October 5, 2005

Displays for Statistics 5401/8401

Lecture 13

October 5, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page

Statistics 5401 Lecture 13

How far from "advertised" is a "Bonferroni box?" It depends on how correlated the data are. Here are two samples of 40, both from normal populations with $\sqrt{\sigma_{11}} = 5$ and $\sqrt{\sigma_{22}} = 7$.

The one on the left has $\rho = 0$; the one on the right has $\rho = -.9$

Here are 95% and 99% rectangular and elliptical confidence regions for μ based on these samples:

Summary

Box shaped confidence regions for θ based on Bonferronized z-tests or -t-tests based on estimates θ̂;

with

Statistics 5401

October 5, 2005

$$\widetilde{K}_{\alpha} = t_{f}(\alpha'/2)$$
 or $\widetilde{K}_{\alpha} = z(\alpha'/2)$, $\alpha' = \alpha/q$

 $\hat{\sigma}_{_{\boldsymbol{\theta}_{i}}}$ is the estimated standard error of $\boldsymbol{\hat{\theta_{j}}}.$

The shape is determined by the values of $\hat{\sigma}_{_{\Theta_{i}}}^{^{2}}$, the *diagonal* elements of $\hat{V}[\hat{\boldsymbol{\theta}}]$.

• Ellipsoidal confidence regions based on Hotelling's T² test:

$$R(\mathbf{X}) = \{ \mathbf{\Theta} \mid (\mathbf{\Theta} - \hat{\mathbf{\Theta}})' \{ \hat{\mathbf{V}}[\hat{\mathbf{\Theta}}] \}^{-1} (\mathbf{\Theta} - \hat{\mathbf{\Theta}}) \leq K_{\alpha}^{2} \},$$

$$K_{\alpha}^{2} = \chi_{q}^{2}(\alpha) \text{ or } \{ (f_{e}q)/(f_{e}-q+1) \} F_{q,f_{e}-q+1}(\alpha).$$

The *shape* is determined by *eigenvalues* of $\hat{V}[\hat{\boldsymbol{\theta}}]$. The *orientation* is determined by the *eigenvectors* of $\hat{V}[\hat{\boldsymbol{\theta}}]$.

Lecture 13

The elliptical confidence regions have the same orientation as the "cloud of points" but are much smaller (compare the axis scales).

• For small p, there isn't a lot of difference between the elliptical and box regions: the box <u>corners</u> are slightly <u>outside</u> the ellipse; the ellipse <u>ends</u> and sides are slightly outside the box.

 When p is high, two corners of the box are distant from the ellipse and there is a <u>lot of area</u> outside the ellipse and in the box, and relatively little area outside the box and in the ellipse.

• As $\rho \to \pm 1$, actual confidence of box approaches 1 - α /2 instead of 1 - α (97.5% instead of 95%, for example).

Simulation with M = 10,000, n = 50:

ρ	0	.9	.99
1 - â	0.9456	0.9614	0.9698

1 - a estimates actual confidence level

3

4

- Both regions (box and ellipsoid) are centered at $\hat{\mathbf{\Theta}}$.
- The volume of a box shaped region is $\hat{\sigma}_{\hat{\theta_1}} \hat{\sigma}_{\hat{\theta_2}} ... \hat{\sigma}_{\hat{\theta_q}} (2\widetilde{K}_{\alpha})^q$, $\widetilde{K}_{\alpha} = z(\alpha'/2)$ or $t_{f_e}(\alpha'/2)$

For q = 2, area = $\hat{\sigma}_{\hat{\theta_1}} \hat{\sigma}_{\hat{\theta_2}} (2\tilde{K}_{\alpha})^2$

• The volume of an ellipsoidal region is $\frac{\sqrt{\det(\hat{V}[\hat{\boldsymbol{\theta}}]) \times \pi^{q/2} K_{\alpha}^{q}}}{\Gamma((q+2)/2)}$

When q = 2,
Area =
$$\sqrt{\{\det(\hat{V}[\hat{\boldsymbol{\theta}}])\}\pi K_{\alpha}^{2}}$$
,
= $\hat{\sigma}_{\hat{\theta_{1}}}\hat{\sigma}_{\hat{\theta_{2}}}\sqrt{\{1 - \hat{\rho}_{\hat{\theta_{1}},\hat{\theta_{2}}}^{2}\}K_{\alpha}^{2}\pi}$
 $\hat{\rho}_{\hat{\theta_{1}},\hat{\theta_{2}}}$ = estimated correlation between $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$.

Note: For even q = 2m, $\Gamma((q+2)/2)$ = m! For odd q = 2m-1, $\Gamma((q+2)/2) = 1 \times 3 \times ... \times (2m-1) \sqrt{\pi/2^m}$

Statistics 5401

----- 12

October 5, 2005

Bounding boxes for ellipsoids

Every ellipsoid has a rectangular bounding box.

- Each "face" (edge or wall) is perpendicular to a coordinate axis.
- Each face of the box is tangent to (touches at one point) the ellipsoid.

Bounding box when p = 2.

What is the size and shape of an ellipse's bounding box?

Note:

If Σ is a variance matrix, $\det(\Sigma)$ is the **generalized variance**, a single number which is sometimes used as a summary of how spread out a multivariate population is.

The volume of an ellipsoidal region is proportional to the square root of a generalized variance.

For fixed σ_{jj} , larger correlations result in smaller generalized variance.

Also for fixed trace(Σ) = $\sum_{j} \sigma_{jj} = \sum_{j} \lambda_{j}$, the more different are eigenvalues $\{\lambda_{j}\}$ of $\widehat{V}[\widehat{\boldsymbol{\theta}}]$, the smaller is the generalized variance.

For instance, when λ_1 = .55 and λ_2 = .45, $\sqrt{\det(\mathbf{\Sigma})} = \sqrt{(.55 \times .45)} = 0.497$, while when λ_1 = .9 and λ_2 = .1, $\sqrt{\det(\mathbf{\Sigma})} = \sqrt{(.9 \times .1)} = 0.3 < 0.497$. In both cases $\lambda_1 + \lambda_2 = 1$.

6

Statistics 5401

Lecture 13

October 5, 2005

Define E to be the <u>inside and boundary</u> of an ellipsoid with center at \mathbf{x}_0 . That is

$$E \equiv \{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_0) \cdot \mathbf{Q}^{-1} (\mathbf{x} - \mathbf{x}_0) \leq \mathbf{K}^2 \}$$

where Q is $q \times q$ symmetric positive definite ($Q = \hat{V}(\hat{\theta})$ for a confidence ellipse).

Fact

The bounding box for E is the set

$$\{ \mathbf{x} \mid X_{0j} - K \sqrt{q_{jj}} \le X_{j} \le X_{0j} + K \sqrt{q_{jj}}, j = 1,...,q \}$$

The <u>bounding faces or planes</u> come in parallel pairs, each pair perpendicular to a coordinate axis:

$$\{ \mathbf{x} \mid X_{i} = X_{0i} - K \sqrt{q_{ij}} \} \text{ and } \{ \mathbf{x} \mid X_{i} = X_{0i} + K \sqrt{q_{ij}} \}$$

These are perpendicular to the coordinate axis defined by

$$\mathbf{e}_{j} = [0 \ 0 \ ... \ 0 \ 1 \ 0 \ ... \ 0]'$$

and parallel the plane defined by containing the remaining axes $\{ {f e}_i \}_{_{i z_i}}.$

7

8

When p = 2, the <u>left and right</u> tangent lines are the vertical lines defined by

$$X_1 = X_{01} - K\sqrt{q_{11}}$$
 and $X_1 = X_{01} + K\sqrt{q_{11}}$

They are perpendicular to the x_1 axis.

The <u>bottom and top</u> tangents line are the horizontal lines defined by

$$x_2 = x_{02} - K\sqrt{q_{22}}$$
 and $x_2 = x_{02} + K\sqrt{q_{22}}$
They are perpendicular to the x_2 axis.

This formulas of the bounding box are consequence of the following "fact":

- If x is in E, every linear combination
 l'x = ∑₁ l₁x₁ satisfies
 l'x₀-K√(l'Ql) ≤ l'x ≤ l'x₀+K√(l'Ql)
- Conversely, if these inequalities are true for every \mathbb{l}, then \mathbb{x} is in E

That is,

 When x is in E, for every 1, the linear combination 1'x is inside the interval

$$\mathbf{l} \cdot \mathbf{x}_{0} \pm \mathbf{K} \sqrt{(\mathbf{l} \cdot \mathbf{Q} \mathbf{l})}$$

When x is not in E, there is some linear combination l'x such that
 l'x < l'x₀ - K√(l'Ql) (outside to left)

 $\mathbf{l}'\mathbf{x} > \mathbf{l}'\mathbf{x}_0 + K\sqrt{(\mathbf{l}'\mathbf{Q}\mathbf{l})}$ (outside to right) Note the use of \mathbf{Q} instead of \mathbf{Q}^{-1} here.

Statistics 5401 Lecture 13 October 5, 2005

This description of an ellipsoid E corresponds to the obvious fact that the boundary and the interior of E consist exactly the points between all pairs of parallel tangent lines or planes.

The direction of each pair of lines is perpendicular to a vector $\boldsymbol{\ell}$ (heavy lines in plot). Every vector $\boldsymbol{\ell}$ determines two tangent lines (planes when q > 2).

Statistics 5401 Lecture 13

October 5, 2005

A particular case is $\mathbf{l} = \mathbf{e}_{j}$, where, as before, \mathbf{e}_{i} is a "coordinate vector".

Then you have the particularly simple equations:

- $\mathbf{l} \cdot \mathbf{x} = \sum_{i} \mathbf{l}_{i} \mathbf{x}_{i} = \mathbf{x}_{i}$
- $\mathbf{l} \cdot \mathbf{Q} \mathbf{l} = \sum_{i} \sum_{j} q_{ij} l_{i} l_{j} = q_{jj}$

When you apply the general result here you get the defining equations for the bounding box

$$\{ \mathbf{x} \mid \mathbf{x}_{o_i} - \mathbf{K} \sqrt{\mathbf{q}_{ij}} \le \mathbf{x}_i \le \mathbf{x}_{o_i} + \mathbf{K} \sqrt{\mathbf{q}_{ij}}, j = 1,...,q \}$$

Bounding boxes for ellipsoidal confidence regions

Lecture 13

- A q-vector **1** defines linear combinations $l'\theta$ and $l'\hat{\theta}$ of the elements of $\mathbf{\Theta} = [\Theta_1, ..., \Theta_d]'$ and $\hat{\mathbf{\Theta}} = [\hat{\Theta_1}, ..., \hat{\Theta_d}]'$.
- The estimated variance of $\mathbf{l}'\hat{\mathbf{\theta}}$ is $\hat{V}[\mathbf{l}'\hat{\Theta}] = \mathbf{l}'\hat{V}[\hat{\Theta}]\mathbf{l}$
- The estimated *standard error* of **l**'**\tilde{\theta}**

$$\hat{\sigma}_{\mathbf{l},\hat{\mathbf{\theta}}} = \sqrt{\{\hat{\mathbf{V}}[\mathbf{l},\hat{\mathbf{\theta}}]\}} = \sqrt{\{\mathbf{l},\hat{\mathbf{V}}[\hat{\mathbf{\theta}}]\mathbf{l}\}}.$$

 $\sqrt{\{\hat{\mathbf{V}}[\mathbf{l}'\hat{\mathbf{\Theta}}]\}}$ is $\sqrt{(\mathbf{l}'\mathbf{Q}\mathbf{l})}$ when $\mathbf{Q} = \hat{\mathbf{V}}[\hat{\mathbf{\Theta}}]$.

• The faces of the bounding box are at distances $K_{\alpha}\hat{\sigma}_{\hat{\sigma}_{i}}$ from the center.

13

Statistics 5401

Lecture 13

October 5, 2005

Statistics 5401 Lecture 13 October 5, 2005

 The <u>bounding box</u> for the ellipsoid is always bigger than the Bonferroni box.

This means

$$P(R_{Bounding box}(X) contains \theta) > P(R_{Bonferroni box}(X) contains \theta)$$

Since

$$P(R_{Bonferroni,box}(X) \text{ contains } \Theta) > 1 - \alpha,$$

the bounding box can be considered a 1 - \propto confidence region for Θ , but is very conservative with actual confidence level

 $P(R_{Bounding box}(X) contains \Theta) >> 1 - \alpha$

Ιf

$$\mathsf{R}(\mathbf{X}) = \{ \mathbf{\Theta} \mid (\mathbf{\Theta} - \hat{\mathbf{\Theta}})' \hat{\mathsf{V}} [\hat{\mathbf{\Theta}}]^{-1} (\mathbf{\Theta} - \hat{\mathbf{\Theta}}) \leq \mathsf{K}_{\alpha}^{2} \},$$

is an ellipsoidal confidence region then its bounding box is centered at $\hat{\Theta}$ with edges parallel with lengths $2K_{\alpha}\sqrt{\hat{\sigma}_{\hat{e_i}}}$.

As usual

$$K_{\alpha} = \chi_{q}(\alpha) = \sqrt{\{\chi_{q}^{2}(\alpha)\}}$$
 (large sample)

$$K_{\alpha} = \sqrt{\{(qf_e/(f_e-q+1))F_{q,f_e-q+1}(\alpha)\}}$$
 (small)

• This is the same shape -- but larger -- as the box-shaped confidence region obtained by Bonferronizing separate tests of each θ_{j} .

The lengths of the sides of the "Bonferroni" box are

$$2 \times z(\alpha'/2) \hat{\sigma}_{\hat{\theta_j}} \text{ or } 2 \times t_{f_e}(\alpha'/2) \hat{\sigma}_{\hat{\theta_j}}$$

 $\alpha' = \alpha/q.$

 $q = number of parameters in <math>\theta$, and might not be p = number of variables.

The sides of the bounding box define simultaneous confidence limits for the parameters, since

 $P(\hat{\theta_{j}} - K\hat{\sigma}_{\hat{\theta_{i}}} \leq \theta_{j} \leq \hat{\theta_{j}} + K\hat{\sigma}_{\hat{\theta_{i}}}, j = 1,...q\} =$ $P(R_{bounding box}(X) contains \theta) >> 1 - \alpha$

Generally, these are very conservative confidence limits (confidence $>> 1 - \alpha$).

Here q = 2, $\Theta = \mu$, $\hat{\Theta} = \overline{X}$

Statistics 5401

I continued the simulation reported on before to estimate the actual confidence level of simultaneous confidence limits based on the bounding box.

Lecture 13

Estimated Confidence Levels

ρ	0	.9	.99
1 - â	.9702	0.9776	0.9848

These are unacceptably larger than the intended confidence $1 - \alpha = .95$.

Vocabulary

I refer to bounding box limits and their generalization to linear combinations of parameters as **ellipsoidal limits**.

17

Statistics 5401

October 5, 2005

With $\hat{\boldsymbol{\Theta}} = \overline{\mathbf{x}}$, and $\hat{\mathbf{V}}[\hat{\boldsymbol{\Theta}}] = (1/n)\mathbf{S}$,

•
$$\mathbf{l}_{i}$$
' $\hat{\mathbf{\theta}} = \overline{X_i} - \overline{X_i}$

•
$$\hat{\sigma}_{\mathbf{1}_{ij}'\hat{\mathbf{\theta}}} = \hat{\sigma}_{\overline{x_i}-\overline{x_j}} = \sqrt{\{\mathbf{1}_{ij}'\hat{\mathbf{V}}[\hat{\mathbf{\theta}}]\mathbf{1}_{ij}\}}$$

= $\sqrt{\{\hat{\mathbf{V}}_{ii}-2\hat{\mathbf{V}}_{ij}+\hat{\mathbf{V}}_{ij}\}} = \sqrt{\{(1/n)(s_{ii}-2s_{ij}+s_{jj})\}}$

You can use either

• "Ellipsoidal limits" (T2-based limits)

$$\mu_{i} - \mu_{j} = \overline{X_{i}} - \overline{X_{j}} \pm K_{\alpha} \sqrt{\{(1/n)(s_{ii}-2s_{ij}+s_{jj})\}}$$

with $K_{\alpha} = \sqrt{\{\chi_{\alpha}^{2}(\alpha)\}}$ (large sample) or $K_{\alpha} =$ $\sqrt{\{q \times f_e F_{q,f_e-q+1}(\alpha)\}}$ (small sample normal).

or

 Limits based on Bonferronized t or z $\mu_{i} - \mu_{j} = \overline{x_{i}} - \overline{x_{j}} \pm \widetilde{K}_{\alpha} \sqrt{\{(1/n)(s_{ii}-2s_{ij}+s_{jj})\}}$ $\widetilde{K}_{\alpha} = t_{\alpha,1}((\alpha/M)/2)$ or $\widetilde{K}_{\alpha} = z((\alpha/M)/2)$.

with Bonferronizing factor M = p(p-1)/2.

Comment: When p is large, M can be very large.

Suppose you are interested in M specific linear combinations \mathbf{l}_{i} ' $\mathbf{\theta}$, j = 1,...,M.

Lecture 13

You can estimate each $\mathbf{l}, \mathbf{\Theta}$ by $\mathbf{l}, \mathbf{\hat{\Theta}}$ with estimated standard error

$$\hat{\sigma}_{\mathbf{l}_{j} \cdot \hat{\mathbf{\theta}}} = \sqrt{\{\mathbf{l}_{j} \cdot \hat{\mathbf{V}}[\hat{\mathbf{\theta}}]\mathbf{l}_{j}\}}, j = 1,...,M$$

Example: In a repeated measures situation with mean vector μ , you might want to compare all M = p(p-1)/2 pairs μ , and μ. That is, you are interested in all these p(p-1)/2 linear combinations

$$\mu_{1} - \mu_{2}, \quad \mu_{1} - \mu_{3}, \quad \dots, \quad \mu_{1} - \mu_{p},$$

$$\mu_{2} - \mu_{3}, \quad \dots, \mu_{2} - \mu_{p}, \quad \dots \dots, \quad \mu_{p-1} - \mu_{p}$$

The p(p-1)/2 associated \mathbf{l}_{ii} 's are $\mathbf{l}_{12} = [1,-1,0,...0]', \mathbf{l}_{13} = [1,0,-1,...0]',...,$

 $\mathbf{l}_{10} = [1,0,...0,-1]',$

 $\mathbf{l}_{23} = [0,1,-1,...0]', ..., \mathbf{l}_{2p} = [0,1,...0,-1]',...,$

 $.\mathbf{1}_{p-1,p} = [0,0,0,...,0,1,-1]'$ (contrasts)

 $Note: \Theta_1 = \Theta_2 = ... = \Theta_q \iff \mathbf{l}_{ik}'\Theta = 0$, all j < k

Statistics 5401

October 5, 2005

Which intervals are shorter? Apparently, $\overline{\text{for}} \text{ M=p(p-1)/2}$, always the Bonferronized t or z. Here are plots against M of ratios

$$\widetilde{K}_{\alpha}/K_{\alpha} = \frac{t_{f_{e}}(.025/M)}{\sqrt{\{(p*f_{e}/(f_{e}-p+1))F_{p,f_{e}-p+1}(.05)\}}}$$

for $p = 3, 4, 5, 6 (M=3, 6, 10, 15), f_{g} = 50$ 0.8 p = 30.6 0.4 =3 = p(p-1)/21.2 0.8 0.6 p = 5

Ratio < 1 means Bonferroni intervals are shorter. For p = 3, only when M > 12 are ellipsoidal limits shorter. For p = 6, even with M = 50, Bonferroni limits are substantially shorter.

Statistics 5401

When all **1**, 's are contrasts, that is $\sum_{1 < k < q} \ell_{ki} = 0$, you get slightly shorter ellipsoidal limits, by replacing q by q -1, that is using

Lecture 13

$$K_{\alpha}' = \sqrt{\{(q-1)\times f_e F_{q-1,f_e-q+2}(\alpha)/(f_e-q+2)\}}$$

Here $f_e - q + 2 = f_e - (q-1) + 1$

Here is a plot against number of parameters q of ratio of interval lengths Bonferronized by M = q(q-1)/2 to these shorter ellipsoidal limits,

As the dimension goes up, Bonferroni limits improve relative to the ellipsoidal limits.

Conclusion: Never, except possibly for very large M, use the ellipsoidal limits for a set of M linear combinations or comparisons that has been selected before seeing the data. When M is large, use ellipsoidal limits only when $\widetilde{K}_{\alpha}/K_{\alpha} > 1.$

Ellipsoidal limits have one advantage: They can be used with any \mathbf{l} , including an $oldsymbol{\mathfrak{L}}$ selected after seeing the data. This is because they apply to all **1** simultaneously.

The ellipsoidal limits are similar to Sheffe multiple comparison limits.