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Choosing a test in profile analysis

Friday | looked at 4 sets of contrasts of
variable means

CH o= (-, B-My - T
CDJJ‘ - [J‘lg_p’w J‘l3_p’1 """ }lp_}J]]‘
CCJJ‘ = [}11_“2, J‘l1+p’2_2p’3 """
Mol el =(p-T) T
Cd}‘l = [JJQ_}J‘]' J‘ls_}‘lw ""J‘lp_}‘lp_1]’
where C_u has all distinct differences
- 1> ]
For these C's (C, C,, C_, C,) and others,
M=, =...= p ifandonly if Cu =0
This means you can test
Hoe B, = M, = o = [
by Bonferronizing t-tests for the compo-
nents any of these sets of contrasts or

Indeed components of other sets of
contrasts as long as rank(C) = p-1.
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How do you choose C?

The question does not have a statistical
answer. The contrasts you use should be
tatlored to your particular research
goals so that you may answer specific
questions of interest to you (or your
client).

e When you are comparing p-1 treat-
ments with a control you might
Bonferronize the comparisons in C,

e When you are trying to identify a
change point you might Bonferronize
the comparisons in C_or C..

e When there is no structure of impor-
tance among the means, you may want

all paired differences as defined by C..

This is repeated measures multiple
comparisons.
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To obtain a powerful test (high

P(reject H, | H, false)), you may be able
to use prior or expert knowledge to
identify contrasts with large non-
centrality >c p/{y/c'Ec}. They are likely
to have large values of t. You would
include such a ¢ as a row of C.

For instance, when the treatments are
quantitative and you expect the profile
might be linear with constant p, -y =z O.
Then a contrast with equally spaced c/'s
Is likely to be appropriate because it
‘matches” the pattern expected.

Example: When p = 7, this would be
c=-1I[-3,-2,-1,0,1, 2, 3]
When you have little idea how H, might be

wrong and the data are highly correlated,
T? is probably best.
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MacAnova example using data in Table
6.2, p. 281 In the text.

Cmd> x <- read("™,"t06_02") # read JWData5.txt

TO6_02 19 4 format

) Data from Table 6.2 p. 281 in

) Applied Mulivariate Statistical Analysis, 5th Edition

) by Richard A. Johnson and Dean W. Wichern, Prentice Hall, 2002
) These data were edited from file T6-2.DAT on disk from book

) Sleeping-dog data A B
) Col. 1: Response for treatment 1 (High Co_2, pressure w/o H)

) Col. 2: Response for treatment 2 (Low Co_2, pressure w/o H)

) Col. 3: Response for treatment 3 (High Co_2, pressure with H)

) Col. 4: Response for treatment 4 (Low Co_2, pressure with H)
Read from file "TP1:Stat5401:Data:JWDatab.txt"

The experiment has to do with testing
the effect of the anesthetic halothane on
19 dogs. The treatments had a 2 by 2
factorial structure

e Factor A: High (A) and low (a) CO
pressure

2

e Factor B: Use (B) or non-use (b) of
halothane.

The p = 4 treatments were Ab, ab, AB, aB.
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You can often clarify output by adding
labels. Command setlabels() Is one way
to do this:

Cmd> setlabels(x,structure("@",vector("Ab", "ab", "AB", "aB")))

Cmd> x[run(3),] # rows 1 - 3 of data

Ab ab AB aB
1) 426 609 556 600
2) 253 236 392 395
(3) 359 433 349 357

"@" specifies numerical labels for rows.

structure("@", "Trt ") would have
created the less informative columns
labels Trtl . Trt2 , Trt3 and Trt4

Cmd> stats <- tabs(x,mean:T,covar:T)

Cmd> stats # three components

component: mean x-bar (column vector)
(1) 36821 40463 479.26 502.89

component; covar S_X

(1,1) 28193 35684 29435 22954

(2,1) 3568.4 7963.1 5304 4065.5

(3,1) 29435 5304 6851.3 4499.6

(4,1) 22954 40655 4499.6 4879
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Because of the factorial structure, the
following contrast matrix seems sensible

Cmd> ¢ <- matrix(vector(1,-1,1,-1, -1,-1,1,1, 1,-1,-1,1),4)'

Cmd> setlabels(c,structure(vector("A","B","AB"),\
getlabels(x,2)))

MacAnova: getlabels(x,2) retrieves the
column labels of x so setlabels() sets
row labels to vector("A","B","AB") and
makes column labels the same as x.

Cmd>c

Ab ab AB aB
A 1 -1 1 -1
B -1 -1 1 1
AB 1 -1 -1 1

e Row 1 compares A with a (main effect)
e Row 2 compares B with b (main effect)
e Row 3 is an AB interaction contrast.

Cmd> xbar <- stats$mean; xbar # sample mean vector
(1) 368.21 404.63 479.26 502.89

Cmd> s <- stats$covar # 4 by 4 sample variance matrix

Cmd> n <- nrows(x) # sample size
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Cmd> vhat <- s/n # Vhat[xbar] = estimated var matrix of x-bar
Cmd> cxbar <- ¢ %*% xbar; cxbar # = ybar = means of contrasts

1)
A -60.053 Estimate of A effect
B 209.32 Estimate of B effect
AB -12.789 Estimate of AB effect

Cmd> cvhatc <- ¢ %*% vhat %*% c'; cvhatc # Vhat[ybar]
A B AB

A 273.46 57.837 48.135
B 57.837 49643 48.821
AB 48.135 48.821 397.76
e vhat is VIX]
e cxbar is CX
e cvhatc is CVIXIC' = VICX]

Cmd> tsqg <- cxbar' %*% (cvhatc %\% cxbar); tsq
()
1) 116.02

tsq is T2 = (CX)'(CVIXIC')'(CX)

MacAnova: vhatc %\% cxbar
as solve(vhatc, cxbar)

Cmd> fe <- n - 1 # single sample error d.f.

Tests H 0: p y =Cp x =0

1s the same

Cmd> p <- ncols(x); q <- p - 1 # number of contrasts

Cmd> f <- (fe - g + 1)*tsq/(g*fe); f # f-stat for T2
(1,1) 34375

Cmd> 1 - cumF(f,q,fe-g+1) # P-value
(1,1) 3.3178e-07
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You can also compute T? directly from
the matrix x %*% c' of contrasts in the
data.

Cmd> hotellval(x %*% c")
(1,1 116.02

Conclusion: At least one of the contrasts
1S non-zero.

But which contrasts? That's where
Bonferronized t is useful.
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Cmd> stderrs <- sqgrt(diag(cvhatc)) # standard errors of ybars
Cmd> tstats <- vector(cxbar/stderrs) # univariate t-stats

Cmd> tstats # t-statistics
1) -3.6315 9.3945 -0.64127

Cmd> q <- length(tstats) # Bonferronizing factor

Cmd> teritval <- invstu(1 - .025/q, fe); tcritval
(1) 2.6391 Bonferronized 2-tail critical value

Cmd> g*twotailt(tstats,fe) #Bonferronized 2-tail p-values
@) 0.0057264  6.9446e-08 1.5883

Or you could compute the t-statistics
directly from x %*% c'

Cmd> tstats <- tval(x %*% c"); tstats
(1) -3.6315 9.3945 -0.64127

By identifying the significant contrasts,
you can conclude

e the A main effect is significant

e the B main effect is significant

e there is no evidence the AB interaction
contrast is non-zero.

Of course, any significant t implies that
Hp: M, = M, = 4, = H, 1s false

Since this follows a T?, the analysis in
terms of contrasts is sometimes called
post hoc analysis.
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Compare the Bonferronized t-critical
value with the "ellipsoidal” critical value
based on T?.

Cmd> tsqcritval <-

Cmd> vector(q, fe-q+1)
(@) 3 16

Cmd> vector(tcritval tsqcritval) # Bonferronized and ellipsoid

sgrt(fe*g*inviF(1-.05,q,fe-q+1)/(fe-q+1))

(1) 26391 3.3062
Cmd> tsqcritval/tcritval # ellipsoidal 25% larger than Bonf t
() 1.2528

Cmd> # Compute Bonferronized simultaneous confidence limits
Cmd> cxbar + tcritval*vector(-1,1)*stderrs

(1,1) 15051 268.12 Width = 117.6
(2,1) -103.7 -16.41 Width = 87.286
(31) -65.424 39.845 Width = 105.27

Cmd> # Compute Ellipsoidal limits

Cmd> cxbar + tsqcritval*vector(-1,1)*stderrs
(1,1) 13565 28298

(2,1) -11473 -5.3782

(3,1) -78.729 53.15

The "ellipsoidal” intervals based on the
critical value for T? are much (25.3%)
wider than Bonferronized Student’'s t
intervals.

Since the three contrasts are sensible in
view of the treatment structure and were
selected before 1ooking at the data, the
Bonferronized t-limits are entirely
appropriate.

Width = 147.33
Width = 109.35
Width = 131.88
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Randomized Block Analysis
An informal check that univariate RCB
ANOVA might be OK (equal o, equal p ):

Cmd> diag(s) # variances of the variables

(1) 28193 79631 6851.3 4879
Cmd> sqrt(diag(s))# standard deviations of the variables
(1) 53.097 89.236 82773 69.85

Cmd> cor(x) # correlation matrix

Ab ab AB aB
Ab 1 0.75312 0.66974 0.61889
ab 0.75312 1 0.71808 0.65223
AB 0.66974 0.71808 1 0.77826
aB 0.61889 0.65223 0.77826 1

The standard deviations are not very
different and neither are the correl-
ations, so two-way univariate ANOVA
may be OK. You need to restructure the
data to do this.

Cmd> x1 <- vector(x') # unravel x by rows
Cmd> treatment <- factor(rep(run(4),nrows(x)))#1,2,3,4,1,2,3,4...
Cmd> dogs <- factor(rep(run(n),rep(4,n)))#1,1,1,1,2,2,2,2...

Cmd> anova("x1 = dogs + treatment” fstat:T) # dogs are blocks
Model used is x1 = dogs + treatment

DF SS MS F  P-value
CONSTANT 1 1.463e+07 1.463e+07 7913.35657
dogs 1 3.0539e+05 16966 9.17702 < 1le-08
treatment 3 2.2602e+05 75340 40.75088 < 1e-08
ERROR1 54 99835 1848.8

< 1le-08

The F-test for treatment
the T? test.

s analogous to
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Compute contrasts in treatment means: [t would be probably be simpler just to
Cmd> cont <- contrast(treatment,vector(c{L,}) introduce factors for CO, and halothane.

Cmd> con2 <- contrast(treatment,vector(C[2,])) Cmd> co2 <- factor(1+(treatment == 1 || treatment == 3))

Cmd> con3 <- contrast(treatment,vector(c[3,])) Cmd> halo <- factor(1+(treatment == 3 || treatment == 4))

Cim'g>t<_:omtp'r|lames(con1) Cmd> head(hconcat(co2,halo), 8) # 2 dogs worth of co2 & halo
(2) estimate 1,0 2 1 Dog 1 hi Co2, no halothane
(3) S (2,1) 1 1 Dog 1 low Co2, no halothane
(3) "se 31) 2 2 Dog 1 hi Co2, with halothane
Cmd> vector(con1$estimate,con2$estimate,con3$estimate) 4,1 1 2 Dog 1 low Co2, with halothane
(1) -60.053 209.32 -12.789 (5,1) 2 1 Dog 2 hi Co2, no halothane
. . 6,1) 1 1 Dog 2 low Co2, no halothane
Cmd> cxbar' # repeat of previously computed contrast means (7,1) 2 2 Dog 2 hi Co2, with halothane
(1,1) -60.053 209.32 -12.789 Same values (8,1) 1 2 Dog 2 low Co2, with halothane
Cmd> vector(con1$se,con2$se,con3$se) # ANOVA standard errors Cmd> anova("x1 = dogs + co2 + halo + co2.halo" fstat:T)
(1) 19729 19729 19.729 Model used is x1 = dogs + co2 + halo + co2.halo
Cmd> stderrs # repeat of previously computed contrast Std errs DF SS MS F  P-value
(1) 16537 22281 19.944 CONSTANT 1 1.463e+07 1.463e+07 7913.35657 2.9806e-60
dogs 18 3.0539e+05 16966 9.17702 1.0083e-10
1 co2 1 17130 17130 9.26554 0.0036036
T he S t an d d rd errors are 1in t he Same b d l l halo 1 2.0811e+05 2.0811e+05 112.56684 8.0708e-15
p a rk D Ut not 'l de nt 'lC a 1 i E()RZR%gl 1 54 7769996835 7761.8928.80.42025 0.51956
Cmd> 3*twotailt(vector(con1[1],con2[1],con3[1])A Cmd> SS # computed by anova
vector(con1[3],con2[3],con3[3]),54) CONSTANT  dogs co2  halo co2.halo
(1) 0.010811 2.4212e-14  1.5587 ERROR1
. . . . . 1.463e+07 3.0539e+05 17130 2.0811e+05 776.96
Find Bonferronized confidence limits 99835
1 1 Q. Cmd> DF # computed by anova
based on Unlvarlate analgSIS' CONSTANT dogs co2 halo co2.halo
Cmd> conl$estimate + vector(-1,1)*invstu(1 - .025/3,54)*con1$se ER§OR1 18 1 1 1
(1) -108.8 -11.306 vs -103.7 -16.41 before 54
Cmd> con23$estimate + vector(-1,1)*invstu(1 - .025/3,54)*con2$se
(1) 160.57 258.06 vs 15051  268.12 before Cmd> MS <- SS/DF # mean squares
Cmd> con3$estimate + vector(-1,1)*invstu(l - .025/3,54)*con3$se Cmd> fsétats <r'] I\I/IS[run(23h5)¥/ MSI6]; fstats # F-statistics
(1) -61.536 35957 Vs -65.424 39.845 before 9 3%55 ﬁ‘z’ 57‘30 5 220025
The univariate limits are shorter in each Cmd> 3*eumF(stats, DFfrun(@ 5)) DFG]upper:T) # Bon. P-values

(1) 0010811 2.4212e-14  1.5587
case.
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Univariate Linear Models
There are at least three standard types
of univariate linear models.

They all model a dependent or response

variable y in the form

y = predictable part +
unpredictable part

October 10, 2005

where the predictable part is described
using parameters that enter linearly.

The "+" 1s important -- the unpredictable
part enters additively.

The unpredictable part may itself be the
sum of several independent pieces, say a
block effect and a plot effect.

15
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Notation: At least in today's examples
the predictable part is in (...) and the
unpredictable part in {...}

Examples

e y=(B, + B x*) + {e} There are 2 linear
parameters (8, and B,) and 1 nonlinear
one (f,), so this is not a linear model

e Multiple Linear Regression
gi - (Zio’Bo * Zi1’81 e ? ZikBk) * {Ei}
where E[e] = O & (usually) Z = 1
There are k + 1 linear parameters.
[ use Z B rather than B Z to make it
easlier to generalize the notation to a
multivariate dependent variable.

The Z's are predictor or independent
variables, usually quantitative (except
for Z.).
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e ANOVA (additive linear model)

October 10, 2005

One way ANOVA with g groups
Yy, = (B + o)+ (€}

1=1,...9,]=1,...n
Usually >, o =0

1<icg

The «'s are fixed group effects

Randomized blocks (two-way ANOVA)
y, = (u + o<i) + {Bj + gij}

Usually 2., = 0.

Always E[B] = Ele ] =0

The «'s are fixed group or treatment
effects.

The B's are random block effects.

17
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Split Plot with 1 whole plot factor
(A) and 1 subplot factor (N) with
whole plots arranged in RCB design
gijk = (}J + O<i + Bj + (Q{B)IJ) +
{Bk * E:ikW * g S}

ijk

The o 's are fixed main effects for the
whole plot factor,  « = O.

The $.'s are fixed main effects for the
subplot factor, ZJ.BJ. = 0.

The (xB)'s are fixed interaction
effects, 2 («f) = 2 (xB) =0

The B's are random block effects.

The €"s are random whole plot errors
within blocks

The €°s are random subplot errors
within whole plots

18
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More generally, in an ANOVA type model,
y may have multiple subscripts and the
model 1s of the form

Uy = B+ (T« T, +.) +{E + E + ..

where

e Each term T 1is a subscripted para-
meter such as o, §, 7, (xf),, or
(xf¥),,, usually satisfying restrictions
like 2 (xB), = 2 (xB), = 0.

e Each term E_ is a random effect such
as B, and €,,, a subscripted part of the

unpredictable part. They satisfy
E[E ] = 0, and are all independent of

one another.

19
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ANACOVA (analysis of covariance)
This combines ANOVA and regression.
One-way ANACOVA (or ANCOVA)

gij - ZijoBo * 211151 e ZijkBk v+ eij

Ele, ] = 0, usually Yot = 0,1 =1,...,
Except for Z ., covariates are the Z's
which are quantitative variables.

When Z, =1, for each group this is a

multiple regression with

e intercept B, + o« which may differ
among groups

e the same slopes §, ..., B, in each
group.

More generally, there can be other terms:
gijk... - (Bozijsz...o * ’81Zij$l..1 T # Bkzijsz..k *

T, +T,+ )+ {E + E + ..},
E[E]=0

m
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With k = 1 covariate Z, the model is
Uij:}"l-'-zijﬁ+O<i+€ij'JJ:‘Bo1‘B:‘B1
Here i1s a plot of data that might come

from a one way ANACOVA model when
the number of groups = g =4 and k = 1.

Data from 4 groups with same slope in each group, 1 covariate £
T T T T T T T T T=

5 .“.;&.e

- MO ap”
115 L -
1101 S g N

- e o
R oo .
- o}
¥ 105 =

100+

il e

- Parallel = constant distance apart
2 i 1 1 1 1 1 1 1 1
B 3 315 32 35 33 35 M4 3

The mean of the group i1 data for given Z
is J(Z) = p+ x + BZ, parallel lines.

The difference in means between groups

I, and 1, 1s & - « _and Is the same for any
2

value of Z.,
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The groups differ in the intercepts g + o

but not the slopes. More general models
allow the slopes to differ among groups.

Because the slopes do not differ, the
difference between mean responses for
two groups, at a specific value z of the
covariate does not depend on z:

p(2) - p(z) =

(U+ e+ B2z) - (Wr ot + BZ) =X - X
When slopes do differ between groups, no

single number which summarizes the
difference between two groups:

P(2)-p(2) = (W + ot + B2) - (U + ot + §2)
o - ot + (B - Bz

where B is the slope for group j.

This depends on z.
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