Displays for Statistics 5401/8401

Lecture 14

October 7, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page

http://www.stat.umn.edu/~kb/classes/5401

© 2005 by Christopher Bingham

Statistics 5401 Lecture 14 October 7, 2005

A data vector **x** can be depicted by a "profile" -- a plot of x, against j.

Profile of observation **x** = vector(16.3,17,17.9,16.2,17.1,16.1)

And you can plot μ_j vs j to obtain a population mean profile plot of μ .

Single sample profile (repeated measures) analysis

Suppose you have a random sample $\mathbf{x}_1, ..., \mathbf{x}_n$ from a p-variable multivariate distribution with

- unknown mean vector $\mu = [\mu_1, \mu_2, ..., \mu_p]'$
- observations $\mathbf{x} = [x_1, x_2, ..., x_p]'$ that are repeated measures data. That is, variables $x_1, ..., x_n$ are comparable.

Each x, represents a measurement on

- the same quantity in the same units, for example, <u>blood pressure</u>
- under <u>differing conditions</u> or at differing times.

We often call the different times or conditions *treatments*.

When there are p variables, there are p treatments being compared.

Statistics 5401 Lecture 14 October 7, 2005

When $\mu_1 = \mu_2 = \dots = \mu_p$, the profile is <u>flat</u>.

This <u>simple pattern</u> in the profile <u>graph-ically represents</u> the <u>null hypothesis</u>

$$H_0: \mu_1 = \mu_2 = \dots = \mu_p$$

of no treatment differences.

When treatments are *quantitative*, the population profile may be viewed as a dosage response curve.

When the profile is a straight line, the response is linear in the dose.

Statistics 5401

Usually one goal in repeated measures analysis is to compare the treatment means μ_i .

Lecture 14

This investigates the shape of the profile of μ , that is, the pattern of differences $\mu_i - \mu_i$. The shape isn't changed by adding a constant to each mean.

You can label a data matrix like this.

	Trt 1	Trt 2	Trt 3	 Trt p
Case 1	X ₁₁	X_{12}	X ₁₃	 X _{1p}
Case 2	X ₂₁	X ₂₂	X ₂₃	 X _{2p}
Case 3	X ₃₁	X ₃₂	X ₃₃	 X _{3p}
Case 4	X ₄₁	X ₄₂	X ₄₃	 X _{4p}
Case n	X _{n1}	X_{n2}	X _{n3}	 X _{np}

This is reminiscent of a table of data from a randomized block experiment.

Statistics 5401 Lecture 14 October 7, 2005

In a randomized block situation with n replicates of p treatments, you have nxp experimental units (EUs).

- EUs are grouped in n homogeneous blocks (replicates), each with p "plots"
- Treatments <u>assigned randomly</u> to the p EUs in each block

After randomizing, a field experiment with p = 4 and n = 6 might look like

Block 1	Treatment 4	Treatment 2	Treatment 1	Treatment 3
Block 2	Treatment 4	Treatment 2	Treatment 3	Treatment 1
Block 3	Treatment 1	Treatment 2	Treatment 4	Treatment 3
Block 4	Treatment 2	Treatment 1	Treatment 3	Treatment 4
Block 5	Treatment 4	Treatment 1	Treatment 2	Treatment 3
Block 6	Treatment 4	Treatment 1	Treatment 3	Treatment 2

Every block (row of table) contains a complete set of p treatments, in random order.

Analogy with RCBD

Lecture 14

The single sample profile analysis situation appears to be quite similar to a univariate randomized complete block (RCB) situation with n blocks, but when p > 2, the analysis is different.

- Each repeated measures individual or case corresponds to a RCB "block".
- Each response <u>variable</u> for a case corresponds to a "plot" in a block "treated" with the distinguishing feature of that measurement.

Statistics 5401 Lecture 14 October 7, 2005

Examples of blocks

- Time periods (day, week), with the treatments in random order within the time period
- Batches of flour split into smaller quantities used to make a loaf of bread with varying amounts of an ingredient. The amounts are randomly assigned to the loaves (plots) from the same batch of flour (block).
- Compact regions of a field or greenhouse bench with treatments assigned randomly to different positions (plots) in the field or on the bench.
- <u>Subjects</u> getting various treatments in random order (plot = time of treatment)

How does repeated measures differ from a RCB?

In repeated measures analysis, the "treatment" levels are not randomized.

Statistics 5401

Statistics 5401

From the multivariate point of view, in a RCB you can view the data as repeated measurements on a block, with each block a "case".

But randomization and constant σ^2 (not affected by the treatments) imply that Σ for the p observations in a block has a very special structure, namely

$$\Sigma = \begin{bmatrix} \sigma^2 & \rho \sigma^2 & \rho \sigma^2 & \dots & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 & \rho \sigma^2 & \dots & \rho \sigma^2 \\ \rho \sigma^2 & \rho \sigma^2 & \sigma^2 & \dots & \rho \sigma^2 \\ \rho \sigma^2 & \rho \sigma^2 & \sigma^2 & \dots & \rho \sigma^2 \\ \dots & \dots & \dots & \dots \\ \rho \sigma^2 & \rho \sigma^2 & \rho \sigma^2 & \dots & \sigma^2 \end{bmatrix}, \ \rho > -1/(p-1)$$

- All <u>variances</u> $\sigma_{ii} = \sigma^2$ are the same
- All <u>covariances</u> $\sigma_{ii} = \rho \sigma^2$, $i \neq j$, are the same
- This means that all <u>correlations</u> ρ_{ii} = ρ , i \neq j, are the same, too.

In multivariate repeated measures, you don't have the randomization and Σ does not usually have this simple structure.

Statistics 5401 October 7, 2005 Lecture 14

 $oldsymbol{\Sigma}$ can have other special forms besides intraclass structure.

For example, when X_1 , X_2 , ..., X_p are observations at times $t_{_1} < t_{_2} < \dots < t_{_p}$, correlations might be ρ_{jk} = $\rho^{|t_{j}-t_{k}|}$. For <u>equal-</u> <u>ly spaced times</u> $t_i = j$, Σ would look like

$$\Sigma = \sigma^{2} \begin{bmatrix} 1 & \rho & \rho^{2} & \rho^{3} & \dots & \rho^{p-1} \\ \rho & 1 & \rho & \rho^{2} & \dots & \rho^{p-2} \\ \rho^{2} & \rho & 1 & \rho & \dots & \rho^{p-3} \\ \dots & \dots & \dots & \dots & \dots \\ \rho^{p-1} & \rho^{p-2} & \rho^{p-3} & \rho^{p-4} & \dots & 1 \end{bmatrix}$$

This is a first order autoregression (AR(1)) structure.

Analysis that takes this structure into account will be better than one that does not.

11

This is a type of analysis you can use SAS Proc Mixed for.

A Σ of this form (equal diagonal values and equal off-diagonals) is said to have intraclass structure.

Lecture 14

Even without randomization, when Σ has intraclass structure, a two-way univariate ANOVA is a correct way to analyze the data.

When Σ does have this special structure, univariate ANOVA will be better than a multivariate analysis because

- tests will have greater power
- confidence intervals will be shorter.
- It works when n ≤ p

When Σ does not have this structure, univariate ANOVA is *not* appropriate.

However, adjustments to degrees of freedom due to Greenhouse and Geisser can sometimes be made to make ANOVA "work".

> 10 Lecture 14 October 7, 2005

Profile analysis questions of interest

These are much the same as for randomized block analysis.

• Test the null hypothesis of no treatment effects

$$H_0: \mu_1 = \mu_2 = \dots = \mu_p.$$

- Multiple comparisons: test all hypotheses of the form H_{nik} : $\mu_i = \mu_k$, j ≠ k
- Find simultaneous confidence limits for all $\mu_i - \mu_k$, $j \neq k$

Statistics 5401

The model in the RCB situation is often written as

$$X_{ij} = \mu + \alpha_i + B_j + \epsilon_{ij}$$

That is

$$X_{ij} = \mu_i + B_j + \epsilon_{ij}$$
, with $\mu_i = \mu + \alpha_i$

- μ_i = μ + α_i, i = 1, ..., p
- The $\{\alpha_i\}$ are fixed <u>treatment effects</u>, usually with $\sum_{1 \le i \le p} \alpha_i = 0$. This implies $\mu = \overline{\mu} = (1/p) \sum_{1 \le i \le p} \mu_i$ so that $\alpha_i = \mu_i \mu$.
- The $\{B_j\}$ are <u>fixed</u> block effects with $\sum_{1 \le j \le n} B_j = 0$ or <u>random</u> block effects with $E(B_j) = 0$
- The $\{\epsilon_{ij}\}$ are <u>independent</u> $N(0,\sigma^2)$ (constant variance)

The repeated measures model is

$$V[\boldsymbol{\varepsilon}_{i}] = \boldsymbol{\mu} + \boldsymbol{\alpha}_{i} + \boldsymbol{\varepsilon}_{ij}$$
$$V[\boldsymbol{\varepsilon}_{i}] = \boldsymbol{\Sigma}, \ \boldsymbol{\varepsilon}_{i} = [\boldsymbol{\varepsilon}_{1j}, \ \boldsymbol{\varepsilon}_{2j}, \ ..., \ \boldsymbol{\varepsilon}_{pj}]'$$

13

Statistics 5401

Lecture 14

October 7, 2005

There are lots of ways to state the hypothesis of no treatment effects:

$$H_0$$
: all μ_i 's equal

A. All *pairs of <u>successive</u> means* are the same, that is

$$H_{0a}$$
: $\mu_2 - \mu_1 = 0$, $\mu_3 - \mu_2 = 0$, ..., $\mu_p - \mu_{p-1} = 0$

This has p-1 "components", none of which may be omitted. The first $\mu_i - \mu_{i-1} \neq 0$ marks a *change point*.

B. All means are the same as μ_1 , that is

$$H_{0b}: \mu_2 - \mu_1 = 0, \mu_3 - \mu_1 = 0, ..., \mu_p - \mu_1 = 0$$

These are p-1 essential components and, when p > 2, they differ from those defining H_{na} .

You might be interested in these when treatment 1 is a "control" or a baseline level, and you are comparing all other treatments with it.

If $\sum_i c_i \mu_i$ is a <u>contrast</u> among the <u>means</u> μ_i ($\sum c_i = 0$), then

$$\sum_{i} c_{i} \mu_{i} = \sum_{i} c_{i} \alpha_{i}$$

the same contrast among the effects.

Example:
$$C_1 = 1$$
, $C_2 = -1$, $C_3 = ... = C_p = 0$, $\sum_i C_i \mu_i = \mu_1 - \mu_2 = (\mu + \alpha_1) - (\mu + \alpha_2) = \alpha_1 - \alpha_2$

I will usually state hypotheses about comparisons of treatments in terms of $\{\mu_i\}$, but they can also be stated in terms of $\{\alpha_i\}$. For example, with the convention that $\sum_i \alpha_i = 0$,

$$H_0: \mu_1 = \mu_2 = \dots = \mu_p$$

is equivalent to the hypothesis of no treatment effects, that is, to

$$H_0: \alpha_1 = \alpha_2 = \dots = \alpha_p = 0$$

14

Statistics 5401

Lecture 1

October 7, 2005

C. $\mu_{k} = average \text{ of } \mu_{1}, \mu_{2}, ..., \mu_{k-1} \text{ for } k = 2, 3, ..., p$

$$H_{oc}$$
: $\mu_2 - \mu_1 = 0$,
 $\mu_3 - (\mu_1 + \mu_2)/2 = 0$,
 $\mu_4 - (\mu_1 + \mu_2 + \mu_3)/3 = 0$, ...,
 $\mu_p - (\mu_1 + \mu_2 + ... + \mu_{p-1})/(p-1) = 0$

Multiplying by -1, -2, -3, ..., H_{oc} is

$$\mu_1 + \mu_2 + \dots + \mu_{p-1} - (p-1)\mu_p = 0$$

These are contrast with integer weights.

 H_{oc} , too, has p-1 essential components. These, too, might be of interest when looking for a <u>change point</u>.

D. *Every* pair of μ's are equal

$$H_{od}$$
: $\mu_i = \mu_j$, all $i \neq j$

Lecture 14

Unlike H_{oa} , H_{ob} , and H_{oc} , H_{od} is symmetric in the μ,'s.

 H_{nd} has p(p-1)/2 <u>distinct</u> components, most of which are redundant.

For example, for $p \ge 3$, $\mu_2 = \mu_1$ and $\mu_3 = \mu_2$ together imply $\mu_3 = \mu_1$.

However, you need at least p-1 of them to fully specify the null hypothesis that all treatment means are the same.

Note: All these hypotheses are statements about the true means, not conclusions from statistical analysis.

When $\mu_1 = \mu_2$ and $\mu_2 = \mu_3$, then $\mu_1 = \mu_3$ must be true by mathematics.

But it can happen that $\overline{X_2}$ - $\overline{X_1}$ and $\overline{X_3}$ - $\overline{X_2}$ are not significantly different from 0, but $\overline{X}_{3} - \overline{X}_{1}$ is.

Statistics 5401

October 7, 2005

For H_{0a} , $C = C_a$ is $p-1 \times p$:

$$\mathbf{C}_{\mathbf{a}} = \begin{bmatrix} -1 & 1 & 0 & 0 & . & . & . & 0 \\ 0 & -1 & 1 & 0 & . & . & . & 0 \\ 0 & 0 & -1 & 1 & . & . & . & 0 \\ . & . & . & . & . & . & . & . & . \\ 0 & 0 & 0 & 0 & . & . & -1 & 1 \end{bmatrix}$$

For H_{0h} , $C = C_h$ is $p-1 \times p$:

$$\mathbf{C}_{b} = \begin{bmatrix} -1 & 1 & 0 & 0 & . & . & . & 0 \\ -1 & 0 & 1 & 0 & . & . & . & 0 \\ -1 & 0 & 0 & 1 & . & . & . & 0 \\ . & . & . & . & . & . & . & . & . \\ -1 & 0 & 0 & 0 & . & . & 0 & 1 \end{bmatrix}$$

For H_{oc} , $C = C_c$ is $p-1 \times p$:

$$\mathbf{C}_{c} = \begin{bmatrix} 1 & -1 & 0 & 0 & . & . & . & 0 \\ 1 & 1 & -2 & 0 & . & . & . & 0 \\ 1 & 1 & 1 & -3 & . & . & . & 0 \\ . & . & . & . & . & . & . & . & . \\ 1 & 1 & 1 & 1 & . & . & 1 & -(p-1) \end{bmatrix}$$

You can express all these various reformulations of H_o, each of which specifies M contrasts, as

$$H_o$$
: $C\mu = 0$

for a matrix M by p C, satisfying $C1_{D} = 0$, that is, each row sums to 0.

$$\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1p} \\ \dots & \dots & \dots \\ c_{M1} & c_{M2} & \dots & c_{Mp} \end{bmatrix} \quad 0$$

Each row of C defines a linear contrast in $\mu_1, ..., \mu_n$ which defines one "component" of the hypothesis.

For H_{oa} , H_{ob} and H_{oc} , M = p-1.

For H_{od} , M = p(p-1)/2.

Statistics 5401

Lecture 14

October 7, 2005

Each C satisfies $C1_n = 0$, that is the sum of each row of C is O. That is, each row of C defines a contrast.

 \mathbf{C}_{a} , \mathbf{C}_{b} and \mathbf{C}_{c}

- have p-1 rows
- are of full rank, that is of rank p-1.

This is another way of saying all components are essential.

For H_{od} , $C = C_d$ is p(p-1)/2 by p:

$$\mathbf{C}_{d} = \begin{bmatrix} -1 & 1 & 0 & 0 & . & . & 0 & 0 \\ -1 & 0 & 1 & 0 & . & . & 0 & 0 \\ -1 & 0 & 1 & 0 & . & . & 0 & 0 \\ -1 & 0 & 0 & 1 & . & . & 0 & 0 \\ . & . & . & . & . & . & . & . \\ -1 & 0 & 0 & 0 & . & . & 0 & 1 \\ 0 & -1 & 1 & 0 & . & . & 0 & 0 \\ 0 & -1 & 0 & 1 & . & . & 0 & 0 \\ . & . & . & . & . & . & . & . \\ 0 & 0 & 0 & 0 & . & . & -1 & 1 \end{bmatrix}$$

$$\mathbf{C}_{d} \text{ is } not \text{ of full rank (unless p = 2) but has rank p-1 < p(p-1)/2.}$$

has rank p-1 < p(p-1)/2.

Lecture 14 Octo

October 7, 2005

Statistics 5401

Suppose now that **C** is a full rank p-1×p matrix with $C1_p = 0$ so that $C\mu = 0$ if and only if $\mu_1 = \mu_2 = \dots = \mu_p$.

Then y = Cx is a vector of q = p-1 contrasts in $x_1, ..., x_p$. That is

- (a) $y_1 = X_2 X_1$, $y_2 = X_3 X_2$, ..., $y_{p-1} = X_p X_{p-1}$.
- (b) $y_1 = X_2 X_1$, $y_2 = X_3 X_1$, ..., $y_{p-1} = X_p X_1$
- (c) $y_1 = X_1 X_2$, $y_2 = X_1 + X_2 2X_3$, ..., $y_{p-1} = X_1 + X_2 + ... + X_{p-1} - (p-1)X_p$

Then

- $\mu_{u} = E[y] = C\mu_{x}$ (M by 1)
- $\Sigma_{u} = C\Sigma_{x}C'$ (M by M).
- H_0 : $C\mu_x = 0$ can be restated as H_0 : $\mu_y = 0$, which you can test with Hotelling's T^2

$$\mathsf{T}_{\mathsf{c}}^{^{2}} \; = \; \overline{y^{\,\prime}}(\sqrt[3]{[\overline{y}\,]})^{\scriptscriptstyle -1}\overline{y} \; = \; (C\,\overline{x})^{\,\prime}(\mathsf{n}^{\scriptscriptstyle -1}\mathsf{CS}_{_{x}}\mathsf{C}^{\,\prime})^{\scriptscriptstyle -1}(C\,\overline{x}) \, .$$

21

Statistics 5401

Lecture 14

October 7, 2005

- Q. How do you choose C?
- A. For T² it doesn't matter.

Fact

For any two <u>full rank</u> p-1 \times p contrast matrices \mathbf{C}_1 and \mathbf{C}_2 , defining

$$\mathbf{y}_1 = \mathbf{C}_1 \mathbf{x}$$
 and $\mathbf{y}_2 = \mathbf{C}_2 \mathbf{x}$

Then, always $T_{c_1}^2 = T_{c_2}^2$ where

$$T_{\mathbf{c}_1}^2 = \overline{\mathbf{y}_1}'(\sqrt[3]{[\overline{\mathbf{y}_1}]})^{-1}\overline{\mathbf{y}_1}$$

and

$$T_{\mathbf{c}_{2}}^{2} = \overline{\mathbf{y}_{2}}'(\widehat{\mathbf{y}}[\overline{\mathbf{y}_{2}}])^{-1}\overline{\mathbf{y}_{2}}$$

- Therefore $T_{\mathbf{c}}^{2}$ does *not* depend on \mathbf{C}
- The various T_c^2 tests of H_0 : $\mu_1 = \mu_2 = ... = \mu_p$ based on contrasts $\mathbf{y} = \mathbf{C}\mathbf{x}$ are *identical*.

Under H_0 and assuming normality, since f_e = n - 1 and the <u>dimension</u> q = p-1,

$$T_c^2 = \{(f_e q)/(f_e - q + 1)\}F_{q,f_e^-q+1} = \{(n-1)(p-1)/(n-p+1)\}F_{p-1,n-p+1}$$

 $\{(T_c^2 = \chi_q^2 \text{ in large samples})$

Note: If you analyze the data using twoway ANOVA as if it were a RCB, the F test has degrees of freedom

$$f_h = \frac{\text{hypothesis}}{\hat{f}_e} = \frac{\text{pror}}{\text{DF}} = \frac{\text{pror}}{\text{pror}} = \frac{(n-1)(p-1)}{\text{prop}} \neq f_e.$$

In repeated measures analysis, you use an F critical value with

- the same <u>numerator</u> degrees of freedom q = p - 1
- different denominator degrees of freedom f_e - q + 1, where f_e = n - 1
- $\{(n-p+1)/((n-1)(p-1))\}T^2 \neq ANOVA-F.$

Conclusion: the test based on T^2 is different from the test based on ANOVA F.

2

Statistics 5401

Lecture 14

October 7, 2005

You can also *Bonferronize* each of the q = p-1 t-tests of the components of μ_{\parallel} .

This *does* depend on the choice of **C**, since different **C**'s define different sets of contrasts.

For H_{od} , C_d is not full rank and you can't compute T^2 the same way.

However, it makes good sense to Bonferronize t-tests

$$t_{ij} = \overline{y_{ij}} / \sqrt{\{\hat{V}[\overline{y_{ij}}]\}} = (\overline{x_i} - \overline{x_j}) / \sqrt{(\{s_{ij} - 2s_{ij} + s_{ij})/n\}}$$

for the M = p(p-1)/2 contrasts specified by the rows of \mathbf{C}_d . Divide the significance level $\boldsymbol{\alpha}$ by M or multiply the P-value by M.

Each t_{ij} is is effectively a paired t based on differences $d_{ij} = x_i - x_j$.