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A data vector x can be depicted by a
‘profile” -- a plot of x, against j.

Profile of ohservation 2= vector(16.3,17,17.9,16. 2,171, 16.1)

Proi’ile of d:’:lta vector
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And you can plot J, vs j to obtain a
population mean profile plot of M.

Profile aof mean p=vector{l? 5.17.25,17,16. 75,16.5,16. 25}
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Single sample profile (repeated
measures) analysis

Suppose you have a random sample
X, ..., X from a p-variable multivariate

distribution with
* unknown mean vector p = [J, J,,.... 14T

e observations x = [x .X,,....x ] that are
repeated measures data. That is,
variables x,, ... ,x are comparable.

Each x, represents a measurement on
e the same quantity in the same units,
for example, blood pressure

e under differing conditions or at
differing times.

We often call the different times or
conditions treatments.

When there are p variables, there are p
treatments being compared.
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When l, = J, = ... = J, the profile is flat.
Colnstant proﬁlle: Ko=R == M

Profile of mean vector
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Profile when all treatments
16k have the same effect
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This simple pattern in the profile graph-
ically represents the null hypothesis

Hot B = J, = o= g
of no treatment differences.
When treatments are quantitative, the
population profile may be viewed as a
dosage response curve.

When the profile is a straight line, the
response is linear in the dose.
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Usually one goal in repeated measures
analysisis to compare the treatment
means M.

This investigates the shape of the
profile of M, that is, the pattern of
differences p, - y,. The shape isn't
changed by adding a constant to each
mean.

You can label a data matrix like this.

Trt 1 Trt 2 Trt 3 Trtp
Case 1 | X, X, Xis oo Xy
Case 2 ) X,, X, X,,
Case 3 | X, X, X X,
Case 4 | Xx,, X,, S
Casen | X X, Xis - oo Xy

This is reminiscent of a table of data
from a randomized block experiment.
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In a randomized block situation with n
replicates of p treatments, you have nxp
experimental units (EUs).

e EUs are grouped in n homogeneous

blocks (replicates), each with p "plots”

e Treatments assigned randomly to the p
EUs in each block

After randomizing, a field experiment
with p = 4 and n = 6 might 1ook like

Block1 | Treatment 4 Treatment2 Treatment1 Treatment 3
Block2 | Treatment 4 Treatment 2 Treatment3 Treatment 1
Block 3 | Treatment 1 Treatment 2 Treatment 4 Treatment 3
Block4 | Treatment 2 Treatment 1 Treatment3 Treatment 4

Block 5 | Treatment 4 Treatment 1 Treatment2 Treatment 3

Block 6 | Treatment 4 Treatment 1 Treatment3 Treatment 2

Every block (row of table) contains a
complete set of p treatments, in random
order.
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Analogy with RCBD

The single sample profile analysis
situation appears to be quite similar to a
univariate randomized complete block
(RCB) situation with n blocks, but when
p > 2, the analysis is different.

October 7, 2005

e Each repeated measures individual or
case corresponds to a RCB "block”.

e Each response variable for a case
corresponds to a “plot” in a block
“treated” with the distinguishing
feature of that measurement.
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Examples of blocks

e Time periods (day, week), with the
treatments in random order within the
time period

e Batches of flour split into smaller
quantities used to make a loaf of bread
with varying amounts of an ingredient.
The amounts are randomly assigned to
the loaves (plots) from the same batch
of flour (block).

e Compact regions of a field or green-
house bench with treatments assigned
randomly to different positions (plots)
in the field or on the bench.

e Subjects getting various treatments
in random order (plot = time of treat-
ment)

How does repeated measures differ from
a RCB?

In repeated measures analysis, the
“treatment” levels are not randomized.
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From the multivariate point of view, in a
RCB you can view the data as repeated
measurements on a block, with each
block a “case”.

But randomization and constant o® (not
affected by the treatments) imply that £
for the p observations in a block has a
very special structure, namely
o? po? po?.. po?
pc? o* po?.. po?
> - |po?po? o pc? |, p>-1/(p-1)
p'52 p-c'j'2 p.c.j'2 . o
o All variances ¢, = ¢” are the same
 All covariances 6, = pc’, i z j,are the
same
e This means that all correlations p,; =

p, 1z j, are the same, too.

In multivariate repeated measures, you
don’t have the randomization and £ does
not usually have this simple structure.
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E can have other special forms besides
intraclass structure.

For example, when X, X,, ..., X are obser-
vations at times t, <t, <.. <t cor-
relations might be p, = plutl - For equal-
ly spaced times t = j, £ would look like

1op pt Pt P
p 1 p p*...p7
s-o’|pPp 1 p ...p7

This is a first order autoregression
(AR(1)) structure.
Analysis that takes this structure into

account will be better than one that does
not.

This is a type of analysis you can use
SAS Proc Mixed for.
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A ¥ of this form (equal diagonal values
and equal off-diagonals) is said to have
intraclass structure.

Even without randomization, when £ has
intraclass structure, a two-way univar-
late ANOVA is a correct way to analyze
the data.

When £ does have this special structure,
univariate ANOVA will be better than a
multivariate analysis because

e tests will have agreater power
e confidence intervals will be shorter.
e [t works whenn <p

When £ does not have this structure, uni-
variate ANOVA is not appropriate.

However, adjustments to degrees of
freedom due to Greenhouse and Geisser
can sometimes be made to make ANOVA
"work”.
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Profile analysis questions of interest

These are much the same as for ran-
domized block analysis.

e Test the null hypothesis of no treat-
ment effects

HO: M= H, = ... = }Jp.
e Multiple comparisons: test all
hypotheses of the form H ,: 1, = H,,
J =K
e Find simultaneous confidence limits
for all J, - M, ] 2K

12
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The model in the RCB situation is often
written as

Xy = M+ + B + g
That is
Xy = W+ B+ g with gy = i+ o

i

MU=+, 1=1,.,p

e The {«} are fixed treatment effects,
usually with 2. o = 0. This implies
o= 1= (1/p), K, SO that o =, - p.

e The {Bj} are fixed block effects with
2,8, = 0 or random block effects
with E(B) = O

» The {g, } are independent N(0,o°)
(constant variance)

The repeated measures model is
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There are lots of ways to state the
hypothesis of no treatment effects:

H,: all J.'s equal

A. All pairs of successive means are the
same, that is

Hp: M-, =0, u-u =0, .., Hp=Hpoq = 0

This has p-1 “"components”, none of
which may be omitted. The first
H-H._, =z 0 marks a change point.

B. All means are the same as ., that is
Hopt Mp=Hy = 0, Ji-gt, = 0,y -4y = 0

These are p-1 essential components
and, when p > 2, they differ from those
defining H..

You might be interested in these when
treatment 1 is a “control” or a base-
line level, and you are comparing all
other treatments with it.
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If >.cM, 1s a contrast among the means J.
(3c.= 0), then

Zicip’i - Zicidi
the same contrast among the effects.
Example: ¢, =1,c,=-1,¢c,=..=¢ =0,
2CH = My - g, = (re) - (Hret) = ot - o,
[ will usually state hypotheses about

comparisons of treatments in terms of
{.}, but they can also be stated in terms

of {«}. For example, with the convention
that 3 « =0,
Hot My = H, = oo = 1)

s equivalent to the hypothesis of no
treatment effects, that is, to

Hyp ot =, = .= X = 0
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C. J, = average of u, W, ..., 4, fork =

2,3, ...,p
HOC: H, = My =
My - (o 1,)/2 =

Oc
HOc: J“ll_}'l2:0'
}11+}12—2}13 :O,
TR TR TR ST
Mol s fog = (p=1)p, = 0

These are contrast with integer
weights.

H... too, has p-1 essential components.

These, too, might be of interest when
looking for a change point.
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D. Every pair of ['s are equal
Hot M, = Wy, all iz ]
Unlike H_,, H,, and H , H_ , is symmetric
in the J's.

ob’

H,, has p(p-1)/2 distinct components,
most of which are redundant.

For example, for p > 3, y, = W, and
M, = J, together imply J, = H..

However, you need at least p-1 of them
to fully specify the null hypothesis
that all treatment means are the same.

Note: All these hypotheses are state-
ments about the true means, not con-
clusions from statistical analysis.

When p = pand p, = u, then yu, =
must be true by mathematics.

But it can happen that X, - X, and X, - X,
are not significantly different from O,
but X, - X, Iis.
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For H,. C=C, is p-1 x p:
-1 1 0 O 0
o -1 1 0. 0
C, = 0 0 -1 1 0
0 0 0 0 S
For H,. C=C, is p-1 xp
-1 1 0 0 . 0
-1 0 1 0. 0
C,=|-1 0 0 1. 0
10 0 0 0 1
For H,. C=C_is p-1 x
1-1 0 0. 0
T 1 -2 0. 0
C=|11 1-3. 0
R 1 ~(p-1)
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You can express all these various refor-
mulations of H_, each of which specifies
M contrasts, as

HO: Cu=0
for a matrix M by p C, satisfying C1_= 0,
that is, each row sums to O.

Zici
[C, C,--.C,] O
Cuv Cyp--- Cyd O
Each row of C defines a linear contrast
in W, ..., 4, which defines one "compo-

nent” of the hypothesis.
For H_, H,, and H, M = p-T.
For H,. M = p(p-1)/2.
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Each C satisfies C1 = 0, that is the sum
of each row of C is 0. That is, each row
of C defines a contrast.

C,. C, and C,

e have p-1 rows

e are of full rank, that is of rank p-1.

This is another way of saying all com-
ponents are essential.

For H,. C = C, is p(p-1)/2 by p:
-1 1 0 0 . 00 ]
-1 0 1 0 . 0 0
-1 0 0 1 . 0 0
C,=|-1 000 . . 01
o-1 1 0 . . 0O
0 -1 0 1 0 0
0000 . .-11 |

C, is not of full rank (unless p = 2) but
has rank p-1 < p(p-1)/2.
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Suppose now that C is a full rank p-1xp

matrix with C1_= 0 so that Cp = 0 if and

only if J =, = ...= J.
Then y = Cx is a vector of g = p-1 con-

trasts in x,, ..., x. That is
o () Y, = X,=X,u Uy = Xg=Xy e Yo = XX
o (D) Y, = X=X, U, = X=X, ooy Y= X=X
o (C) Y, = X=X, Y, = X +X,-2X,

U, = X,#X, bt X - (p—1)xp
Then
e M, =Elyl=Cp, (Mby 1)
e £ :=CEC (M by M).

e H:CH =0 can be restated as
H,: W, = 0, which you can test with
Hotelling's T?

T2 =g (VIgD'y = (CX)'(n'CS.C)(CX).
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Q. How do you choose C?
A. For T? it doesn’'t matter.

Fact
For any two full rank p-1 x p contrast

matrices C, and C,, defining

y = Cxandy, =Cx
Then, always T.* = T.°
where

T2 = 4, '(VIy, D'y,

and R
T, = Y, (VIy,D'y,
o Therefore T does not depend on C

e The various Ttests of
Hyt M, = M, = ... = I based on
contrasts Yy = Cx are identical.
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Under H  and assuming normality, since f_
=n -1 and the dimension q = p-1,

TS ={(f.@)/(f, - q+ DIF =

q.fe=q1
{(n-1)(p-1)/(n-p+1)}F .,

(TS = X7 in large samples)
Note: If you analyze the data using two-
way ANOVA as if it were a RCB, the F
test has degrees of freedom

f = hypothesis DF = DF _ = p - 1

f = error DF = DF__ = (n-1)(p-1) = f..
In repeated measures analysis, you use an
F critical value with
e the same numerator degrees of

freedom q = p - 1
e different denominator degrees of

freedom f_ - q+ 1, where f_=n -1
o {(n-p+1)/((n-1)(p-1))1T* = ANOVA-F.
Conclusion: the test based on T? is dif-
ferent from the test based on ANOVA F.

error
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You can also Bonferronize each of the g
= p-1 t-tests of the components of M .

This does depend on the choice of C,
since different C's define different sets
of contrasts.

For H . C, is not full rank and you can't
compute T? the same way.

However, it makes good sense to Bonfer-
ronize t-tests

ty = U/ VIVIG = (G-x))//({s,-2s,+s )/n}

for the M = p(p-1)/2 contrasts specified
by the rows of C,. Divide the signifi-

cance level « by M or multiply the P-
value by M.

Each t, is is effectively a paired t based
on differences d, = x, - X..
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