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For each of these linear model types you
can always express any given model in at
more than one different way.

Example: Regression with k = 2 predic-
tors Z, and Z:

y = (Bo * Z1’81 * 22’82)+ {Ei}
Define new predictor variables and slopes
Z =(2,+2)/2,2,=(2 -2)/2

1
B. =8 +8,
Then,
B,+ 2,8, +28,=8,+28 +27,8,
SO
y = (B, +Z8 +ZB)+ el

is a linear model with different coef-
ficients and different predictor var-

lables but equally well describing y.

This is typical. Different parametri-
zations have different predictor var-

lables.
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Review
We are looking at univariate models of
the form

y = (predictable part) +

{unpredictable part}

where the predictable (fixed) part de-
pends linearly on one or more parameters.
The unpredictable (random) part has O
mean.

| introduced three types of models for
the predictable part:

Regression: § + Z 8, +Z 8, + .. 238,

ANOVA: The predictable part is made up
of a sum of subscripted parameters,
typified by the one way case”

gy = By v &, 004, = I+ X+ gy
ANACOVA: The predictable part is a

combination of regression and ANOVA
forms like

Y, = Mo+ Z,B
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Example: One-way ANOVA
Define 4 = 4 + «, the group i mean.
Then

y, = (W) + e,

1]

boi=1,...0,]=1,..n

1

is the same model as
y, = (L+o)+fe}, i=1,..9j=1,..n

ij i

but involves different parameters.

Changing restrictions on the «'s changes
the meaning of the «'s, but not the actual
model.

Example: If {} satisfy > o = 0 define
H=H and o = % - «, for some k
J:[+&i:(J_,l+o{k)+(o{i—o{k):}1+o(i:}1i
soy, = (B + )+ {e } is the same model.

The o 's satisfy the restriction « = 0.

 Some programs assume o = 0 (k = 1)
* Others assume « = O (k = g)
e MacAnova assumes } o = 0
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I want to collect all the linear para-
meters in a single vector. So define b to
be the vector of all coefficients in a
particular parametrization of the linear
model.

e Multiple regression:

b-=I[8.8,..81
e One-way ANOVA:
b=[y, &, .., ] orb=1[p, b, ... yuI

g
e Two factor ANOVA with interaction:

e One-way ANACOVA with g-groups and
k predictors:

b= [u 8. ... B oty o I
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Let f < m be the number of linearly inde-

. BB, ... (@B),, (xB),,...]

pendent Q;s.

Vocabulary
f is the hypothesis degrees of freedom.

When b = [l .1 ...., B, 1", the hypothesis
Hot B = M, = o = 1
can be expressed as
8., b=y -p =02 =[0.1.-1.0]
1 <j<k <g, where Sljk has with 1 in
position j and -1 in position k.
Here m = k(k-1)/2. But all you need are
the g-1 vectors & ,, &, ..., &, defining

12 137
the contrasts p, - M, M, - My oo Jyo- He
These are linearly independent so
fo=9-1.

This same definition will apply to
multivariate models.
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ANOVA allows you to test one or more
“linear” hypotheses about b:

Null hypothesis
H;: For m > 1 specific vectors

. and m specific & ,...,6_,
He: &b =38,1 <j<m.
Usually 8 =0 soH:28'b=0,1<j<m

Alternative hypothesis
H : For at least one j, 'b z & (z 0).

Note that & b is a linear combination of

the parameters in b

Examples with b = [8,, B,, B,]",

Hi:B, = B, = 0 is the same as H: &b = O,
j=1, 2 with &, =10,1,0], &, =10,0,1T
and 6 =8 =0

Hys: B, = B, is the same as H: 4 'b, with
2 =00,1,-1"and &, = 0
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Principle of change of residual SS

Let b° be a least squares estimate of b
when you assume H  to be true and b' be

an estimate when you assume H, is true.

Example:
Regression with H: 8, =8 =0 (f = 2):

b> = [B°8°... 6001
5] - [Bo] 781] Bk—21 Bk—11 Bk1]‘

where

* 8% =0, .. k-2 are the least squares
coefficients in regressionon Z, ....Z
perhaps, when k = 4, from
regress("y=z1+z2")

« $'.§=0, ... karelLS coefficients in
the full regressionon 2., ..., Z, per-
haps from regress('y=z1+z2+z3+z4")

k-27
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Notation
RSS(H,) = RSS(B") = 3 {y, - y,(bB")F
RSS(H,) = RSS(b") = 3 {y, - (b
y(b®) and y(b') are the fitted values using
estimates b° and b', that is the estimated
predictable parts when you substitute b

for the true parameter vector b.

RSS(H,) is the residual SS when you esti-
mate b by b® (assuming H_ is true).

RSS(H,) is the residual SS when you esti-
mate b by b’ (assuming H, is true).

Neither RSS(H ) or RSS(H,) depends on the
parametrization used.

Therefore, you can use the most conve-
nient parametrization. It may be diffe-
rent in computing RSS(H ) and RSS(H,).

Always RSS(H,) > RSS(H,).
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In the case of normal errors, this
principle comes from the likelihood
ratio statistic x = A"?, where

A = RSS(H,)/RSS(H,) = SS,/(SS +SS)
= 1/(1 + $S,/SS) = 1/(1 + (f /f )F)

You reject H, for "small” X or A, which
corresponds to “large” SS /SS_or F.

Even when the errors are not normal, this
has an intuitive appeal, since SS,/SS_ is a

scale free index of how much worse the
H, fit is compared to the H, fit.

Looking ahead: In MANOVA
* SS, becomes a p by p hypothesis matrix

H
e SS_ becomes a p by p error matrix E

e Inference is based on comparing H with
E.
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When RSS(H.) is a lot smaller than

1

RSS(H_) it suggests that a model satis-

0

fying H, s inadequate.

This idea leads to a fundamental infe-
rence principle for linear hypotheses:

The statistical significance of evidence
against H, is determined from the
relative increase in RSS when you
assume the null hypothesis is true as
compared to the RSS when you don't.

That is, significance depends on the ratio
{RSS(H,) - RSS(H,)}/RSS(H,) = SS /SS_
SS, = RSS(H,) - RSS(H,), SS_= RSS(H,)

When SS,/SS_ is "large enough”, H_ is sig-

nificantly worse than H, and is rejected.

10
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To decide on when SS /SS_is "large”, you
need its distribution when H_ is true.
In the case of normal €

F = (Ss,/f)/(SS /f) = (f /1)SS,/SS,
has an F, distribution.

You reject H, for

 large F, that is, F > F, (o)

or

e small X = 1/(1 + (f /T JF)"*, that is,

A <1700+ (F/1)F, (o)
or

A <1700+ (£ /1 )F (o)
The F-test is fairly robust against non-
normality so it can be use fairly safely

as long as the error distribution is not
too far from normal.

12
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LR theory says that, when H_ is true
-2log X\ = Nlog(1 + (f /f)F) = X ?,

where m = the number of linearly inde-
pendent linear combinations of elements
of b being tested. In this univariate

case, m = f .

You can improve this large sample result
by replacing N by a well chosen multi-

plier m(N) such that m(N)/N > 1 as N - oo,

The best such m(N) for this problem is
m(N) =m, =f +f/2-1.

That is the adjusted LR test statistic is
(f, + f,/2 - 11og(1 + (f/T)F) = X, *

You can use this to get approximate
critical values for F from critical values
for X* without need of F-tables or

inviF()
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To compute F you need to find residual
sums of squares RSS(H,) and RSS(H,).

MacAnova anova() and regress() allow
you to do this in a "black box” way.

Regression with k = 2 predictors:
Test H: B, = $, = 0.
L.=[0,1,0], ¢, =100,0,1], f =2
Example using data from Table 4.3 of

Draper and smith.

Cmd> y <- vector(10.98,11.13,12.51,8.4,9.27,8.73,6.36, \
8.5,7.82,9.14,8.24,12.19,11.88,9.57,10.94, \
9.58,10.09,8.11,6.83,8.88,7.68,8.47,8.86,10.36,11.08)

Cmd> x6 <- vector(20,20,23,20,21,22,11,23,21,20, \
20,21,21,19,23,20,22,22,11,23,20,21,20,20,22)

Cmd> x8 <- vector(35.3,29.7,30.8,58.8,61.4,71.3,74.4, \
76.7,70.7,57.5,46.4,28.9,28.1,39.1,46.8,48.5,59.3, \
70,70,74.5,72.1,58.1,44.6,33.4,28.6)

Cmd> regress("y=1") # null hypothesis model y = beta_0
Model used is y=1

Coef  StdErr t
CONSTANT 9424 0.32613 28.897

N: 25, MSE: 2.659, DF: 24, R"2: 0.00000
Regression F(0,24): undefined, Durbin-Watson: 1.1415
To see the ANOVA table type 'anova()’

Cmd> ss0 <- sum(RESIDUALS"2); ssO # RSS(H_0)
(1) 63.816

Cmd> SS#it's also the last element in SS, computed by regress()
CONSTANT ERROR1
22203 63.816

Cmd> ss0 <- reverse(SS)[1]; ssO#this works with any size model
(1) 63.816
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When f_is large, this gives a very usable
approximation for the F-distribution:

Fo= (/8 )(exp(X, */(f, + £/2 - 1)) - 1)
Here are numerical comparisons with

exact F-critical values with the appro-
ximate values assuming

(f,+ 1,72 - log(1 + (f,/1)F) is X,*

o =.05,f =30 | = .05, f_= 100
f F From X*|f ~F From X°
1 4171 4172 1 3936 3.936
2 3316 3316 2 3.087 3.087
3 2922 2920 3 269  2.695
4 2690 2685 4 2463 2462
5 2534 2527 5 2305 2305
10 2165 2140 10 1927 1.925
15 2015 1.967 15 1.768 1.764
20 1932 1.856 20 1.676  1.670
25 1878 1.773 25 1616  1.607

The approximation is better for larger f_
and smaller f .

14
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Cmd> regress("y=x6+x8") # alternative hypothesis model
Model used is y=x6+x8
Coef  StdErr t
CONSTANT 91269 1.1028 8.2761
X6 0.20282 0.045768 4.4314
x8 -0.072393 0.0079994 -9.0498

N: 25, MSE: 0.43767, DF: 22, R"2: 0.84912
Regression F(2,22): 61.904, Durbin-Watson: 2.1955
To see the ANOVA table type 'anova()’

Note: regress() , anova() , manova() and
other linear and generalized linear model
fitting commands create variables SS and
DF.

Cmd> SS # SS for an ANOVA
CONSTANT x6 x8 ERROR1
2220.3 18.342 35.845 9.6287

Cmd> DF # degrees of freedom for an ANOVA
CONSTANT x6 x8 ERROR1
1 1 1 22

Cmd> ssl <- sum(RESIDUALS"2); ss1 # RSS(H_1)
(1) 9.6287

Cmd> ss1 <- reverse(SS)[1]; ssl # alternate
(1) 9.6287

Cmd> n <- 25; th <- 2; fe <- reverse(DF)[1]

Cmd> fe
1) 22
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Cmd> ssh <- ss0 - ss1; ssh # hypothesis sum of squares
(1) 54.187

Cmd> sse <- ss1 # error sum of squares

Cmd> fstat <- (ssh/fh)/(sselfe); fstat # F-statistic
(1) 61.904

This F-statistic is the same as the
Regression F(2,22) printed by regress()

Regression F(2,22): 61.904
Use cumF() to find a P-value

Cmd> cumF(fstat,fh,fe,upper:T)# P-value (very small)
(1) 9.2265e-10 Very strong evidence against HO

Now a less standard null hgpothesis:
Test H: B, = B, that isH: §, - B, =

Re-parametrize with variables Z, & Z2
with coefficients 8, = 8 +8,, B, = B,-8,

so H, becomes §, = 0
Cmd> z1 <- (X6 + x8)/2
Cmd> z2 <- (x6 - x8)/2

Cmd> regress("y=z1") # restricted (Null) model
Model used is y=z1

Coef  StdErr t
CONSTANT  14.825 0.96266 154
z1 -0.1483 0.025775 -5.7537

N: 25, MSE: 1.1374, DF: 23, R"2: 0.59005
Regression F(1,23): 33.105, Durbin-Watson: 2.7833
To see the ANOVA table type 'anova()’

Cmd> ss0 <- reverse(SS)[1]; ssO # or sum(RESIDUALS"2): RSS(H_0)
(1) 26.161
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Multivariate Linear Models

Just as for univariate linear models,
multivariate linear models have the form

y = (predictable part) +
{unpredictable part}

where the predictable part depends
linearly on one or more parameters. The
unpredictable (random) part has O mean.
y and both the parts or p-dimensional
vectors.

As before, ther are three forms of
multivariate linear models (p > 1
response variables):

e Multivariate regression

e Multivariate analysis of variance
(MANOVA)

e Multivariate analysis of covariance
(MANACOVA).

In all three, the response being modeled
is a vector y.
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Now fit the full model.

Cmd> regress('y=z1 + z2",pval:T) # full model
Model used is y=z1 + z2

Coef  StdErr t P-Value
CONSTANT 91269 1.1028 8.2761 3.3456e-08
z1 0.13042 0.048086 2.7123 0.012723
z2 0.27521 0.044778 6.1461 3.471e-06

N: 25, MSE: 0.43767, DF: 22, R"2: 0.84912

Regression F(2,22): 61.904, P-value: < 1e-08, Durbin-Watson:
2.1955

To see the ANOVA table type 'anova()'

Cmd> ss1 <- revese(SS)[1]; ss1# = RSS(H_1) = sum(RESIDUALS"2)
(1) 9.6287 Note ssl is sane as for regress("y=x1+x2")

Cmd> ssh <- ss0 - ss1; sse <- ss1 # hypothesis SS

Cmd> th <- 1, fe <- reverse(DF)[1]; fe
1) 22

Cmd> fstat <- (ssh/fh)/(sse/fe); fstat # F-statistic
(1) 37.774

Cmd> cumF(fstat,fh,fe,upper:T) # compute P-value
(1) 3.471e-06 Strong evidence against HO

Note the P-value is the same as the P-
value for z2 in the regression output.
This is because the F-statistic is in fact
2-
t .Cmd> 6.1461"2

1) 37775
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Multivariate regression

Y ﬁo' * 2131‘ * 2252' e T Zkﬁk' +E
Y =[Y, .. Yland e with E[e] = O are
n by p matrices, each row corresonding
to a case
Each Z isnby 1,2 =1,
Each B =8, ., B,.... B, 1", ispby 1 so
B/ is 1 byp.

This is equivalent to p univariate

multiple regressions, each with the
same independent variables.

Y, =8, + Z1,BM+ ZBQ2+ .+ 2B,

= ZbQ * E BQO’BM’BM' BQk
Don’t confuse bQ, the vector of coeffi-
cients for variable 2 with 51, the vector
of coefficients of Z, one for each
response.

20



Statistics 5401 Lecture 16 October 12, 2005

Using matrices this is,
Y -ZB + €, nbyp
Z=12,2,..,2], nbyk+l
B=[8,.8,...8]. k+1byp
=[b, b, ..b] eachb k+1 by I

e B'isalbyprowofB,j=0,..Kk

« B, is the p-vector of coefficients of
predictor Z for all response variables.

e b, is a (k+1)-vector, column 2 of B

e b =18,8,.8,....8,1 are the coeffi-
cients for response variable Y,.

e A column b, of B has all coefficients
for a single response variable

e A row ,BJ.' of B has coefficients of one
predictor for all responses.

In all, there are (k+1)xp coefficients in B
and kp when you omit the intercepts 8

0
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