Displays for Statistics 5401/8401

Lecture 17

October 14, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page

http://www.stat.umn.edu/~kb/classes/5401 © 2005 by Christopher Bingham Statistics 5401 Lecture 17 October 14, 2005

One-way MANOVA Model

- Data consist of g <u>independent</u> random samples $\{\mathbf{y}_{ij}\}_{1 \leq i \leq n_j}$ of sizes $n_1, ..., n_g$ from g groups or populations
- The <u>additive linear model</u> is $\mathbf{y}_{ij} = (\boldsymbol{\mu} + \boldsymbol{\alpha}_j) + \{\boldsymbol{\epsilon}_{ij}\}, j = 1,...,g$ $\mathbf{y}_{ij}, \boldsymbol{\mu}, \boldsymbol{\alpha}_i$ and $\boldsymbol{\epsilon}_{ij}$ all $p \times 1$ and $E[\boldsymbol{\epsilon}_{ij}] = \mathbf{0}$.

The other assumptions are:

Equality of Σ 's is strong condition: 1. Equal <u>variances</u> among groups $\sigma_{ij}^{(1)} = \sigma_{ij}^{(2)} = \dots = \sigma_{ij}^{(g)} = \sigma_{ij}, \ \ell = 1,...,p$

- 2. Equal <u>correlations</u> among groups $\rho_{\ell m}^{(1)} = \rho_{\ell m}^{(2)} = \dots = \rho_{\ell m}^{(g)} = \rho_{\ell m}, \ 1 \leq \ell \neq m \leq p$
- Exact small sample inference requires that $\mathbf{\epsilon}$ is $N_{_{D}}(\mathbf{0},\,\mathbf{\Sigma})$.

Statistics 5401

Lecture 17

October 14, 2005

Statistics 5401

Lecture 17

October 14, 2005

You can also parametrize the one-way MANOVA model in terms of group mean vectors

 $\mu_1 = \mu + \alpha_1, ..., \mu_g = \mu + \alpha_g$ instead of a <u>grand mean</u> μ and <u>effects</u> α_i :

$$\mathbf{y}_{ij} = \boldsymbol{\mu}_{j} + \boldsymbol{\epsilon}_{ij}$$

 \mathbf{y}_{ij} , $\boldsymbol{\mu}_{j}$, $\boldsymbol{\epsilon}_{ij}$ all $p \times 1$.

MANACOVA - Multivariate ANACOVA

$$\mathbf{y}_{ij} = \boldsymbol{\mu} + Z_{ij,1} \boldsymbol{\beta}_1 + Z_{ij,2} \boldsymbol{\beta}_2 + \dots + Z_{ij,k} \boldsymbol{\beta}_k + \boldsymbol{\alpha}_i + \boldsymbol{\epsilon}_{ij}$$

- The Z's are covariates
- The β 's don't differ among groups.
- $\Sigma = V[\varepsilon]$ is constant and doesn't depend on group or any of the Z_i 's.

The standard approach to multivariate linear models assumes the <u>same model</u> <u>for every variable</u>.

Regression:

 $\mathbf{y}_{i} = \mathbf{\beta}_{0} + \mathbf{\beta}_{1} \mathbf{Z}_{i1} + \dots + \mathbf{\beta}_{k} \mathbf{Z}_{ik} + \mathbf{\epsilon}_{i}$

is equivalent to p univariate regressions

$$y_{il} = \beta_{ol} + \beta_{il}Z_{i1} + \dots + \beta_{kl}Z_{ik} + \epsilon_{il}$$

 $l = 1, \dots p$

all with the same predictors.

2 factor MANOVA

$$y_{ij} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ij}$$

is equivalent to p univariate ANOVA models

$$y_{ijl} = \mu + \alpha_{il} + \beta_{jl} + (\alpha\beta)_{ijl} + \epsilon_{ijl}$$

all with the both main effects and interaction.

The situation when different variables have different models is called <u>Seemingly Unrelated Regression</u> or **SUR**. The best estimates are *not* least squares.

For all these models, the $\mathbf{\epsilon}_{_{i}}$'s or $\mathbf{\epsilon}_{_{ij}}$'s are assumed to have these properties in decreasing order of importance (most important first)

- 1 $E[\varepsilon] = 0$
- 2 Independent cases (data matrix rows)
- 3 V[ε] = Σ (constant variance)
- 4 ε = $N_p(0, \Sigma)$ Needed for "exact" small sample inference .

Most tests and confidence procedures related to elements of ${\bf B}$ are <u>resistant to non-normality</u> - they "work as advertised" adequately even with non-normal ${\bf \epsilon}$'s.

The assumption that $E[\varepsilon] = 0$ is really just a statement that the fixed part of the model is correct. That's why I list it as the most important assumption.

You can put any multivariate linear model (regression, MANOVA, MANACOVA) in the form of a multivariate linear regression (involving "dummy" variables for MANOVA and MANACOVA).

This means you can express *all* the models in the form

$$Y = (ZB) + \{\epsilon\}, N \text{ by } p$$

- $Y = [Y_1, Y_2, ..., Y_p]$, N by p matrix of response (dependent) variables
- $Z = [Z_0, Z_1, ..., Z_k]$ is a n by k+1 matrix of <u>predictor</u> (independent) variables, possibly including dummy variables

•
$$\mathbf{B} = [\beta_{j\ell}] = \begin{bmatrix} \boldsymbol{\beta}_0' \\ \boldsymbol{\beta}_1' \\ \dots \\ \boldsymbol{\beta}_k' \end{bmatrix} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_p]$$

is a k+1 by p matrix of coefficients.

Each $\underline{\text{row}}$ $\boldsymbol{\beta}_{\text{o}}$ of \boldsymbol{B} goes with a predictor $\mathbf{Z}_{\scriptscriptstyle{0}}.$ Each $\underline{\text{column}}~\mathbf{b}_{\scriptscriptstyle{m}}$ of \mathbf{B} goes with a response variable Y_m .

One-way MANOVA
$$B = \begin{bmatrix} \mu' \\ \alpha_1' \\ \alpha_2' \\ \dots \\ \alpha'_{g-1} \\ \alpha'_g \end{bmatrix}$$
 Linking with the general notation, k

Linking with the general notation, k = g

$$\beta_0 = \mu, \beta_1 = \alpha_1, ..., \beta_g = \alpha_g$$

$$\mathbf{b}_{\ell} = \begin{bmatrix} \mu_{\ell} \\ \alpha_{1\ell} \\ \cdots \\ \alpha_{n\ell} \end{bmatrix}, \ \ell = 1, \dots, p$$

Caution: The Z matrix for this parameter matrix is not full rank. It is, if B omits the last row $(\boldsymbol{\alpha}_{_{\boldsymbol{\alpha}}})$.

Estimation

For normal errors, it turns out that the best way (<u>maximum likelihood</u>) to estimate B is by univariate ordinary <u>least squares</u> (OLS) for each column of **B**

$$\mathbf{b}_{\ell} = [\beta_{0\ell}, \beta_{1\ell}, \beta_{2\ell}, \dots, \beta_{k\ell}]', \ell = 1, \dots, p.$$
 separately.

The matrix formula for the <u>univariate</u> OLS estimates is

$$\hat{\mathbf{b}}_{\varrho} \equiv [\hat{\beta}_{\varrho\varrho}, \hat{\beta}_{\varrho\varrho}, \dots, \hat{\beta}_{\varrho\varrho}]' = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}_{\varrho},$$

$$\hat{\varrho} = 1, \dots, p$$

This assumes Z is of full rank so Z'Z is invertible and the coefficients are all estimable.

You can combine these into one matrix equation:

$$\hat{\mathbf{B}} = [\hat{\mathbf{b}}_{1}, \hat{\mathbf{b}}_{2}, ..., \hat{\mathbf{b}}_{p}]$$

= $(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}, k+1 \text{ by } p$

- $\hat{\mathbf{B}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}$ is a "clone" of the univariate formula, that is, it has the same algebraic form.
- B maximizes the <u>normal likelihood</u>. If you do the math you find that the MLE B minimizes the determinant of the <u>residual cross product</u> (RCP) matrix

det((Y-ZB)'(Y-ZB)) = det(RCP).

The matrix Y - ZB consists of residuals from the regression Math shows that $\hat{\mathbf{B}}$ also minimizes all the diagonal elements of RCP, the residual sums of squares..

In the **SUR** situation (different models for different variables), although the maximum likelihood estimates minimize det(RCP), the solution isn't the same as the univariate least squares estimates.

Sampling distribution of $\hat{B} = (Z'Z)^{-1}Z'Y$

If you know the univariate facts you know a lot.

- Univariate LS estimates are unbiased $(E[\hat{\mathbf{b}}] = \mathbf{b}) \Rightarrow \hat{\mathbf{B}}$ is unbiased $(E[\hat{\mathbf{B}}] = \mathbf{B})$.
- The variance matrix of a column $\hat{\mathbf{b}}_{\circ}$ of $\hat{\mathbf{B}}$ is (from the univariate result):

$$\begin{split} &V[\hat{\boldsymbol{b}_{\ell}}] = \sigma_{\ell\ell}(\boldsymbol{Z}'\boldsymbol{Z})^{-1} = \sigma_{\ell\ell}\boldsymbol{C} = \sigma_{\ell\ell}[\boldsymbol{c}_{ij}],\\ &\text{where } \boldsymbol{C} = [\boldsymbol{c}_{ij}] = (\boldsymbol{Z}'\boldsymbol{Z})^{-1} \text{, and}\\ &\sigma_{\ell\ell} = V[\boldsymbol{\epsilon}_{\ell\ell}], \ \ell = 1,...,p. \end{split}$$

• The $(k+1)\times(k+1)$ matrix of covariances between elements in different columns of $\hat{\mathbf{B}}$ (coefficients for different variables) is

$$Cov[\hat{\mathbf{b}}_{\ell}, \hat{\mathbf{b}}_{m}] = E[(\hat{\mathbf{b}}_{\ell} - \mathbf{b}_{m})(\hat{\mathbf{b}}_{m} - \mathbf{b}_{m})']$$

$$p \times p = \sigma_{\ell m} (\mathbf{Z}'\mathbf{Z})^{-1} = \sigma_{\ell m} \mathbf{C},$$

$$where \sigma_{\ell m} = Cov[\epsilon_{\ell}, \epsilon_{m}], \ell \neq m$$

- Each element $\hat{\beta}_{j\ell}$ in column ℓ of \hat{B} is a linear combination of the elements of Y_{ℓ} .
- Each column $\hat{\mathbf{b}}_{\ell}$ (estimated coefficients for \mathbf{y}_{ℓ}) is $N_{k+1}(\mathbf{b}_{\ell}, \sigma_{\ell}(\mathbf{Z}'\mathbf{Z})^{-1})$
- Each row $\hat{\beta}_{j}$ (estimated coefficients of Z_{j} for all y_{k} 's) is $N_{p}(\hat{\beta}_{j}, c_{jj}\Sigma)$.
- All the p(k+1) elements $\hat{\beta}_{j\ell}$ together are multivariate normal $N_{p(k+1)}$.

What is the variance matrix of all p(k+1) estimated coefficients $\hat{\beta}_{j\ell}$?

There a neat mathematical notation you can use to describe the variance matrix of all $p \times (k+1)$ elements $\hat{\beta}_{i\ell}$:

 $\mathbf{b} \equiv \text{vec}(\mathbf{B}) = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \dots \\ \mathbf{b}_D \end{bmatrix} = [\mathbf{b}_1', \mathbf{b}_2', \dots, \mathbf{b}_p']'$

be the length p(k+1) vector obtained by stringing the columns $\mathbf{b}_{_{\mathbb{Q}}}$ of \mathbf{B} one after the other. Similarly, let

$$\hat{\mathbf{b}} \equiv \text{vec}(\hat{\mathbf{B}}) = [\hat{\mathbf{b}}_{1}, \hat{\mathbf{b}}_{2}, \dots \hat{\mathbf{b}}_{n}].$$

Then

Let

• $\hat{\mathbf{b}}$ is $N_{p(k+1)}(\mathbf{b}, \Sigma \otimes (\mathbf{Z}'\mathbf{Z})^{-1})$, where the p(k+1) by p(k+1) matrix $V[\hat{\mathbf{b}}] = \Sigma \otimes (\mathbf{Z}'\mathbf{Z})^{-1}$ is the Kronecker product of Σ and $(\mathbf{Z}'\mathbf{Z})^{-1}$.

Vocabulary: When **A** is a M by N matrix and **B** is a m by n matrix, their Kronecker product is the M×m by N×n matrix

Lecture 17

$$\mathbf{A} \otimes \mathbf{B} \equiv \begin{bmatrix} \mathbf{a}_{11} \mathbf{B} & \mathbf{a}_{12} \mathbf{B} \dots \mathbf{a}_{1N} \mathbf{B} \\ \mathbf{a}_{21} \mathbf{B} & \mathbf{a}_{22} \mathbf{B} \dots \mathbf{a}_{2N} \mathbf{B} \\ \vdots & \vdots & \vdots \\ \mathbf{a}_{M1} \mathbf{B} & \mathbf{a}_{M2} \mathbf{B} \dots \mathbf{a}_{MN} \mathbf{B} \end{bmatrix},$$

MacAnova example using kronecker():

Cmd> kronecker(a,b) # macro distributed with MacAnova
WARNING: searching for unrecognized macro kronecker near
kronecker(

VI OHECVET (
(1,1)	1	1	3	3
(2,1)	1	-1	3	-3
(3,1)	1 a[1,	1]*b 0	3 a[1	, 2]*b 0
(4,1)	2	2	4	4
(5,1)	2	-2	4	-4
(6,1)	2 a[2, :	1]*b 0	4 a[2	2,2] *b 0

Cmd> dim(kronecker(a,b)) # 2*3 by 2*2 matrix(1) 6 4

Facts

- $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$
- $\hat{\mathbf{b}}' \vee [\hat{\mathbf{b}}]^{-1} \hat{\mathbf{b}} = \text{tr } \mathbf{\Sigma}^{-1} \hat{\mathbf{B}}' (\mathbf{Z}'\mathbf{Z})^{-1} \hat{\mathbf{B}}$ = sum of diagonals of $\mathbf{\Sigma}^{-1} \hat{\mathbf{B}}' (\mathbf{Z}'\mathbf{Z})^{-1} \hat{\mathbf{B}}$

Application

Suppose $\mathbf{S} = \hat{\mathbf{\Sigma}}$ estimates $\mathbf{\Sigma}$. Then $T^2 = \hat{\mathbf{b}}'\hat{\mathbf{V}}[\hat{\mathbf{b}}]^{-1}\hat{\mathbf{b}} = \text{tr } \mathbf{S}^{-1}(\hat{\mathbf{B}}'(\mathbf{Z}'\mathbf{Z})^{-1}\hat{\mathbf{B}})$

is a form of Hotelling's T^2 statistic that tests H_0 : **B** = **0**, that is

$$H_0: \beta_{j\ell} = 0, j = 0, ..., k, \ell = 1, ..., p$$

Under wide conditions, in large samples, the null distribution of T^2 is $\chi_{p(k+1)}^2$.

There is no easy exact small sample distribution as there is for the two-sample and paired Hotelling T^2 statistics.

When
$$k = 0$$
, $T^2 = (pf_e/(f_e-p+1))F_{p,f_e-p+1}$
When $p = 1$, $T^2 = F_{k+1,f_e}$

Statistics 5401 Lecture 17

Unbiased estimate of Σ

Define the p by p **error matrix** $E = \sum_{1 \le i \le N} (\mathbf{y}_i - \hat{\mathbf{y}_i}) (\mathbf{y}_i - \hat{\mathbf{y}_i})' = (\mathbf{Y} - \mathbf{Z}\hat{\mathbf{B}})' (\mathbf{Y} - \mathbf{Z}\hat{\mathbf{B}})$ where $\hat{\mathbf{y}_i} = \hat{\mathbf{B}}'\mathbf{z}_i = (\mathbf{z}_i'\hat{\mathbf{B}})'$ is the predicted value based on \mathbf{z}_i' , (row i of \mathbf{Z}).

- Y ZB is the matrix of <u>least squares</u> residuals.
- **E** is the multivariate analogue of SS_e in univariate ANOVA and regression. To get a formula for **E**, replace (...)² in a formula for SS_e by (...)(...)'.
- $e_{il} = \sum_{1 \le i \le N} (y_{il} \hat{y}_{il})^2 = SS_e^{(l)}$ (ANOVA residual <u>sum of squares</u> for y_i)
- $e_{lm} = e_{ml} = \sum_{1 \le i \le N} (y_{il} \hat{y_{il}})(y_{im} \hat{y_{im}})$ (residual <u>sum of products</u> for y_{il} and y_{il})

Johnson and Wichern use W (for Within) instead of E in some contexts.

The minimum number of linearly independent parameter *vectors*, each of length p, required in the model is $r = rank(\mathbf{Z})$. If \mathbf{Z} is of full rank, r = k+1. Thus at least rxp parameters are required in all.

October 14, 2005

Define

- $\mathbf{S} \equiv (1/f_e)\mathbf{E} = (1/f_e)\sum_{1 \le i \le N} (\mathbf{y}_i \hat{\mathbf{y}_i})(\mathbf{y}_i \hat{\mathbf{y}_i})$ where
- $f_e = N r$ ($f_e = N-k-1$ for full rank Z)

Facts:

- $E[S] = \Sigma \Rightarrow S$ is an <u>unbiased</u> estimate of Σ .
- When \mathbf{y} is MVN with $V[\mathbf{y}] = \mathbf{\Sigma}$, \mathbf{E} is $W_p(f_e, \mathbf{\Sigma}) (\sigma^2 \chi_{f_e}^2 \text{ when } p = 1)$

S is multivariate analog of the univarate

$$s^2 = (1/f_e) \sum_{1 \le i \le N} (y_i - \hat{y_i})^2$$

MacAnova MANOVA Example

Cmd> irisdata <- read("","t11_05",quiet:T)
Read from file "TP1:Stat5401:Data:JWData5.txt"
Cmd> varieties <- factor(irisdata[,1])</pre>

Using factor() is <u>essential</u> to mark varieties as a categorical variable rather than a quantitative variable.

Cmd> y <- irisdata[,-1] # strip off variety numbers</pre> Cmd> list(varieties,y) 150 varieties FACTOR with 3 levels 150 4 N = 150, p = 4Cmd> manova("y=varieties") # like anova() Model used is y=varieties WARNING: summaries are sequential SS and SP Matrices DF CONSTANT 1 SepWid PetWid SepLen PetLen SepLen 5121.7 2679.8 3293.9 1051.2 SepWid 2679.8 1402.1 1723.4 550.01 PetLen 3293.9 1723.4 2118.4 676.06 PetWid 1051.2 550.01 676.06 215.76 varieties SepLen SepWid PetLen PetWid 71,279 63.212 -19.953165.25 SepLen 11.345 -22.933SepWid -19.953-57.24PetLen 165.25 -57.24437.1 186.77 71.279 -22.933186.77 80.413 PetWid 147 ERROR1 SepLen SepWid PetLen PetWid 38.956 5.645 13.63 24.625 SepLen SepWid 13.63 16.962 8.1208 4.8084 = E = WPetLen 24.625 8.1208 27.223 6.2718 PetWid 5.645 4.8084 6.2718 6.1566

This is default manova() Output when p \leq 5.

Hypothesis matrix

$$H = B = \sum_{1 \le j \le g} n_j (\overline{\mathbf{y}}_{.j} - \overline{\mathbf{y}}_{..}) (\overline{\mathbf{y}}_{.j} - \overline{\mathbf{y}}_{..})'$$

This generalizes the univariate formula

$$SS_h = SSB = \sum_{1 \le j \le g} n_j (\overline{y}_j - \overline{y}_j)^2$$

Error matrix is multiple of pooled variance matrix estimate

$$\mathbf{E} = \mathbf{W} = \sum_{1 \le j \le g} (n_j - 1) \mathbf{S}_j$$

$$\mathbf{S} = \mathbf{S}_{pooled} = (N - g)^{-1} \sum_{1 \le j \le g} (n_j - 1) \mathbf{S}_j$$

This generalizes the univariate formula $s_{pooled}^{2} = (N - g)^{-1} \sum_{1 < j < q} (n_{j} - 1) s_{j}^{2}$

MacAnova computes variables DF, RESIDUALS and SS just as anova() and regress() do.

```
Cmd> list(DF, RESIDUALS, SS)
                              (labels)
                REAL
                        3
RESIDUALS
                REAL
                       150
                                     (labels)
                REAL
                       3
                                           (labels)
Cmd> DF # computed by manova(); same as anova() DF
    CONSTANT
               varieties
                               ERROR1
                                  147
```

Statistics 5401

Cmd> SS #	3 by 4 by 4	array; a	also computed	by manova()	
		SepLen	SepWid	PetLen	PetWid
CONSTANT	SepLen	5121.7	2679.8	3293.9	1051.2
	SepWid	2679.8	1402.1	1723.4	550.01
	PetLen	3293.9	1723.4	<u>2118.4</u>	676.06
	PetWid	1051.2	550.01	676.06	215.76
varieties	SepLen	63.212	-19.953	165.25	71.279
	SepWid -	-19.953	11.345	-57.24	-22.933
	PetLen	165.25	-57.24	<u>437.1</u>	186.77
	PetWid	71.279	-22.933	186.77	80.413
ERROR1	SepLen	38.956	13.63	24.625	5.645
	SepWid	13.63	16.962	8.1208	4.8084
	PetLen	24.625	8.1208	27.223	6.2718
	PetWid	5.645	4.8084	6.2718	6.1566

ss is a 3 dimensional array, with the first subscript indexing matrices.

```
Cmd> list(SS) # SS is a three dimension array
                REAL
                      3
                                           (labels)
Cmd > e < -SS[3,,]; e \# third matrix E; SS[2,,] is H
                   SepLen
                                SepWid
                                            PetLen
                                                         PetWid
                                 13.63
                                             24.625
                                                          5.645
ERROR1 SepLen
                   38.956
                    13.63
                                16.962
                                             8.1208
                                                         4.8084
       SepWid
       PetLen
                   24.625
                                8.1208
                                             27.223
                                                         6.2718
       PetWid
                    5.645
                                4.8084
                                             6.2718
                                                         6.1566
```

The diagonal elements of ss[j,,] are the univariate SS:

```
Cmd> ss <- SS # save it
Cmd> anova("\{y[,3]\} = varieties") # univariate ANOVA
Model used is \{y[,3]\} = varieties
                             SS
                                          MS
CONSTANT
                         2118.4
                                      2118.4
varieties
                 2
                          437.1
                                      218.55
ERROR1
               147
                         27.223
                                    0.18519
Cmd> ss[,3,3] # 3rd diagonal element of matrices
                       Pet.Len
CONSTANT PetLen
                       2118.4
varieties PetLen
                        437.1
ERROR1
          PetLen
                       27.223
```

MacAnova computes MANOVA as multivariate regression with dummy variables with values 0, 1 and -1. You can see what they are using through modelinfo(). Here is an example with "toy" data, g = 3, p = 3, N = 10.

```
Cmd > a < -factor(1,1,1,2,2,2,3,3,3,3) # n 1=3, n 2=3, n 3=4
Cmd> Y <- matrix(rnorm(30), 10) \# N = 10, p = 3
Cmd> manova("Y = a", silent:T)
Cmd> xvariables() # gets the actual Z matrix used
 (1,1)
 (2,1)
                  1
                               1
                                           0
 (3,1)
                               1
                                            0
 (4.1)
 (5,1)
 (6,1)
                              Ω
                              -1
 (7,1)
                                           -1
 (8,1)
                              -1
                                           -1
 (9.1)
                              -1
                                           -1
                                          -1
(10.1)
```

Basic confidence interval for one coefficient

A multivariate linear model can always be put in the form

$$Y = ZB + \varepsilon$$
, $E[\varepsilon] = 0$, $V[\varepsilon] = \Sigma$
 Y and ε n by p, Z N by $k+1$,

$$\mathbf{B} = [\mathbf{b}_{1}, ..., \mathbf{b}_{p}] = [\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1}, ..., \boldsymbol{\beta}_{k}]' \text{ k+1 by p}$$
Let $\mathbf{C} = [\mathbf{c}_{ij}] = (\mathbf{Z}'\mathbf{Z})^{-1}$. Then
$$V[\hat{\mathbf{b}}_{0}] = \sigma_{00}\mathbf{C}, \ \ell = 1, ..., p$$

In particular

$$V[\hat{\beta}_{i0}] = c_{ij}\sigma_{i0}$$
, $j = 0, ..., k, l = 1, ...,p$

The <u>estimated</u> standard error of $\hat{\beta}_{il}$ is

$$SE[\hat{\beta}_{il}] = \sqrt{\{c_{il}\hat{\sigma}_{ll}\}}$$

where $\hat{\sigma}_{ii}$, is the MSE for y_i , and is a diagonal element of $\hat{\Sigma} = S = (1/f_e)E$.

MacAnova You can use secoefs() to retrieve all $\hat{\beta}_{i}$'s and all $SE[\hat{\beta}_{i}]$.

There are several different $100(1 - \alpha)\%$ confidence intervals for a coefficient $\beta_{j\ell}$, both "ordinary" (non-simultaneous) and simultaneous.

Lecture 17

All have the form

 $\beta_{ij} = \beta_{ij} \pm K_{\alpha} \sqrt{\{c_{ij}\hat{s}_{ii}\}}, \text{ with constant } K_{\alpha}$ which depends on the type of interval

- Single non-simulatneous <u>large sample</u> confidence interval has $K_{\alpha} = z(\alpha/2)$
- Single non-simulatneous confidence interval with normal or near normal errors has $K_{\alpha} = t_{f_{\alpha}}(\alpha/2)$.
- Simultaneous intervals for all
 M = (k+1)p coefficients by Bonfer-ronizing Student's t by M:

$$K_{\alpha} = z((\alpha/M)/2)$$
 or $K_{\alpha} = t_{f_{\alpha}}((\alpha/M)/2)$.

Statistics 5401 Lecture 17 October 14, 2005

Example
Cmd> manova("y=varieties", silent:T)

(3)

0.059443

Cmd> coefs()#describes most recent regress(), anova(), manova() component: CONSTANT Least squares estimates of μ

(1)	SepLen 5.8433	SepWid 3.0573	PetLen 3.758	PetWid 1.1993 $\hat{oldsymbol{\mu}}'$			
compo	nent: variet	ies Least	squares	of variety effects			
_	SepLen	SepWid	PetLen	PetWid .			
(1)	-0.83733	-	-2.296	â'			
(2)		-0.28733	0.502	^ +			
(3)	0.74467		1.794				
(3)	0.71107	0.005555	1.701	0.82667 $\hat{\boldsymbol{\alpha}}_{3}^{\bar{r}}$			
Cmd> stats <- secoefs(); stats							
component: CONSTANT Estimates and their standard errors							
component: coefs							
	SepLen	SepWid	PetLen	PetWid			
(1)	5.8433	3.0573	3.758	1.1993			
component: se							
	SepLen	SepWid	PetLen	PetWid			
(1)	0.042032	0.027735	0.035137	0.01671			
component: varieties							
component: coefs Alphahats							
	SepLen	SepWid	PetLen				
	-0.83733		-2.296				
(2)	0.092667	-0.28733	0.502	0.12667			
(3)	0.74467	-0.083333	1.794	0.82667			
COM	ponent: se			f alphahats			
		SepWid					
. ,	0.059443		0.049691				
(2)	0.059443	0.039224	0.049691	0.023631			

(to be continued)

0.049691

0.023631

0.039224