Displays for Statistics 5401/8401

Lecture 14

October 7, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page

http://www.stat.umn.edu/~kb/classes/5401 © 2005 by Christopher Bingham Statistics 5401 Lecture 14 October 7, 2005

Single sample profile (repeated measures) analysis

Suppose you have a random sample $\mathbf{x}_1, ..., \mathbf{x}_n$ from a p-variable multivariate distribution with

- unknown mean vector $\mu = [\mu_1, \mu_2, ..., \mu_D]'$
- observations $\mathbf{x} = [x_1, x_2, ..., x_p]'$ that are repeated measures data. That is, variables $x_1, ..., x_p$ are comparable.

Each x, represents a measurement on

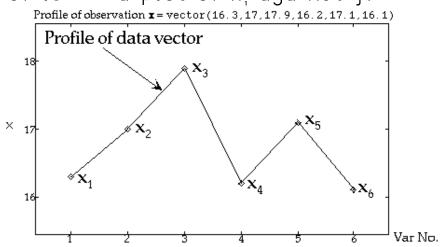
- the same quantity in the same units, for example, <u>blood pressure</u>
- under <u>differing conditions</u> or at <u>differing times</u>.

We often call the different times or conditions *treatments*.

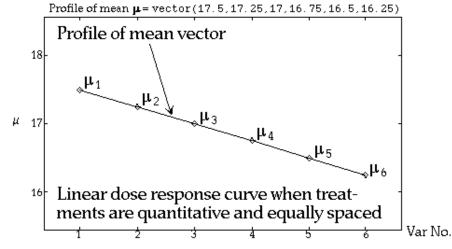
When there are p variables, there are p treatments being compared.

A data vector \mathbf{x} can be depicted by a "profile" -- a plot of \mathbf{x} , against j.

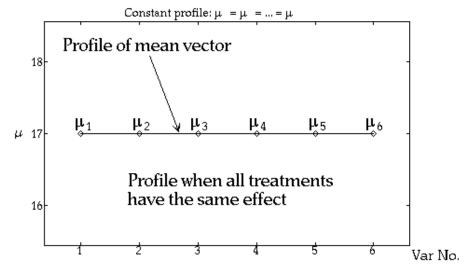
Lecture 14



And you can plot μ_j vs j to obtain a population mean profile plot of μ .



When $\mu_1 = \mu_2 = \dots = \mu_p$, the profile is <u>flat</u>.



This <u>simple pattern</u> in the profile <u>graph-ically represents</u> the *null hypothesis*

$$H_0: \mu_1 = \mu_2 = \dots = \mu_p$$

of no treatment differences.

When treatments are *quantitative*, the population profile may be viewed as a <u>dosage response curve</u>.

When the profile is a straight line, the response is linear in the dose.

Usually one goal in repeated measures analysis is to compare the treatment means μ_i .

Statistics 5401

This investigates the shape of the profile of μ , that is, the pattern of differences $\mu_i - \mu_j$. The shape isn't changed by adding a constant to each mean.

You can label a data matrix like this.

	Trt 1	Trt 2	Trt 3	 Trt p
Case 1	X 11	X ₁₂	X ₁₃	 X _{1p}
Case 2	X ₂₁	X ₂₂	X ₂₃	 X _{2p}
Case 3	X ₃₁	X ₃₂	X ₃₃	 X _{3p}
Case 4	X ₄₁	X ₄₂	X ₄₃	 X _{4p}
Case n	X _{n1}	 X _{n2}	X _{n3}	 X _{np}

This is reminiscent of a table of data from a <u>randomized block experiment</u>.

Analogy with RCBD

The <u>single sample profile analysis</u> situation appears to be quite similar to a <u>univariate</u> randomized complete block (RCB) situation with n blocks, but when p > 2, the analysis is different.

- Each repeated measures <u>individual</u> or <u>case</u> corresponds to a RCB "<u>block</u>".
- Each response <u>variable</u> for a case corresponds to a "<u>plot</u>" in a block "treated" with the distinguishing feature of that measurement.

Statistics 5401

In a randomized block situation with n replicates of p treatments, you have nxp <u>experimental units</u> (EUs).

- EUs are grouped in n homogeneous blocks (replicates), each with p "plots"
- Treatments <u>assigned randomly</u> to the p EUs in each block

After randomizing, a field experiment with p = 4 and n = 6 might look like

Block 1	Treatment 4	Treatment 2	Treatment 1	Treatment 3
Block 2	Treatment 4	Treatment 2	Treatment 3	Treatment 1
Block 3	Treatment 1	Treatment 2	Treatment 4	Treatment 3
Block 4	Treatment 2	Treatment 1	Treatment 3	Treatment 4
Block 5	Treatment 4	Treatment 1	Treatment 2	Treatment 3
Block 6	Treatment 4	Treatment 1	Treatment 3	Treatment 2

Every block (row of table) contains a complete set of p treatments, in random order.

Examples of blocks

- <u>Time periods</u> (day, week), with the treatments in random order within the time period
- Batches of flour split into smaller quantities used to make a loaf of bread with varying amounts of an ingredient. The amounts are randomly assigned to the loaves (plots) from the same batch of flour (block).
- Compact regions of a field or greenhouse bench with treatments assigned randomly to different positions (plots) in the field or on the bench.
- Subjects getting various treatments in random order (plot = time of treatment)

How does repeated measures differ from a RCB?

In repeated measures analysis, the "treatment" levels are not randomized. From the multivariate point of view, in a RCB you can view the data as *repeated* measurements on a block, with each block a "case".

But randomization and constant σ^2 (not affected by the treatments) imply that Σ for the p observations in a block has a very special structure, namely

$$\Sigma = \begin{bmatrix} \sigma^{2} & \rho\sigma^{2} & \rho\sigma^{2} & \dots & \rho\sigma^{2} \\ \rho\sigma^{2} & \sigma^{2} & \rho\sigma^{2} & \dots & \rho\sigma^{2} \\ \rho\sigma^{2} & \rho\sigma^{2} & \sigma^{2} & \dots & \rho\sigma^{2} \\ \rho\sigma^{2} & \rho\sigma^{2} & \sigma^{2} & \dots & \rho\sigma^{2} \\ \dots & \dots & \dots & \dots \\ \rho\sigma^{2} & \rho\sigma^{2} & \rho\sigma^{2} & \dots & \sigma^{2} \end{bmatrix}, \ \rho > -1/(p-1)$$

- All <u>variances</u> $\sigma_{ii} = \sigma^2$ are the same
- All <u>covariances</u> $\sigma_{ij} = \rho \sigma^2$, $i \neq j$, are the same
- This means that all <u>correlations</u> $\rho_{ij} = \rho$, $i \neq j$, are the same, too.

In multivariate repeated measures, you don't have the randomization and Σ does not usually have this simple structure.

A Σ of this form (equal diagonal values and equal off-diagonals) is said to have intraclass structure.

Even without randomization, when Σ has intraclass structure, a two-way univariate ANOVA is a correct way to analyze the data.

When Σ does have this special structure, univariate ANOVA will be better than a multivariate analysis because

- tests will have greater power
- confidence intervals will be shorter.
- It works when n ≤ p

When Σ does not have this structure, univariate ANOVA is *not* appropriate.

However, adjustments to degrees of freedom due to <u>Greenhouse and Geisser</u> can sometimes be made to make ANOVA "work".

Statistics 5401

 Σ can have other special forms besides intraclass structure.

For example, when $x_1, x_2, ..., x_p$ are observations at times $t_1 < t_2 < ... < t_p$, correlations might be $\rho_{jk} = \rho^{|t_j-t_k|}$. For <u>equal-ly spaced times</u> $t_i = j$, Σ would look like

$$\Sigma = \sigma^{2} \begin{bmatrix} 1 & \rho & \rho^{2} & \rho^{3} \dots & \rho^{p-1} \\ \rho & 1 & \rho & \rho^{2} & \dots & \rho^{p-2} \\ \rho^{2} & \rho & 1 & \rho & \dots & \rho^{p-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \rho^{p-1} & \rho^{p-2} & \rho^{p-3} & \rho^{p-4} & \dots & 1 \end{bmatrix}$$

This is a <u>first order autoregression</u> (AR(1)) structure.

Analysis that takes this structure into account will be better than one that does not.

This is a type of analysis you can use SAS **Proc Mixed** for.

Profile analysis questions of interest These are much the same as for randomized block analysis.

• Test the null hypothesis of *no treat-ment effects*

$$H_0: \mu_1 = \mu_2 = \dots = \mu_p.$$

- Multiple comparisons: test all hypotheses of the form H_{ojk}: μ_j = μ_k, j ≠ k
- Find simultaneous confidence limits for all μ_i μ_k , $j \neq k$

October 7, 2005

Statistics 5401

Lecture 14

October 7, 2005

The model in the RCB situation is often written as

$$X_{ij} = \mu + \alpha_i + B_j + \epsilon_{ij}$$

That is

$$X_{ij} = \mu_i + B_j + \epsilon_{ij}$$
, with $\mu_i = \mu + \alpha_i$

- $\mu_i = \mu + \alpha_i$, i = 1, ..., p
- The $\{\alpha_i\}$ are fixed <u>treatment effects</u>, usually with $\sum_{1 \le i \le p} \alpha_i = 0$. This implies $\mu = \overline{\mu} = (1/p) \sum_{1 \le i \le p} \mu_i$ so that $\alpha_i = \mu_i - \mu$.
- The $\{B_j\}$ are <u>fixed</u> block effects with $\sum_{1 \le j \le n} B_j = 0$ or <u>random</u> block effects with $E(B_j) = 0$
- The $\{\epsilon_{ij}\}$ are <u>independent</u> $N(0,\sigma^2)$ (constant variance)

The repeated measures model is

$$X_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

 $V[\boldsymbol{\epsilon}_i] = \boldsymbol{\Sigma}, \ \boldsymbol{\epsilon}_i = [\epsilon_{1j}, \epsilon_{2j}, ..., \epsilon_{pj}]'$

If $\sum_{i} c_{i} \mu_{i}$ is a <u>contrast</u> among the <u>means</u> μ_{i} ($\sum c_{i} = 0$), then

$$\sum_{i} c_{i} \mu_{i} = \sum_{i} c_{i} \alpha_{i}$$

the same contrast among the effects.

Example: $C_1 = 1$, $C_2 = -1$, $C_3 = ... = C_p = 0$, $\sum_i C_i \mu_i = \mu_1 - \mu_2 = (\mu + \alpha_1) - (\mu + \alpha_2) = \alpha_1 - \alpha_2$

I will usually state hypotheses about comparisons of treatments in terms of $\{\mu_i\}$, but they can also be stated in terms of $\{\alpha_i\}$. For example, with the convention that $\sum_i \alpha_i = 0$,

$$H_0: \mu_1 = \mu_2 = \dots = \mu_D$$

is equivalent to the hypothesis of no treatment effects, that is, to

$$H_0: \alpha_1 = \alpha_2 = \dots = \alpha_p = 0$$

October 7, 2005

Statistics 5401

Lecture 14

There are lots of ways to state the hypothesis of no treatment effects:

 H_0 : all μ_i 's equal

A. All pairs of <u>successive</u> means are the same, that is

$$H_{0a}$$
: $\mu_2 - \mu_1 = 0$, $\mu_3 - \mu_2 = 0$, ..., $\mu_p - \mu_{p-1} = 0$

This has p-1 "components", none of which may be omitted. The first $\mu_i - \mu_{i-1} \neq 0$ marks a *change point*.

B. All means are the same as μ_1 , that is

$$H_{0b}$$
: $\mu_2 - \mu_1 = 0$, $\mu_3 - \mu_1 = 0$, ..., $\mu_p - \mu_1 = 0$

These are p-1 essential components and, when p > 2, they differ from those defining H_{na} .

You might be interested in these when treatment 1 is a "control" or a baseline level, and you are comparing all other treatments with it. C. $\mu_k = average \text{ of } \mu_1, \mu_2, ..., \mu_{k-1} \text{ for } k = 2, 3, ..., p$

$$H_{0c}$$
: $\mu_2 - \mu_1 = 0$,
 $\mu_3 - (\mu_1 + \mu_2)/2 = 0$,
 $\mu_4 - (\mu_1 + \mu_2 + \mu_3)/3 = 0$, ...,
 $\mu_p - (\mu_1 + \mu_2 + \dots + \mu_{p-1})/(p-1) = 0$

Multiplying by -1, -2, -3, ..., H_{nc} is

$$H_{oc}$$
: $\mu_1 - \mu_2 = 0$,
 $\mu_1 + \mu_2 - 2\mu_3 = 0$,
 $\mu_1 + \mu_2 + \mu_3 - 3\mu_4 = 0$,
 $\mu_1 + \mu_2 + \mu_3 - 3\mu_4 = 0$,
 $\mu_1 + \mu_2 + \dots + \mu_{p-1} - (p-1)\mu_p = 0$

These are contrast with integer weights.

 H_{oc} , too, has p-1 essential components. These, too, might be of interest when looking for a <u>change point</u>.

D. Every pair of μ's are equal

$$H_{od}$$
: $\mu_i = \mu_i$, all $i \neq j$

Unlike H_{oa} , H_{ob} , and H_{oc} , H_{od} is symmetric in the μ_{i} 's.

 H_{od} has p(p-1)/2 <u>distinct</u> components, most of which are *redundant*.

For example, for $p \ge 3$, $\mu_2 = \mu_1$ and $\mu_3 = \mu_2$ together imply $\mu_3 = \mu_1$.

However, you need at least p-1 of them to <u>fully</u> specify the null hypothesis that all treatment means are the same.

Note: All these hypotheses are statements about the <u>true means</u>, not conclusions from statistical analysis.

When $\mu_1 = \mu_2$ and $\mu_2 = \mu_3$, then $\mu_1 = \mu_3$ must be true <u>by mathematics</u>.

But it can happen that $\overline{x_2}$ - $\overline{x_1}$ and $\overline{x_3}$ - $\overline{x_2}$ are not significantly different from 0, but $\overline{x_3}$ - $\overline{x_1}$ is.

You can express all these various reformulations of H_{o} , each of which specifies M contrasts, as

Lecture 14

$$H_o$$
: $C\mu = 0$

for a matrix M by p \mathbf{C} , satisfying $\mathbf{C1}_{p} = \mathbf{0}$, that is, each row sums to 0.

$$\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1p} \\ \dots & \dots & \dots \\ c_{M1} & c_{M2} & \dots & c_{Mp} \end{bmatrix} \quad 0$$

Each row of C defines a linear contrast in μ_1 , ..., μ_p which defines one "component" of the hypothesis.

For H_{0a} , H_{0b} and H_{0c} , M = p-1.

For H_{0d} , M = p(p-1)/2.

October 7, 2005

Statistics 5401

Lecture 14

October 7, 2005

For H_{oa} , $C = C_a$ is $p-1 \times p$:

$$\mathbf{C}_{a} = \begin{bmatrix} -1 & 1 & 0 & 0 & . & . & . & 0 \\ 0 & -1 & 1 & 0 & . & . & . & 0 \\ 0 & 0 & -1 & 1 & . & . & . & 0 \\ . & . & . & . & . & . & . & . \\ 0 & 0 & 0 & 0 & . & . & -1 & 1 \end{bmatrix}$$
 of each row of \mathbf{C} is 0. To define a contrast.
$$\mathbf{C}_{a}, \ \mathbf{C}_{b} \ \text{and} \ \mathbf{C}_{c}$$
• have p-1 rows

For H_{Ob} , $C = C_b$ is $p-1 \times p$:

$$\mathbf{C}_{b} = \begin{bmatrix} -1 & 1 & 0 & 0 & . & . & . & 0 \\ -1 & 0 & 1 & 0 & . & . & . & 0 \\ -1 & 0 & 0 & 1 & . & . & . & 0 \\ . & . & . & . & . & . & . & . & . \\ -1 & 0 & 0 & 0 & . & . & 0 & 1 \end{bmatrix}$$

For H_{0c} , $C = C_c$ is $p-1 \times p$:

$$\mathbf{C}_{c} = \begin{bmatrix} 1 & -1 & 0 & 0 & . & . & . & 0 \\ 1 & 1 & -2 & 0 & . & . & . & 0 \\ 1 & 1 & 1 & -3 & . & . & . & 0 \\ . & . & . & . & . & . & . & . \\ 1 & 1 & 1 & 1 & . & . & 1 & -(p-1) \end{bmatrix}$$

Each C satisfies $C1_{D} = 0$, that is the sum of each row of C is O. That is, each row

- have p-1 rows
- are of full rank, that is of rank p-1.

This is another way of saying all components are essential.

For H_{od} , $C = C_d$ is p(p-1)/2 by p:

$$\mathbf{C}_{d} = \begin{bmatrix} -1 & 1 & 0 & 0 & . & . & 0 & 0 \\ -1 & 0 & 1 & 0 & . & . & 0 & 0 \\ -1 & 0 & 0 & 1 & . & . & 0 & 0 \\ . & . & . & . & . & . & . & . & . \\ -1 & 0 & 0 & 0 & 0 & . & . & 0 & 1 \\ 0 & -1 & 1 & 0 & . & . & 0 & 0 \\ 0 & -1 & 0 & 1 & . & . & 0 & 0 \\ . & . & . & . & . & . & . & . \\ 0 & 0 & 0 & 0 & . & . & -1 & 1 \end{bmatrix}$$

 C_a is not of full rank (unless p = 2) but has rank p-1 < p(p-1)/2.

October 7, 2005

Statistics 5401

Lecture 14

October 7, 2005

Suppose now that **C** is a full rank p-1×p matrix with $C1_p = 0$ so that $C\mu = 0$ if and only if $\mu_1 = \mu_2 = \dots = \mu_p$.

Then y = Cx is a vector of q = p-1 contrasts in $x_1, ..., x_p$. That is

- (a) $y_1 = x_2 x_1$, $y_2 = x_3 x_2$, ..., $y_{p-1} = x_p x_{p-1}$.
- (b) $y_1 = x_2 x_1$, $y_2 = x_3 x_1$, ..., $y_{p-1} = x_p x_1$
- (c) $y_1 = x_1 x_2$, $y_2 = x_1 + x_2 2x_3$, ..., $y_{p-1} = x_1 + x_2 + ... + x_{p-1} - (p-1)x_p$

Then

- $\mu_{u} = E[y] = C\mu_{x}$ (M by 1)
- $\Sigma_{u} = C\Sigma_{x}C'$ (M by M).
- H_o : $C\mu_x$ = 0 can be restated as H_o : μ_y = 0, which you can test with Hotelling's T^2

$$T_c^2 = \overline{y'}(\widehat{V}[\overline{y}])^{-1}\overline{y} = (C\overline{x})'(n^{-1}CS_xC')^{-1}(C\overline{x}).$$

Under H_0 and assuming normality, since f_e = n - 1 and the <u>dimension</u> q = p-1,

$$T_c^2 = \{(f_e q)/(f_e - q + 1)\}F_{q,f_e-q+1} = \{(n-1)(p-1)/(n-p+1)\}F_{p-1,n-p+1}$$

 $\{T_c^2 = \chi_q^2 \text{ in large samples}\}$

Note: If you analyze the data using twoway ANOVA as if it were a RCB, the F test has degrees of freedom

$$f_h = hypothesis$$
 DF = DF_{trt} = p - 1
 $\widetilde{f_e} = error$ DF = DF_{error} = (n-1)(p-1) $\neq f_e$.

In repeated measures analysis, you use an F critical value with

- the same <u>numerator</u> degrees of freedom q = p - 1
- different denominator degrees of freedom f_a - q + 1, where f_a = n - 1
- $\{(n-p+1)/((n-1)(p-1))\}T^2 \neq ANOVA-F.$

Conclusion: the test based on T^2 is different from the test based on ANOVA F. Statistics 5401

Lecture 14

October 7, 2005

Statistics 5401

Lecture 14

October 7, 2005

Q. How do you choose C?

A. For T² it doesn't matter.

Fact

For any two <u>full rank</u> p-1 \times p contrast matrices \mathbf{C}_1 and \mathbf{C}_2 , defining

$$\mathbf{y}_1 = \mathbf{C}_1 \mathbf{x}$$
 and $\mathbf{y}_2 = \mathbf{C}_2 \mathbf{x}$

Then, always $T_{c_1}^2 = T_{c_2}^2$ where

$$T_{c_1}^2 = \overline{\mathbf{y}}_1'(\widehat{\mathbf{y}}_1)^{-1}\overline{\mathbf{y}}_1$$

and

$$\mathsf{T}_{\mathbf{c}_2}^2 = \overline{\mathbf{y}}_2'(\widehat{\mathsf{V}}[\overline{\mathbf{y}}_2])^{-1}\overline{\mathbf{y}}_2$$

- Therefore T_c² does *not* depend on C
- The various T_c^2 tests of H_0 : $\mu_1 = \mu_2 = \dots = \mu_p$ based on contrasts $\mathbf{y} = \mathbf{C}\mathbf{x}$ are *identical*.

You can also *Bonferronize* each of the q = p-1 t-tests of the components of μ_{y} .

This *does* depend on the choice of **C**, since different **C**'s define different sets of contrasts.

For H_{od} , C_{d} is not full rank and you can't compute T^{2} the same way.

However, it makes good sense to Bonferronize t-tests

$$t_{ij} = \overline{y_{ij}} / \sqrt{\{\hat{V}[\overline{y_{ij}}]\}} = (\overline{x_i} - \overline{x_j}) / \sqrt{(\{s_{ii} - 2s_{ij} + s_{jj}) / n\}}$$

for the M = p(p-1)/2 contrasts specified by the rows of \mathbf{C}_d . Divide the significance level $\boldsymbol{\bowtie}$ by M or multiply the P-value by M.

Each t_{ij} is is effectively a paired t based on differences $d_{ij} = x_i - x_j$.