Displays for Statistics 5401/8401

Lecture 15

October 10, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page

http://www.stat.umn.edu/~kb/classes/5401
© 2005 by Christopher Bingham

Statistics 5401 Lecture 15 October 10, 2005

#### Choosing a test in profile analysis

Friday I looked at 4 sets of contrasts of variable means

$$\mathbf{C}_{a} \boldsymbol{\mu} = [\mu_{2} - \mu_{1}, \mu_{3} - \mu_{2}, ..., \mu_{n} - \mu_{n-1}]'$$

$$\mathbf{C}_{_{\mathrm{b}}}\boldsymbol{\mu} = [\mu_{2} - \mu_{1}, \mu_{3} - \mu_{1}, \dots, \mu_{_{\mathrm{D}}} - \mu_{1}]'$$

$$\mathbf{C}_{c} \boldsymbol{\mu} = [\mu_{1} - \mu_{2}, \mu_{1} + \mu_{2} - 2\mu_{3}, ..., \mu_{1} + \mu_{2} + ... + \mu_{p-1} - (p-1)\mu_{p}]'$$

$$\mathbf{C}_{d} \boldsymbol{\mu} = [\mu_{2} - \mu_{1}, \mu_{3} - \mu_{1}, ..., \mu_{p} - \mu_{p-1}],$$

where  $\mathbf{C}_{_{\mathbf{d}}}\mathbf{\mu}$  has all distinct differences  $\mu_{_{i}}$  -  $\mu_{_{i}}$  i > j

For these C's ( $C_a$ ,  $C_b$ ,  $C_c$ ,  $C_d$ ) and others,  $\mu_1 = \mu_2 = \dots = \mu_p$  if and only if  $C\mu = 0$ 

This means you can test

$$H_0: \mu_1 = \mu_2 = \dots = \mu_p$$

by <u>Bonferronizing t-tests</u> for the components any of these sets of contrasts or indeed components of other sets of contrasts as long as rank(C) = p-1.

How do you choose C?

The question does not have a <u>statistical</u> answer. The contrasts <u>you</u> use should be tailored to <u>your</u> particular research goals so that you may answer specific questions of interest to <u>you</u> (or your client).

- When you are comparing p-1 treatments with a <u>control</u> you might Bonferronize the comparisons in C<sub>h</sub>
- When you are trying to identify a change point you might Bonferronize the comparisons in C<sub>a</sub> or C<sub>c</sub>.
- When there is no structure of importance among the means, you may want all paired differences as defined by C<sub>d</sub>. This is repeated measures multiple comparisons.

To obtain a **powerful test** (high  $P(reject\ H_o\ |\ H_o\ false))$ , you may be able to use prior or expert knowledge to identify contrasts with large non-centrality  $\sum c_i \mu_i / \{\sqrt{c'\Sigma c}\}$ . They are likely to have large values of t. You would include such a **c** as a row of **C**.

For instance, when the treatments are quantitative and you expect the profile might be linear with constant  $\mu_{j+1} - \mu_j \neq 0$ . Then a contrast with <u>equally spaced</u>  $c_j$ 's is likely to be appropriate because it "matches" the pattern expected.

**Example:** When p = 7, this would be c = [-3, -2, -1, 0, 1, 2, 3]

When you have little idea how  $H_{\circ}$  might be wrong and the data are highly correlated,  $T^2$  is probably best.

## MacAnova example using data in Table 6.2, p. 281 in the text.

```
Cmd> x <- read("","t06_02") # read JWData5.txt
T06_02 19 4 format
) Data from Table 6.2 p. 281 in
) Applied Mulivariate Statistical Analysis, 5th Edition
) by Richard A. Johnson and Dean W. Wichern, Prentice Hall, 2002
) These data were edited from file T6-2.DAT on disk from book
) Sleeping-dog data

A

B
) Col. 1: Response for treatment 1 (High Co_2, pressure w/o H)
) Col. 2: Response for treatment 2 (Low Co_2, pressure w/o H)
) Col. 3: Response for treatment 3 (High Co_2, pressure with H)
) Col. 4: Response for treatment 4 (Low Co_2, pressure with H)
Read from file "TP1:Stat5401:Data:JWData5.txt"
```

The experiment has to do with testing the effect of the anesthetic halothane on 19 dogs. The treatments had a 2 by 2 factorial structure

- Factor A: High (A) and low (a) CO<sub>2</sub>
   pressure
- Factor B: Use (B) or non-use (b) of halothane.

The p = 4 treatments were Ab, ab, AB, aB.

You can often clarify output by adding labels. Command setlabels() is one way to do this:

Lecture 15

```
Cmd> setlabels(x,structure("@",vector("Ab", "ab", "AB", "aB")))
Cmd> x[run(3),] # rows 1 - 3 of data
             Ab
                          ab
                                                    аВ
            426
                         609
                                      556
(1)
                                                   600
(2)
            253
                         236
                                      392
                                                   395
(3)
            359
                         433
                                      349
                                                   357
```

"@" specifies numerical labels for rows.
structure("@", "Trt ") Would have
created the less informative columns

labels Trt 1. Trt 2, Trt 3 and Trt 4.

Cmd> stats <- tabs(x,mean:T,covar:T)</pre>

| Cmd> stats # th | ree components |              |         |
|-----------------|----------------|--------------|---------|
| component: mean | x              | -bar (column | vector) |
| (1) 368.21      | 404.63         | 479.26       | 502.89  |
| component: cova | r s            | _x           |         |
| (1,1) 2819      | .3 3568.4      | 2943.5       | 2295.4  |
| (2,1) 3568      | .4 7963.1      | 5304         | 4065.5  |
| (3,1) 2943      | .5 5304        | 6851.3       | 4499.6  |
| (4,1) 2295      | .4 4065.5      | 4499.6       | 4879    |

Because of the factorial structure, the following contrast matrix seems sensible

```
c < -matrix(vector(1,-1,1,-1,-1,1,1,1,1,-1,-1,1),4)'
Cmd> setlabels(c,structure(vector("A","B","AB"),\
       qetlabels(x,2)))
```

**MacAnova:** getlabels(x,2) retrieves the column labels of x so setlabels() sets row labels to vector("A", "B", "AB") and makes column labels the same as x.

- Row 1 compares A with a (main effect)
- Row 2 compares B with b (main effect)
- Row 3 is an AB interaction contrast.

```
Cmd> xbar <- stats$mean; xbar # sample mean vector
         368.21
                      404.63
                                  479.26
                                               502.89
(1)
Cmd> s <- stats$covar # 4 by 4 sample variance matrix
Cmd> n <- nrows(x) # sample size</pre>
```

```
Cmd> vhat <- s/n # Vhat[xbar] = estimated var matrix of x-bar
Cmd> cxbar <- c %*% xbar; cxbar # = ybar = means of contrasts
           (1)
Α
       -60.053
                     Estimate of A effect
        209.32
                     Estimate of B effect
В
       -12.789
                     Estimate of AB effect
AB
Cmd> cvhatc <- c %*% vhat %*% c'; cvhatc # Vhat[ybar]
             Α
                         В
                                    AB
        273.46
                    57.837
                                48.135
Α
        57.837
                    496.43
                                48.821
AB
        48.135
                    48.821
                                397.76
```

- vhat is  $\hat{V}[\overline{X}]$
- cxbar is  $C\overline{X}$
- cvhatc is  $C\hat{V}[\overline{X}]C' = \hat{V}[C\overline{X}]$

```
Cmd> tsq <- cxbar' %*% (cvhatc %\% cxbar); tsq
                 (1)
             116.02
                              Tests H<sub>0</sub>: \mu_{\mathbf{y}} = C\mu_{\mathbf{x}} = 0
(1)
```

• tsg is  $T^2 = (C\overline{X})'(CV[\overline{X}]C')^{-1}(C\overline{X})$ 

MacAnova: whatc %\% cxbar is the same as solve(vhatc, cxbar).

```
Cmd> fe <- n - 1 \# single sample error d.f.
Cmd> p \leftarrow ncols(x); q \leftarrow p - 1 \# number of contrasts
Cmd> f \leftarrow (fe - g + 1)*tsq/(g*fe); f # f-stat for T^2
            34.375
(1,1)
Cmd > 1 - cumF(f,q,fe-q+1) \# P-value
(1,1) 3.3178e-07
```

You can also compute  $T^2$  directly from the matrix  $x \ ** c'$  of contrasts in the data.

**Conclusion**: At least one of the contrasts is non-zero.

But which contrasts? That's where Bonferronized t is useful.

```
Cmd> stderrs <- sqrt(diag(cvhatc)) # standard errors of ybars Cmd> tstats <- vector(cxbar/stderrs) # univariate t-stats Cmd> tstats # t-statistics (1) -3.6315 9.3945 -0.64127 Cmd> q <- length(tstats) # Bonferronizing factor Cmd> tcritval <- invstu(1 - .025/q, fe); tcritval (1) 2.6391 Bonferronized 2-tail critical value Cmd> q*twotailt(tstats,fe) #Bonferronized 2-tail p-values (1) 0.0057264 6.9446e-08 1.5883
```

Or you could compute the t-statistics directly from  $x \ ** c'$ :

```
Cmd> tstats <- tval(x ** c'); tstats
(1) -3.6315 9.3945 -0.64127
```

By identifying the significant contrasts, you can conclude

- the A main effect is significant
- the B main effect is significant
- there is no evidence the AB interaction contrast is non-zero.

Of course, any significant t implies that

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$
 is false

Since this follows a T<sup>2</sup>, the analysis in terms of contrasts is sometimes called **post hoc** analysis.

Compare the Bonferronized t-critical value with the "ellipsoidal" critical value based on T<sup>2</sup>.

Statistics 5401

```
Cmd > tsqcritval < - sqrt(fe*q*invF(1-.05,q,fe-q+1)/(fe-q+1))
Cmd> vector(q, fe-q+1)
                         16
(1)
Cmd> vector(tcritval,tsqcritval) # Bonferronized and ellipsoid
         2.6391
                     3.3062
Cmd> tsqcritval/tcritval # ellipsoidal 25% larger than Bonf t
Cmd> # Compute Bonferronized simultaneous confidence limits
Cmd> cxbar + tcritval*vector(-1,1)'*stderrs
(1,1)
          150.51
                       268.12
                                   Width = 117.6
           -103.7
                       -16.41
(2,1)
                                   Width = 87.286
(3,1)
          -65.424
                       39.845
                                   Width = 105.27
Cmd> # Compute Ellipsoidal limits
Cmd> cxbar + tsqcritval*vector(-1,1)'*stderrs
          135.65
                       282.98
                                   Width = 147.33
(1,1)
(2,1)
          -114.73
                      -5.3782
                                   Width = 109.35
(3,1)
          -78.729
                        53.15
                                   Width = 131.88
```

The "ellipsoidal" intervals based on the critical value for T<sup>2</sup> are much (25.3%) wider than Bonferronized Student's t intervals.

Since the three contrasts are sensible in view of the treatment structure and were selected before looking at the data, the Bonferronized t-limits are entirely appropriate.

### Randomized Block Analysis

An informal check that univariate RCB ANOVA might be OK (equal  $\sigma_{ii}$ , equal  $\rho_{ii}$ ):

```
Cmd> diag(s) # variances of the variables
         2819.3
                      7963.1
                                  6851.3
                                                 4879
(1)
Cmd> sqrt(diag(s))# standard deviations of the variables
                     89.236
Cmd> cor(x) # correlation matrix
            Ab
                                     AB
                   0.75312
                                0.66974
Ab
             1
                                             0.61889
ab
       0.75312
                                0.71808
                                             0.65223
                   0.71808
AB
       0.66974
                                             0.77826
       0.61889
                   0.65223
                                0.77826
```

The standard deviations are not very different and neither are the correlations, so two-way <u>univariate</u> ANOVA may be OK. You need to restructure the data to do this.

```
Cmd> x1 \leftarrow vector(x') \# unravel x by rows
Cmd> treatment <- factor(rep(run(4), nrows(x)))#1,2,3,4,1,2,3,4...
Cmd> dogs < -factor(rep(run(n), rep(4,n))) #1,1,1,1,2,2,2,2...
Cmd> anova("x1 = dogs + treatment",fstat:T) # dogs are blocks
Model used is x1 = dogs + treatment
                                                            P-value
              DF
                                        MS
                                1.463e+07
                                                            < 1e-08
CONSTANT
                   1.463e+07
                                            7913.35657
                  3.0539e+05
doas
                                     16966
                                               9.17702
                                                            < 1e-08
               3
                  2.2602e+05
                                              40.75088
treatment
                                     75340
                                                            < 1e-08
ERROR1
              54
                        99835
                                    1848.8
```

The F-test for treatment is analogous to the  $T^2$  test.

#### Compute contrasts in treatment means:

October 10, 2005

```
Cmd> con1 <- contrast(treatment, vector(c[1,]))</pre>
Cmd> con2 <- contrast(treatment, vector(c[2,1))
Cmd> con3 <- contrast(treatment,vector(c[3,]))</pre>
Cmd> compnames(con1)
(1) "estimate"
(2) "ss"
(3) "se"
Cmd> vector(con1$estimate,con2$estimate,con3$estimate)
        -60.053
                      209.32
Cmd> cxbar' # repeat of previously computed contrast means
(1,1)
          -60.053
                        209.32
                                   -12.789
                                               Same values
Cmd> vector(con1$se,con2$se,con3$se) # ANOVA standard errors
         19.729
                     19.729
                                  19.729
Cmd> stderrs # repeat of previously computed contrast Std errs
                      22.281
                                  19.944
         16.537
```

### The standard errors are in the same ball park but not identical.

# Find Bonferronized confidence limits based on univariate analysis:

```
Cmd > con1$estimate + vector(-1,1)*invstu(1 - .025/3,54)*con1$se
        -108.8
                   -11.306
                                                  -16.41 before
                               vs -103.7
Cmd > con2\$estimate + vector(-1,1)*invstu(1 - .025/3,54)*con2\$se
(1)
        160.57
                     258.06
                                  150.51
                                                  268.12 before
Cmd > con3$estimate + vector(-1,1)*invstu(1 - .025/3,54)*con3$se
       -61.536
                     35.957
                               vs -65.424
                                                  39.845 before
```

### The univariate limits are <u>shorter</u> in each case.

# It would be probably be simpler just to introduce factors for CO<sub>2</sub> and halothane.

```
Cmd> co2 <- factor(1+(treatment == 1 || treatment == 3))</pre>
Cmd> halo <- factor(1+(treatment == 3 | treatment == 4))</pre>
Cmd> head(hconcat(co2,halo), 8) # 2 dogs worth of co2 & halo
(1,1)
                            1 Dog 1 hi Co2, no halothane
(2,1)
                                Dog 1 low Co2, no halothane
(3,1)
                                Dog 1 hi Co2, with halothane
(4,1)
                                Dog 1 low Co2, with halothane
(5,1)
                                Dog 2 hi Co2, no halothane
                                Dog 2 low Co2, no halothane
(6,1)
(7,1)
                                Dog 2 hi Co2, with halothane
                                Dog 2 low Co2, with halothane
(8,1)
Cmd > anova("x1 = dogs + co2 + halo + co2.halo", fstat:T)
Model used is x1 = dogs + co2 + halo + co2.halo
                                                          P-value
                   1.463e+07
CONSTANT
                               1.463e+07
                                          7913.35657
                                                       2.9806e-60
                  3.0539e+05
dogs
                                   16966
                                              9.17702
                                                       1.0083e-10
co2
               1
                       17130
                                   17130
                                              9.26554
                                                        0.0036036
                  2.0811e+05
                              2.0811e+05
                                                       8.0708e-15
halo
                                           112.56684
co2.halo
               1
                      776.96
                                  776.96
                                              0.42025
                                                          0.51956
              54
                       99835
                                  1848.8
ERROR1
Cmd> SS # computed by anova
                                             halo
                                                     co2.halo
    CONSTANT
                                 co2
      ERROR1
   1.463e+07 3.0539e+05
                               17130 2.0811e+05
                                                       776.96
       99835
Cmd> DF # computed by anova
                                            halo
                                                     co2.halo
    CONSTANT
                    dogs
                                 co2
      ERROR1
           1
                      18
                                   1
                                               1
                                                            1
          54
Cmd> MS <- SS/DF # mean squares
Cmd> fstats <- MS[run(3,5)]/MS[6]; fstats # F-statistics</pre>
                    halo
                            co2.halo
         co2
      9.2655
                  112.57
                             0.42025
```

Cmd> 3\*cumF(fstats,DF[run(3,5)],DF[6],upper:T) # Bonf. P-values

0.010811 2.4212e-14

#### Univariate Linear Models

There are at least three standard types of univariate linear models.

They all model a dependent or *response* variable y in the form

y = predictable part + unpredictable part

where the <u>predictable part</u> is described using parameters that enter *linearly*.

The "+" is important -- the unpredictable part enters additively.

The unpredictable part may itself be the sum of several independent pieces, say a block effect and a plot effect.

**Notation**: At least in today's examples the predictable part is in (...) and the unpredictable part in {...}

Lecture 15

#### Examples

- $y = (\beta_1 + \beta_2 x^{\beta_3}) + \{\epsilon\}$  There are 2 linear parameters  $(\beta_1 \text{ and } \beta_2)$  and 1 nonlinear one  $(\beta_3)$ , so this is <u>not</u> a linear model
- Multiple Linear Regression

$$y_i = (Z_{i0}\beta_0 + Z_{i1}\beta_1 + ... + Z_{ik}\beta_k) + \{\epsilon_i\}$$
  
where  $E[\epsilon_i] = 0$  & (usually)  $Z_{i0} \equiv 1$   
There are k + 1 linear parameters.

I use  $Z_{ij}\beta_j$  rather than  $\beta_j Z_{ij}$  to make it easier to generalize the notation to a multivariate dependent variable.

The Z's are <u>predictor</u> or <u>independent</u> variables, usually quantitative (except for  $Z_{in}$ ).

ANOVA (<u>additive</u> linear model)

### One way ANOVA with g groups

$$y_{ij} = (\mu + \alpha_i) + \{\epsilon_{ij}\}$$
  
 $i = 1,...,n_i$ 

Usually  $\sum_{1 < i < q} \alpha_i = 0$ 

The alpha's are fixed group effects

Randomized blocks (two-way ANOVA)

$$y_{ij} = (\mu + \alpha_i) + \{B_j + \epsilon_{ij}\}$$

Usually  $\sum_{1 < i < q} \alpha_i = 0$ .

Always  $E[B_j] = E[\epsilon_{ij}] = 0$ 

The B's are random block effects.

# Split Plot with 1 whole plot factor (A) and 1 subplot factor (N) with whole plots arranged in RCB design

$$y_{ijk} = (\mu + \alpha_i + \beta_j + (\alpha \beta)_{ij}) + \{B_k + \epsilon_{ik}^w + \epsilon_{ijk}^s\}$$

The  $\alpha_i$ 's are **fixed** main effects for the whole plot factor,  $\sum_i \alpha_i = 0$ .

The  $\beta_i$ 's are **fixed** main effects for the subplot factor,  $\sum_i \beta_i = 0$ .

The  $(\alpha\beta)$ 's are **fixed** interaction effects,  $\sum_{i} (\alpha\beta)_{ij} = \sum_{i} (\alpha\beta)_{ij} = 0$ 

The B's are random block effects.

The  $\varepsilon^w$ s are **random** whole plot errors within blocks

The  $\epsilon^s$ s are **random** subplot errors within whole plots

More generally, in an ANOVA type model, y may have *multiple* subscripts and the model is of the form

$$y_{ijk...} = \mu + (T_1 + T_2 + ...) + \{E_1 + E_2 + ...\}$$

#### where

Statistics 5401

- Each term  $T_k$  is a subscripted parameter such as  $\alpha_i$ ,  $\beta_j$ ,  $\delta_k$ ,  $(\alpha\beta)_{ij}$ , or  $(\alpha\beta\delta)_{ijk}$ , usually satisfying restrictions like  $\sum_i (\alpha\beta)_{ijk} = \sum_i (\alpha\beta)_{ijk} = 0$ .
- Each term  $E_{\rm m}$  is a random effect such as  $B_{\rm l}$  and  $\epsilon_{\rm ij\, l}$ , a subscripted part of the *unpredictable* part. They satisfy  $E[E_{\rm m}]$  = 0, and are all independent of one another.

### ANACOVA (analysis of covariance)

Lecture 15

October 10, 2005

This combines ANOVA and regression.

One-way ANACOVA (or ANCOVA)

$$y_{ij} = Z_{ij0}\beta_0 + Z_{ij1}\beta_1 + ... + Z_{ijk}\beta_k + \alpha_i + \epsilon_{ij}$$
  
 $E[\epsilon_{ij}] = 0$ , usually  $\sum_i \alpha_i = 0$ ,  $i = 1,...,g$ 

Except for  $Z_{ij0}$ , covariates are the Z's which are quantitative variables.

When  $Z_{ij0} \equiv 1$ , for each group this is a multiple regression with

- intercept  $\beta_0 + \alpha_i$  which may differ among groups
- the <u>same</u> slopes  $\beta_1, ..., \beta_k$  in each group.

More generally, there can be other terms:

$$y_{ijk...} = (\beta_0 Z_{ijl...0} + \beta_1 Z_{ijl..1} + ... + \beta_k Z_{ijl..k} + T_1 + T_2 + ...) + \{E_1 + E_2 + ...\},E[E_m] = 0$$

With k = 1 covariate Z, the model is  $y_{ij} = \mu + Z_{ij}\beta + \alpha_i + \epsilon_{ij}$ ,  $\mu = \beta_0$ ,  $\beta = \beta_1$  Here is a plot of data that might come from a one way ANACOVA model when the number of groups = g = 4 and k = 1.



The mean of the group i data for given Z is  $\mu_i(Z) = \mu + \alpha_i + \beta Z_1$ , parallel lines.

The difference in means between groups  $i_1$  and  $i_2$  is  $\alpha_{i_1}$  -  $\alpha_{i_2}$  and is the same for any value of  $Z_1$ ,

The groups differ in the intercepts  $\mu + \alpha_i$  but not the slopes. More general models allow the slopes to differ among groups.

Because the slopes do not differ, the difference between mean responses for two groups, at a specific value z of the covariate does not depend on z:

$$\mu_{i}(z) - \mu_{j}(z) =$$

$$(\mu + \alpha_{i} + \beta z) - (\mu + \alpha_{j} + \beta z) = \alpha_{i} - \alpha_{j}$$

When slopes do differ between groups, no single number which summarizes the difference between two groups:

$$\mu_{i}(z) - \mu_{j}(z) = (\mu + \alpha_{i} + \beta_{i}z) - (\mu + \alpha_{j} + \beta_{j}z)$$
$$= \alpha_{i} - \alpha_{j} + (\beta_{i} - \beta_{j})z$$

where  $\beta_j$  is the slope for group j.

This depends on z.