Lecture 12

October 3, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall

Class Web Page

 $\label{limits} $$ $$ http://www.stat.umn.edu/~kb/classes/5401 $$ @ 2005 by Christopher Bingham $$$

Statistics 5401 Lecture 12

Bonferronized t vs Hotelling's T²

Both prescribe rules describing when you reject H_{n} .

Two-sample case with $H_0: \mu_1 = \mu_2$.

Hotelling's T2 test rule is:

Reject H_n when

Bonferronized t test rule is:

Reject H₀ when any

$$|t_i| > t((\alpha/p)/2)$$

with
$$t_j = (\overline{X_{j1}} - \overline{X_{j2}}) / \sqrt{\{\widehat{V_{jj}}[\overline{X_{j1}} - \overline{X_{j2}}]\}}$$

The null hypotheses are identical.

$$\hat{\mathbf{v}}_{jj}[\overline{\mathbf{X}_{j1}} - \overline{\mathbf{X}_{j2}}] = (1/n_1 + 1/n_2)\mathbf{S}_{jj}$$
 is a diagonal element of $\hat{\mathbf{V}}[\overline{\mathbf{X}_1} - \overline{\mathbf{X}_2}] = (1/n_1 + 1/n_2)\mathbf{S}_{pooled}$

Statistics 5401

Lecture 12

October 3, 2005

Statistics 5401

Lecture 12

October 3, 2005

October 3, 2005

Advantages of Bonferronized t

- Easy to compute, well understood
- When you reject H_o (because at least one $|t_j|$ is large), you know how H_o appears to be violated because you know which t-statistics are significant.
- Weaker assumptions: univariate normality and equality of σ_{ii} 's not ρ_{ik} 's.
- When you have no good reason to believe the variances are equal, you can use the "unpooled" t-statistics

$$t_j = (\overline{x}_{j1} - \overline{x}_{j2}) / \sqrt{\{\hat{V}[\overline{x}_{j1}] + \hat{V}[\overline{x}_{j1}]\}}, \text{ with}$$

$$df = \frac{2\{\hat{V}[\overline{X}_{j1}] + \hat{V}[\overline{X}_{j2}]\}^{2}}{\hat{V}[\overline{X}_{j1}]^{2}/(n_{1}-1) + \hat{V}[\overline{X}_{j2}]^{2}/(n_{2}-1)}$$
$$\hat{V}[\overline{X}_{jk}] = s_{jj}^{(k)}/n_{k}, k = 1, 2$$

There is no easy "fix" for T^2 when you can't assume $\Sigma_1 = \Sigma_2$.

Disadvantages of Bonferronized t

- Bonferronized t can give different result from T²
- It can give different results when you replace the original p variables by p linear combinations y_i = a_i'x, j = 1,...,p.

That is $\mathbf{x} \to \mathbf{y} = \mathbf{A}\mathbf{x} = [\mathbf{a}_{1}'\mathbf{x}, ..., \mathbf{a}_{p}'\mathbf{x}]$ where $\mathbf{A} = [\mathbf{a}_{1}, ..., \mathbf{a}_{p}]'$ is p×p and <u>invertible</u>.

Example:
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & -1 & 0 & 0 & \dots & 0 \\ 1 & 1 & -2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & \dots & -(p-1) \end{bmatrix}$$

$$y_{1} = \mathbf{a}_{1}' \mathbf{x} = x_{1} + x_{2} + \dots + x_{p},
y_{2} = \mathbf{a}_{2}' \mathbf{x} = x_{1} - x_{2},
y_{3} = \mathbf{a}_{3}' \mathbf{x} = 2\{(x_{1} + x_{2})/2 - x_{3}\}, \dots
y_{p} = \mathbf{a}_{p}' \mathbf{x} = (p-1)\{(x_{1} + \dots + x_{p-1})/(p-1) - x_{p}\}$$

This might be useful with repeated measures data.

3

4

Two sample case:

$$\begin{split} & \mu_{\boldsymbol{y}_1} \; = \; \boldsymbol{A} \, \mu_{_{1}}, \; \mu_{_{\boldsymbol{y}_2}} \; = \; \boldsymbol{A} \, \mu_{_{2}}, \\ & \mu_{_{1}} \; = \; \boldsymbol{A}^{_{-1}} \, \mu_{_{\boldsymbol{y}_1}}, \; \mu_{_{2}} \; = \; \boldsymbol{A}^{_{-1}} \, \mu_{_{\boldsymbol{y}_2}}. \end{split}$$

Thus H_0 : $\mu_1 = \mu_2$ and H_0 : $\mu_{y_1} = \mu_{y_2}$ are essentially the same.

For Hotelling's T²

• $(T^2 \text{ based on } \mathbf{x}) = (T^2 \text{ based on } \mathbf{y} = \mathbf{A}\mathbf{x}).$

Lecture 12

• Conclusions about $H_0: \mu_1 = \mu_2$ will be the same whether you analyze \mathbf{x} or \mathbf{y} .

But for Bonferronized t

- The t's computed from $\{y_j = a_j'x\}$ will almost certainly not be the same as the t's computed from $\{x_i\}$.
- The conclusions from ${\bf y}$ can differ from the conclusions from ${\bf x}$.

Power issues

Depending on

- Σ
- and
- the actual mean vector or vectors,

 T^2 may have <u>higher</u> or <u>lower</u> power than Bonferronized t.

- When some correlations ρ_{ij} are large, T^2 may be much $\underline{more\ powerful}$ (more likely to reject $H_o)$ than Bonferronized t
- For some alternative hypothesis H_a , particularly when one element of μ or μ_1 μ_2 is large and the others are small, Bonferronized t may have larger power than T^2 .

Statistics 5401 Lecture 12

October 3, 2005

Statistics 5401

Lecture 12

October 3, 2005

Simultaneous estimation

Suppose you are estimating q unknown parameters $\theta_1, \dots, \theta_q$, say q means, <u>simul-taneously</u>, that is, *in parallel*.

Let
$$\Theta = [\Theta_1, ..., \Theta_n]'$$
.

Example: 1 sample multivariate mean μ

- q = p = dimension of x
- $\Theta = \mu$ with $\Theta_i = \mu_i$, j = 1, ... p

A **point estimate** of Θ is a vector $\hat{\Theta} = \hat{\Theta}(X)$ computed from data X which is a "good (?) guess" for the value of Θ .

In some cases the best *point estimate* of Θ is the vector of the best univariate estimates of each Θ .

Example (continued):

Estimate
$$\mu$$
 by $\hat{\mu} = \overline{\mathbf{x}} = [\overline{\mathbf{x}_1}, \overline{\mathbf{x}_2}, ..., \overline{\mathbf{x}_p}]'$.
Here $\hat{\theta_i} = \hat{\mu_i} = \overline{\mathbf{x}_i}$.

Even in this simple case, Stein showed that $\overline{\mathbf{x}}$ was not an "admissible" estimator with p > 2, in the sense that with respect to one criterion, you can always find a "better" estimator thatn $\overline{\mathbf{x}}$.

Nonetheless, we will ignore the problem.

Statistics 5401

A point estimate $\hat{\boldsymbol{\theta}}$ is not enough. Tiy aksi want to know which values of $\boldsymbol{\Theta}$ are <u>plausible</u> in light of X, that is which $(\theta_1,$..., θ_{a}) are <u>not inconsistent</u> with the data.

Lecture 12

For q = 1, you usually use interval estimation. In frequentist statistics this is a <u>confidence interval</u> (θ_{1}, θ_{1}) , where $\theta_{i} = \theta_{i}(\mathbf{X})$ and $\theta_{ij} = \theta_{ij}(\mathbf{X})$ are random variables computed from data X. The interval is random.

Generally (θ_1, θ_1) encloses $\hat{\theta}$, that is $\theta_{\perp} \leq \hat{\theta} \leq \theta_{\perp}$.

Often $\Theta_{L} = \hat{\Theta} - K\hat{\sigma}_{\hat{\theta}}, \Theta_{U} = \hat{\Theta} + K\hat{\sigma}_{\hat{\theta}}, K=t \text{ or } z$ where K is a critical value. Kôa is the margin of error.

When estimating a scale parameters, θ_{l} = $\hat{\Theta}/K_1$, $\Theta_H = \hat{\Theta}/K_2$ with $K_1 > 1$ and $K_2 < 1$.

October 3, 2005 Statistics 5401

With a *vector* $\boldsymbol{\Theta}$ = $[\boldsymbol{\theta}_{\scriptscriptstyle 1}, \, \boldsymbol{\theta}_{\scriptscriptstyle 2}, \, ..., \, \boldsymbol{\theta}_{\scriptscriptstyle d}]$ of q parameters, you could work with each θ_i confidence intervals $(\theta_{ii}, \theta_{ii})$ for each θ_{i} :

$$\Theta_{ii} = \Theta_{ii}(\mathbf{X}), \ \Theta_{iii} = \Theta_{iii}(\mathbf{X}), \ i = 1,...,q.$$

With q intervals, any of which might not contain the true θ_i , there is an increased probability that at least one of the intervals does not contain the true Θ_i.

That means

 $P(all \text{ intervals contain their } \theta_i) =$ $P(\theta_{1L} \leq \theta_{1} \leq \theta_{1U}, ..., \theta_{qL} \leq \theta_{qU} \leq \theta_{qU}) \approx 1 - q \propto << 1 - q$

so you would not have high simultaneous confidence.

This is the multiple confidence interval problem.

The **defining property** for $(\theta_1, \theta_2) =$ $(\theta_{I}(X), \theta_{II}(X))$ to be a <u>confidence interval</u> with confidence level 1 - ∠ is

$$P((\theta_{L}, \theta_{U}) \text{ encloses } true \theta) \ge 1 - \alpha$$

where "encloses" means $\theta_{L} \le \theta \le \theta_{U}$

This has meaning because (θ_1, θ_2) is a random interval.

Often, "> 1- α " is actually "= 1- α ".

When P(encloses) > 1 - α , the interval is conservative.

A confidence interval gives a reasonably clear idea of how far $\hat{\Theta}$ might be from Θ .

It also gives an idea as to how far θ might be from $\hat{\theta}$.

Note the switch of Θ and $\widehat{\Theta}$.

Statistics 5401

If the $\{\theta_{ij}\}$ and $\{\theta_{ij}\}$ are computed so that $P(\theta_{1L} \leq \theta_{1} \leq \theta_{1U} \text{ and } \dots \text{ and } \theta_{qL} \leq \theta_{q} \leq \theta_{qU}) \geq 1 - \alpha$

October 3, 2005

the intervals $(\theta_{ij}, \theta_{ij})$, i = 1,...,q are called simultaneous confidence intervals with confidence level $\geq 1 - \alpha$.

You can accomplish this is by Bonferronizing univariate confidence intervals, that is using $\alpha' = \alpha/q$ to compute each interval (individual confidence level 1 - α/q). Then

1 -
$$P(\theta_{1L} \le \theta_{1} \le \theta_{1U}, ..., \theta_{qL} \le \theta_{q} \le \theta_{qU}) = P((\theta_{iL}, \theta_{iU}) \text{ does } not \text{ contain } \theta_{i} \text{ for some } i)$$

 $< q \alpha' = \alpha,$

SO

$$P(\theta_{1L} \!\!\!\!\! \leq \theta_{1} \!\!\!\! \leq \!\!\!\! \theta_{1U}, \; ..., \; \theta_{qL} \!\!\! \leq \!\!\!\! \theta_{qU} \!\!\!\! \leq \!\!\!\! \theta_{qU}) \geq 1 \; - \; \boldsymbol{\alpha}$$

so the simultaneous confidence level is at least 1 - ∝.

11

Confidence regions

Lecture 12

- Suppose $\Theta = [\Theta_1, \Theta_2, ..., \Theta_q]'$ is a vector of q unknown parameters.
- Let R(X) be a q dimensional region (area, volume, etc.) that depends on a data matrix X.

For any Θ , when you know X, you can determine whether or not Θ is in R(X).

Since X is random

- R(X) is random
- For each θ, whether R(X) contains θ
 is random event with some probability.

When p = 1, R(X) is usually the interval: $R(X) = \{ \theta \mid \theta_{\downarrow}(X) \leq \theta \leq \theta_{\downarrow}(X) \}$

between confidence limits θ_L and θ_U . In higher dimensions, $R(\mathbf{X})$ can have a variety of shapes, including (hyper) rectangular or ellipsoidal.

Definition

R(X) is a 1 - α confidence region for Θ if P(R(X) contains $\Theta) \ge 1$ - α , for all Θ

When q > 1, useful confidence regions are usually

- bounded
- connected
- have no holes.

Statistics 5401

Lecture 12

13

October 3, 2005

Statistics 5401

14 Lecture 12

October 3, 2005

Shapes

• Ellipses (p = 2) or ellipsoids (p > 2) $\{\theta \mid (\theta - \hat{\theta})'Q(X)^{-1}(\theta - \hat{\theta}) \leq K^2\}$

 $\mathbf{Q}(\mathbf{X})$ is an invertible matrix which depends on sample size usually on the data \mathbf{X} .

The region R(X) consists of the <u>interior</u> and <u>boundary</u> of the ellipse.

Q(X) will usually be $\hat{V}[\hat{\Theta}]$.

For example, Q(X) = S/n when $\Theta = \mu$ and $\hat{\Theta} = \overline{x}$.

"Boxes": rectangles when p = 2, rectangular boxes when p=3, or their generalization to p > 3:

$$\{\mathbf{\Theta} \mid \left[\mathbf{\Theta}_{i} - \widehat{\mathbf{\Theta}_{i}} \right] \leq k_{i}(\mathbf{X}), i = 1,...,q \}$$

$$\theta_{2} \mid \underbrace{-2k_{i}(\mathbf{X})}_{\mathbf{Rectangle}} \uparrow \\ \underbrace{\hat{\theta}_{1}, \hat{\theta}_{2}}_{\mathbf{Rectangle}} \theta_{1}$$

where $k_i(\mathbf{X})$ are numbers computed from the data and critical values, for instance $k_i(\mathbf{X}) = t_{n-1}((\alpha/p)/2)\sqrt{\{s_{ii}/n\}\}}$

Other shapes might be

Shapes like the one on the right arise in non-linear problems.

Relationship of confidence regions and tests

Lecture 12

Suppose for *every* value θ^* of θ there is a test statistic $T(X, \theta^*)$ and critical value designed to test $H_0(\Theta^*)$: $\Theta = \Theta^*$ at significance level ⊲. Then

$$R(X) = \{\Theta \mid H_0(\Theta) \text{ not rejected by } T(X,\Theta)\}$$

is a 1 - α confidence region for θ .

Why?

The true value Θ is contained in R(X)when and only when $H_n(\Theta)$ is not rejected and this occurs with probability $1 - \alpha$.

Conversely, when R(X) is a 1 - α confidence region it defines a significance level α test of H_0 : $\theta = \theta_0$:

"Reject H_n if Θ_n is not in R(X)" When H_0 is true, $P(\text{reject } H_0) \leq \alpha$

Statistics 5401

Lecture 12

October 3, 2005

The confidence region R(X) corresponding to T^2 consists of all Θ you would not reject $(T^2(\boldsymbol{\theta}) \leq K_{\alpha}^2)$

$$R(\mathbf{X}) = \{ \mathbf{\Theta} \mid \mathsf{T}^{2}(\mathbf{\Theta}) \leq \mathsf{K}_{\alpha}^{2} \}$$

$$= \{ \mathbf{\Theta} \mid (\widehat{\mathbf{\Theta}} - \mathbf{\Theta})' \{ \widehat{\mathsf{V}}[\widehat{\mathbf{\Theta}}] \}^{-1} (\widehat{\mathbf{\Theta}} - \mathbf{\Theta}) \leq \mathsf{K}_{\alpha}^{2} \}$$

$$= \{ \mathbf{\Theta} \mid (\mathbf{\Theta} - \widehat{\mathbf{\Theta}})' \{ \widehat{\mathsf{V}}[\widehat{\mathbf{\Theta}}] \}^{-1} (\mathbf{\Theta} - \widehat{\mathbf{\Theta}}) \leq \mathsf{K}_{\alpha}^{2} \}$$

Note the swap of Θ in $\hat{\Theta}$ in this last.

- R(X) is an ellipsoid
- R(X) is centered at $\hat{\Theta}$
- R(X) has shape and orientation determined by the eigenvalues and vectors of $\hat{V}[\hat{\boldsymbol{\theta}}]$
- R(X) has size proportional to K_{α} .

Note: In the formula for an ellipsoid

$$E = \{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_0)' \mathbf{Q}^{-1} (\mathbf{x} - \mathbf{x}_0) \leq \mathbf{K}^2 \},$$

$$\mathbf{x} = \mathbf{\Theta}, \ \mathbf{x}_{0} = \hat{\mathbf{\Theta}} \text{ and } \mathbf{Q} = \hat{\mathbf{V}}[\hat{\mathbf{\Theta}}].$$

Shape of a confidence region based on Hotelling's T2 test

Suppose a test of H_0 : $\Theta = \Theta_0$ is

Reject H_0 when $T^2 = T^2(\boldsymbol{\theta}_0) = T^2(\boldsymbol{\theta}_0, \mathbf{X}) > K_{\alpha}^2$ where $T^2(\boldsymbol{\theta}_n, \mathbf{X}) = (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_n)^{r} \{\hat{\boldsymbol{V}}[\hat{\boldsymbol{\theta}}]\}^{-1} (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_n)$ with

$$K_{\alpha}^{2} = \chi_{\alpha}^{2}(\alpha) (large n)$$

$$K_{\alpha}^{2} = \{(f_{e}q)/(f_{e}-q+1)\}F_{q,f_{e}-q+1}(\alpha) (\underline{small} n)$$

 $f_a = n-1$ or n_1+n_2-2 , or whatever is appropriate.

When do you use small as opposed to large sample critical values?

In my opinion, you use the small sample critical value whenever f is defined and you can determine $F_{q,f_{a}-q+1}(\alpha)$.

That is, essentially always.

Statistics 5401

October 3, 2005

When $\hat{V}[\hat{\boldsymbol{\theta}}] = c \times S$, with c = 1/n (1 sample) or $c = 1/n_1 + 1/n_2$ (2 sample), say,

- $\hat{V}[\hat{\boldsymbol{\theta}}]$ has the same eigenvectors as S
- The eigenvalues of $\hat{V}[\hat{\boldsymbol{\theta}}]$ are $c \times \lambda_i$, where λ , are eigenvalues of **S**
- Lengths of axes are $2K_{\chi}\sqrt{\{c\times\lambda_{i}\}}$.
- \Rightarrow orientation and shape of R(X) is determined by the eigenvectors and eigenvalues λ_i of **S**.
- The "cloud of points" in a scatter plot of the data will have the same shape orientation as a confidence ellipse for the mean.
- The cloud of points will be larger than the confidence ellipse.

Shape of a confidence region corresponding to Bonferronized z- or t-tests

A confidence region R(**X**) related to q Bonferronized t- or z-tests of H_0 : $\theta = \theta_0$ $((\hat{\theta_j} - \theta_{0j})/\hat{\sigma}_{\hat{\theta_j}})$ j = 1, ..., q, is

$$R(\mathbf{X}) = \{ \mathbf{\Theta} \mid \hat{\boldsymbol{\theta}_{j}} - K_{\alpha} \times \hat{\boldsymbol{\sigma}_{\hat{\boldsymbol{\theta}_{j}}}} \leq \boldsymbol{\theta}_{j} \leq \hat{\boldsymbol{\theta}_{j}} + K_{\alpha} \times \hat{\boldsymbol{\sigma}_{\hat{\boldsymbol{\theta}_{j}}}}, j = 1, ..., q \},$$
with

 $K_{\alpha} = t_{f_{\alpha}}(\alpha'/2)$ or $K_{\alpha} = z(\alpha'/2)$, $\alpha' = \alpha/q$ R(**X**) is rectangular or "box shaped".

When q = 2, R(X) is

a rectangle centered at $\hat{\mathbf{\Theta}}$ with sides having lengths $k_i(\mathbf{X}) = 2K_{\alpha} \times \hat{\sigma}_{\hat{e_i}}$:

When q = 3, R(**X**) is

a box with sides $k_{j}(\mathbf{X}) = 2 \times K_{\alpha} \times \hat{\sigma}_{\hat{\theta}_{j}}$.

The length $2K_{\alpha} \times \hat{\sigma}_{\hat{\theta_{j}}}$ of dimension j of the box is proportional to the *estimated* standard error $\hat{\sigma}_{\hat{\theta_{j}}}$ of $\hat{\theta_{j}}$.

- $\hat{\sigma}_{\hat{\theta}_i}^2$ is a diagonal element of $\hat{V}[\hat{\boldsymbol{\theta}}]$.
- Smaller $\alpha \Rightarrow larger K_{\alpha} \Rightarrow larger box$
- The area or volume of the box is proportional to $(K_{\alpha})^{q}$.

21

Statistics 5401

Lecture 12

October 3, 2005

Statistics 5401

Lecture 12

22

October 3, 2005

For box-shaped confidence regions,

 $P(R(X) \text{ contains } \theta) \ge 1 - \alpha$

with inequality (> 1 - α) when p > 1

Example:

When $\theta_j = \mu_j$ and $\hat{\pmb{\theta}} = \overline{\pmb{x}}$, so q = p, the dimensions of the box are proportional to the standard errors

$$\hat{\sigma}_{\overline{x_j}} = \sqrt{(s_{jj}/n)} = \sqrt{(s_j^2/n)} = s_j/\sqrt{n}$$
,
 $s_{jj} = s_j^2 = \text{the sample variance of } x_j$.

Here

• $K_{\alpha} = Z(\alpha'/2)$

$$k_j(\mathbf{X}) = 2K_{\alpha}\hat{\sigma}_{\overline{x_j}} = 2K_{\alpha}\sqrt{(s_{jj}/n)}, j = 1,...,p$$
 with

•
$$K_{\alpha} = t_{f_e}(\alpha'/2)$$
 small sample or

<u>large sample</u>

where Bonferronized $\alpha' = \alpha/p$

Summary

 Box shaped confidence regions based on Bonferronized z-tests or -t-tests

$$R(X) =$$

$$\{\boldsymbol{\Theta} \; \middle| \; \boldsymbol{\hat{\boldsymbol{\theta}_{j}}} \text{-} \; \boldsymbol{\widetilde{\boldsymbol{K}}_{\alpha}} \times \boldsymbol{\hat{\boldsymbol{\sigma}_{\hat{\boldsymbol{\theta}_{j}}}}} \leq \; \boldsymbol{\boldsymbol{\theta}_{j}} \; \leq \; \boldsymbol{\hat{\boldsymbol{\theta}_{j}}} \text{+} \; \boldsymbol{\widetilde{\boldsymbol{K}_{\alpha}}} \times \boldsymbol{\hat{\boldsymbol{\sigma}_{\hat{\boldsymbol{\theta}_{j}}}}}, \; j = 1 \; , \dots, q \} \; ,$$

with

$$\widetilde{K}_{\alpha} = t_{f_{\alpha}}(\alpha'/2) \text{ or } \widetilde{K}_{\alpha} = z(\alpha'/2), \alpha' = \alpha/q$$

 $\boldsymbol{\hat{\sigma}_{e_i}}$ is the estimated standard error of $\boldsymbol{\hat{\theta_j}}.$

The shape is determined by the values of $\hat{\sigma}_{e_i}^2$, the *diagonal* elements of $\hat{V}[\hat{\boldsymbol{\theta}}]$.

• Ellipsoidal confidence regions based on Hotelling's T² test:

$$R(\mathbf{X}) = \{ \mathbf{\Theta} \mid (\mathbf{\Theta} - \widehat{\mathbf{\Theta}})' \{ \widehat{\mathbf{V}} [\widehat{\mathbf{\Theta}}] \}^{-1} (\mathbf{\Theta} - \widehat{\mathbf{\Theta}}) \leq K_{\alpha}^{2} \},$$

$$K_{\alpha}^{2} = \chi_{q}^{2} (\alpha) \text{ or } \{ (f_{e}q)/(f_{e}-q+1) \} F_{q,f_{e}-q+1} (\alpha).$$

The *shape* is determined by *eigenvalues* of $\hat{V}[\hat{\boldsymbol{\theta}}]$. The *orientation* is determined by the *eigenvectors* of $\hat{V}[\hat{\boldsymbol{\theta}}]$.