sum of products for y, and y_)

Johnson and Wichern use W (for Within)
instead of E in some contexts.

15
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The minimum number of linearly indepen-
dent parameter vectors, each of length

p, required in the model is r = rank(Z). If
Z 1s of full rank, r = k+1. Thus at least
rxp parameters are required in all.

Define
e S= (]/fe)E - (1/fe)z1§i§N(Ui - gAi)(gi - gAi),

where
e f =N-r (f =N-k-1 for full rank 2)

Facts:

e E[S] =% > S is an unbiased estimate of
>

e When y is MVN with VIy] = £, E is
W (f.. &) (6"X,” whenp = 1)

S 1s multivariate analog of the univarate
32 - (1/fe)z1515N(gi - gAl)2

16
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MacAnova MANOVA Example

Qmd> irisdata <- read("","t11 05", quiet:T)
Read fromfile "TPl: Stat5401: Dat a: JWDat a5. t xt "

Qmd> varieties <- factor(irisdata[, 1])

Using factor () 1s essential to mark
vari eti es as a categorical variable
rather than a quantitative variable

Qmd> y <- irisdata[,-1] # strip off variety nunbers

Qmd> list(varieties,y)
varieties REAL 150 1 FACTCR with 3 levels
y REAL 150 4 N=150,p=4

COrd> manova("y=varieties") # |ike anova()
Model used is y=varieties
WARNI NG summari es are sequenti al

SS and SP Matrices

DF
CONSTANT 1
SepLen Sepwd Pet Len Pet Wd
SepLen 5121.7 2679.8 3293.9 1051. 2
SepWd 2679. 8 1402. 1 1723. 4 550. 01
Pet Len 3293.9 1723. 4 2118. 4 676. 06
Pet Wd 1051. 2 550. 01 676. 06 215.76
varieties 2
SepLen SepwWd Pet Len Pet Wd
SepLen 63. 212 -19. 953 165. 25 71.279
SepwWd -19. 953 11. 345 -57.24 -22.933 =H=18B
Pet Len 165. 25 -57.24 437.1 186. 77
Pet Wd 71.279 -22.933 186. 77 80. 413
ERRCRL 147
SepLen Sepwd Pet Len Pet Wd
SepLen 38. 956 13.63 24. 625 5. 645
SepWd 13.63 16. 962 8. 1208 4.8084 =E=W
Pet Len 24. 625 8. 1208 27.223 6.2718
Pet W d 5. 645 4.8084 6.2718 6. 1566

This is default manova() output when p <
S.

17
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Hypothesis matrix
H=B=3% 00U -y)y -y)
This generalizes the univariate formula
S, =SSB =) _.n(y -y)

Error matrix is multiple of pooled
variance matrix estimate
- 1)S

E-=W=y_.(n-1)S
S=5_. =(N-g)" zmig(nj - 1S

pooled j

This generalizes the univariate formula
Spooled2 = (N - g)_1215jig(nj - 1)32

MacAnova computes variables DF,
RESI DUALS and SS just as anova() and

regress() do.
83Td> li st(DF, RESIDUALS, SS)

REAL 3 (1 abel s)
RESI DUALS REAL 150 4 (1 abel s)
SS REAL 3 4 4 (1 abel s)
Crd> DF # conputed by nanova(); sane as anova() DF
CONSTANT  varieties ERRCRL
1 2 147

18
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Q>SS # 3 by 4 by 4 array; also gonpied by menova)  iwa  The diagonal elements of SS[j,,] are the

CONSTANT ~ SepLen 5121.7 2679. 8 3293.9 1051. 2 : : .
SepW d 2679. 8 1402, 1 1723. 4 s50.00 UNlvariate SS:
Pet Len 3293.9 1723. 4 2118. 4 676. 06 .
Pet W d 1051. 2 550. 01 676. 06 215. 76 Oml> ss <- SS # save it
varieties SepLen 63. 212 -19. 953 165. 25 71.279 Oml> anova("{y[, 3]} = varieties") # univariate ANOVA
SepW d -19. 953 11. 345 -57.24 -22.933 Mbdel used is {y[,3]} = varieties
Pet Len 165. 25 -57.24 437.1 186. 77 DF SS NB
Pet Wd 71. 279 -22.933 186. 77 80. 413 CONSTANT 1 2118. 4 2118. 4
ERRCRL SepLen 38. 956 13. 63 24.625 5. 645 varieties 2 437.1 218. 55
SepW d 13.63 16. 962 8.1208 4. 8084 ERRCRL 147 27.223 0. 18519
Pet Len 24. 625 8.1208 27.223 6. 2718 . .
Pet W d 5. 645 4. 8084 6. 2718 6. 1566 Qmd> ss[,3,3] # 3rd di ggoEaI el ement of matrices
et Len
. . . . CONSTANT  Pet Len 2118. 4
SS is a 3 dimensional array, with the vari eties PetLen 437.1
ERRCRL Pet Len 27. 223

first subscript indexing matrices.

Q> 1151(59 # 5515 a three i mensi on array MacAnova computes MANOVA as multi-

3 4 4 (labels) variate regression with dummy variables
e = S e Msowa o heten - pewd  With values 0, 1 and -1. You can see
TR AW laes  1eoes  sasos  asoss  What they are using through nodel i nfo() .
Pet Len 24. 625 8.1208 27.223 6.2718 : : » »
Pet W d 5. 645 4. 8084 6. 2718 6. 1566 Here 1s an example with “"toy” data, g = 3,

p=3,N=10.
Q> a <- factor(1,1,1,2,2,2,3,3,3,3) # n_1=3, n_2=3, n_3=4
Q> Y <- matrix(rnorn(30),10) # N= 10, p = 3
Crd> manova("yY = a", silent:T)
Crd> xvariables() # gets the actual Z natrix used

RPRRRRRERRRRER
PRRPRRPOOORRER
RPRRRPRRRPROOO
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Basic confidence_ interval for one
coefficient

A multivariate linear model can always
be put in the form
Y = ZB + €, E[e] = O, V[e] =
Yandenbgp ZNbgk

B, B...... Bl K
(Z Z)"'. Then
c,C L=1,..p

+1 by p

Let C = [c,] -

VIB,] =

In particular
VIB 1=¢06,.]=0 ..k L=1,..p

The estimated standard error of 3J.Q 1S

SEIf ] = /{c o,
where G,,, is the MSE for y,, and is a

diagonal element of £ = S = (1/f)E.

MacAnova You can use secoefs() to
retrieve all §,'s and all SEIf ]

21
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There are several different 100(1 - )%
confidence intervals for a coefficient ,BJ.Q,

both "ordinary” (non-simultaneous) and
simultaneous.
All have the form

B, = B, +K/lc s, 1, with constant K
Wthh depends on the type of interval

e Single non-simulatneous large sample
confidence interval has K = z(ot/2)

e Single non-simulatneous confidence
interval with normal or near normal
errors has K_ =t («t/2).

e Simultaneous intervals for all
M = (k+1)p coefficients by Bonfer-
ronizing Student’'s t by M:

K, = z((et/M)/72) or K = t, ((t/M)/2).

[
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Example
Qmd> manova("y=varieties",silent:T)
Omd> coef s() #descri bes nost recent regress(), anova(), nanova()
conponent : CONSTANT Least squares estimates of p
SepLen Sepwd Pet Len Pet Wd
(1) 5. 8433 3.0573 3.758 1.1993 Y
conponent: varieties Least squares of variety effects
SepLen Sepwd Pet Len Pet Wd &
(1) -0. 83733 0. 37067 -2.296 - 0. 95333 1
(2) 0. 092667 -0. 28733 0. 502 0. 12667 ﬁ;
(3) 0. 74467 -0.083333 1.794 0.82667 o’

3

Ond> stats <- secoefs(); stats

conponent : CONSTANT Estimates and their standard errors
conponent : coefs
SepLen Sepwd Pet Len Pet Wd
(1) 5. 8433 3. 0573 3. 758 1.1993
conponent: se
SepLen Sepwd Pet Len Pet Wd
(1) 0. 042032 0. 027735 0. 035137 0.01671
conponent: varieties
conponent: coefs  Alphahats
SepLen SepwWd Pet Len Pet Wd
1 -0. 83733 0. 37067 -2.296 - 0. 95333
(2) 0. 092667 -0. 28733 0. 502 0. 12667
(3) 0.74467 -0.083333 1.794 0. 82667
conponent: se Standard errors of alphahats
SepLen Sepwd Pet Len Pet Wd
(1) 0. 059443 0. 039224 0. 049691 0. 023631
(2) 0. 059443 0. 039224 0. 049691 0. 023631
(3) 0. 059443 0. 039224 0. 049691 0. 023631

(to be continued)
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