Displays for Statistics 5401/8401

Lecture 12

October 3, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall

Class Web Page

http://www.stat.umn.edu/~kb/classes/5401 © 2005 by Christopher Bingham Statistics 5401 Lecture 12

Bonferronized t vs Hotelling's T²

October 3, 2005

Both prescribe rules describing when you reject ${\rm H}_{\rm o}.$

Two-sample case with H_0 : $\mu_1 = \mu_2$.

Hotelling's T² test rule is:

Reject Howhen

$$\mathsf{T}^2 = (\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2)' \widehat{\mathsf{V}} [\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2]^{-1} (\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2) \ge \mathsf{T}^2(\alpha)$$

Bonferronized t test rule is:

Reject Howhen any

$$|t_i| > t((\alpha/p)/2)$$

with
$$t_j = (\overline{X}_{j1} - \overline{X}_{j2}) / \sqrt{\{\hat{V}_{jj}[\overline{X}_{j1} - \overline{X}_{j2}]\}}$$

The null hypotheses are identical.

$$\hat{\mathbf{v}}_{jj}[\overline{\mathbf{x}}_{j1} - \overline{\mathbf{x}}_{j2}] = (1/n_1 + 1/n_2)\mathbf{s}_{jj}$$
 is a diagonal element of $\hat{\mathbf{v}}[\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2] = (1/n_1 + 1/n_2)\mathbf{s}_{pooled}$

Statistics 5401 Lecture 12 October 3, 2005 Statistics 5401 Lecture 12 October 3, 2005

Advantages of Bonferronized t

- Easy to compute, well understood
- When you reject H_o (because at least one $|t_j|$ is large), you know how H_o appears to be violated because you know which t-statistics are significant.
- Weaker assumptions: univariate normality and equality of σ_{ii} 's not ρ_{jk} 's.
- When you have no good reason to believe the variances are equal, you can use the "unpooled" t-statistics

$$t_{j} = (\overline{x}_{j1} - \overline{x}_{j2}) / \sqrt{\{\hat{V}[\overline{x}_{j1}] + \hat{V}[\overline{x}_{j1}]\}}, \text{ with}$$

$$df = \frac{2\{\hat{V}[\overline{X}_{j1}] + \hat{V}[\overline{X}_{j2}]\}^{2}}{\hat{V}[\overline{X}_{j1}]^{2}/(n_{1}-1) + \hat{V}[\overline{X}_{j2}]^{2}/(n_{2}-1)}$$
$$\hat{V}[\overline{X}_{ik}] = s_{ii}^{(k)}/n_{k}, k = 1, 2$$

There is no easy "fix" for T^2 when you can't assume $\Sigma_1 = \Sigma_2$.

Disadvantages of Bonferronized t

- Bonferronized t can give different result from T²
- It can give different results when you replace the original p variables by p linear combinations y_i = a_i'x, j = 1,...,p.

That is $\mathbf{x} \to \mathbf{y} = \mathbf{A}\mathbf{x} = [\mathbf{a}_1'\mathbf{x}, ..., \mathbf{a}_p'\mathbf{x}]$ where $\mathbf{A} = [\mathbf{a}_1, ..., \mathbf{a}_p]'$ is $\mathbf{p} \times \mathbf{p}$ and <u>invertible</u>.

Example: A =
$$\begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & -1 & 0 & 0 & \dots & 0 \\ 1 & 1 & -2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & \dots & -(p-1) \end{bmatrix}$$

$$y_1 = \mathbf{a}_1' \mathbf{x} = x_1 + x_2 + \dots + x_p,$$

 $y_2 = \mathbf{a}_2' \mathbf{x} = x_1 - x_2,$
 $y_3 = \mathbf{a}_3' \mathbf{x} = 2\{(x_1 + x_2)/2 - x_3\}, \dots$
 $y_p = \mathbf{a}_p' \mathbf{x} = (p-1)\{(x_1 + \dots + x_{p-1})/(p-1) - x_p\}$

This might be useful with repeated measures data.

Two sample case:

$$\mu_{y_1} = A \mu_1, \mu_{y_2} = A \mu_2,
\mu_1 = A^{-1} \mu_{y_1}, \mu_2 = A^{-1} \mu_{y_2}.$$

Thus H_0 : $\mu_1 = \mu_2$ and H_0 : $\mu_{y_1} = \mu_{y_2}$ are essentially the same.

For Hotelling's T²

- $(T^2 \text{ based on } \mathbf{x}) = (T^2 \text{ based on } \mathbf{y} = \mathbf{A}\mathbf{x}).$
- Conclusions about $H_0: \mu_1 = \mu_2$ will be the same whether you analyze \mathbf{x} or \mathbf{y} .

But for Bonferronized t

- The t's computed from $\{y_j = \mathbf{a}_j '\mathbf{x}\}$ will almost certainly not be the same as the t's computed from $\{x_i\}$.
- The conclusions from y can differ from the conclusions from x.

Power issues

October 3, 2005

Depending on

- Σ
- the actual mean vector or vectors,

T² may have <u>higher</u> or <u>lower</u> power than Bonferronized t.

- When some correlations ρ_{ij} are large, T^2 may be much <u>more powerful</u> (more likely to reject H_0) than Bonferronized t
- For some alternative hypothesis H_a , particularly when one element of μ or $\mu_1 \mu_2$ is large and the others are small, Bonferronized t may have larger power than T^2 .

Simultaneous estimation

Suppose you are estimating q unknown parameters $\theta_1,...,\theta_q$, say q means, <u>simul-taneously</u>, that is, *in parallel*.

Let
$$\boldsymbol{\Theta} = [\boldsymbol{\Theta}_1, ..., \boldsymbol{\Theta}_q]'$$
.

Example: 1 sample multivariate mean μ

- q = p = dimension of x
- $\Theta = \mu$ with $\Theta_i = \mu_i$, j = 1, ... p

A **point estimate** of Θ is a vector $\hat{\Theta} = \hat{\Theta}(\mathbf{X})$ computed from data \mathbf{X} which is a "good (?) guess" for the value of Θ .

In some cases the best *point estimate* of Θ is the vector of the best univariate estimates of each Θ_i .

Example (continued):

Estimate
$$\mu$$
 by $\hat{\mu} = \overline{\mathbf{x}} = [\overline{\mathbf{x}}_1, \overline{\mathbf{x}}_2, ..., \overline{\mathbf{x}}_p]'$.
Here $\hat{\theta}_i = \hat{\mu}_i = \overline{\mathbf{x}}_i$.

Even in this simple case, Stein showed that $\overline{\mathbf{x}}$ was not an "admissible" estimator with p > 2, in the sense that with respect to one criterion, you can always find a "better" estimator that $\overline{\mathbf{x}}$.

Nonetheless, we will ignore the problem.

Lecture 12

October 3, 2005

Statistics 5401

Lecture 12

October 3, 2005

A point estimate $\hat{\mathbf{\Theta}}$ is not enough. Tiy aksi want to know which values of $\mathbf{\Theta}$ are plausible in light of \mathbf{X} , that is which $(\mathbf{\Theta}_1, \ldots, \mathbf{\Theta}_q)$ are not inconsistent with the data.

For q = 1, you usually use *interval* estimation. In frequentist statistics this is a <u>confidence interval</u> (θ_L, θ_U) , where $\theta_L = \theta_L(\mathbf{X})$ and $\theta_U = \theta_U(\mathbf{X})$ are random variables computed from data \mathbf{X} . The <u>interval is random</u>.

Generally (θ_{L}, θ_{U}) *encloses* $\hat{\theta_{L}}$, that is $\theta_{L} \leq \hat{\theta} \leq \theta_{U}$.

Often $\Theta_{L} = \hat{\Theta} - K\hat{\sigma}_{\hat{\theta}}$, $\Theta_{U} = \hat{\Theta} + K\hat{\sigma}_{\hat{\theta}}$, K=t or z where K is a *critical value*. $K\hat{\sigma}_{\hat{\theta}}$ is the margin of error.

When estimating a scale parameters, $\Theta_{L} = \hat{\Theta}/K_{1}$, $\Theta_{H} = \hat{\Theta}/K_{2}$ with $K_{1} > 1$ and $K_{2} < 1$.

The **defining property** for $(\theta_{L}, \theta_{U}) = (\theta_{L}(\mathbf{X}), \theta_{U}(\mathbf{X}))$ to be a <u>confidence interval</u> with *confidence level* 1 - α is

 $P((\theta_L, \theta_U) \text{ encloses } true \theta) \ge 1 - \alpha$ where "encloses" means $\theta_L \le \theta \le \theta_U$

This has meaning because (θ_{L}, θ_{U}) is a random interval.

Often, " $\geq 1-\alpha$ " is actually "= 1-\alpha".

When P(encloses) > 1 - α , the interval is conservative.

A confidence interval gives a reasonably clear idea of how far $\hat{\theta}$ might be from θ .

It also gives an idea as to how far θ might be from $\hat{\theta}$.

Note the switch of Θ and $\widehat{\Theta}$.

With a vector $\boldsymbol{\Theta} = [\boldsymbol{\Theta}_1, \, \boldsymbol{\Theta}_2, \, ..., \, \boldsymbol{\Theta}_q]'$ of q parameters, you could work with each $\boldsymbol{\Theta}_i$ separately, and compute individual $1 - \boldsymbol{\alpha}$ confidence intervals $(\boldsymbol{\Theta}_{ii}, \boldsymbol{\Theta}_{iii})$ for each $\boldsymbol{\Theta}_i$:

$$\Theta_{iL} = \Theta_{iL}(\mathbf{X}), \ \Theta_{iU} = \Theta_{iU}(\mathbf{X}), \ i = 1,...,q.$$

With q intervals, any of which might not contain the true θ_j , there is an increased probability that at least one of the intervals does not contain the true θ_i .

That means

 $P(all \text{ intervals contain their } \theta_i) = P(\theta_{1L} \leq \theta_{1U}, \dots, \theta_{qL} \leq \theta_{qU}) \approx 1 - q \ll << 1 - q \ll < 1 - q \ll 1 - q \ll < 1 - q \ll 1 - q$

so you would not have high *simultaneous* confidence.

This is the multiple confidence interval problem.

If the $\{\theta_{iL}\}$ and $\{\theta_{iU}\}$ are computed so that $P(\theta_{1L} \leq \theta_{1} \leq \theta_{1U} \text{ and } ... \text{ and } \theta_{qL} \leq \theta_{qU}) \geq 1 - \alpha$ the intervals $(\theta_{iL}, \theta_{iU})$, i = 1,...,q are called simultaneous confidence intervals with confidence level $\geq 1 - \alpha$.

You can accomplish this is by *Bonfer-ronizing* univariate confidence intervals, that is using $\alpha' = \alpha/q$ to compute each interval (individual confidence level 1 - α/q). Then

1 - $P(\theta_{1L} \le \theta_{1} \le \theta_{1U}, ..., \theta_{qL} \le \theta_{q} \le \theta_{qU}) =$ $P((\theta_{iL}, \theta_{iU}) \text{ does } not \text{ contain } \theta_{i} \text{ for some } i)$ $\le q < 0$

SO

$$P(\theta_{1L} \leq \theta_{1} \leq \theta_{1U}, \dots, \theta_{qL} \leq \theta_{q} \leq \theta_{qU}) \geq 1 - \alpha$$

so the simultaneous confidence level is at least $1 - \alpha$.

Confidence regions

Lecture 12

- Suppose $\Theta = [\Theta_1, \Theta_2, ..., \Theta_q]'$ is a vector of q unknown parameters.
- Let R(X) be a q dimensional region (area, volume, etc.) that depends on a data matrix X.

For any Θ , when you know X, you can determine whether or not Θ is in R(X).

Since X is random

- R(X) is random
- For each Θ , whether R(X) contains Θ is random event with some probability.

When p = 1, R(X) is usually the interval: $R(X) = \{ \theta \mid \theta_{L}(X) \leq \theta \leq \theta_{U}(X) \}$

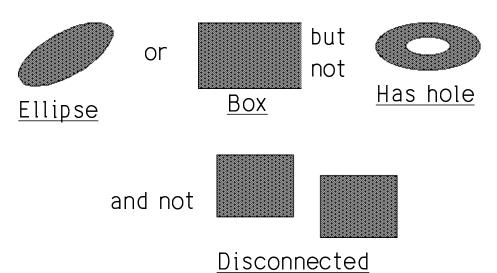
between confidence limits Θ_{L} and Θ_{U} . In higher dimensions, $R(\mathbf{X})$ can have a variety of shapes, including (hyper) rectangular or ellipsoidal.

Definition

R(X) is a 1 - α confidence region for Θ if P(R(X)) contains Θ) \geq 1 - α , for all Θ

When q > 1, useful confidence regions are usually

- bounded
- connected
- have no holes.



October 3, 2005

ber 3, 2005 Statistics 5401

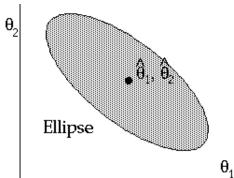
Lecture 12

October 3, 2005

Shapes

Lecture 12

• Ellipses (p = 2) or ellipsoids (p > 2) $\{\Theta \mid (\Theta - \widehat{\Theta})'Q(X)^{-1}(\Theta - \widehat{\Theta}) \leq K^2\}$



 $\mathbf{Q}(\mathbf{X})$ is an invertible matrix which depends on sample size usually on the data \mathbf{X} .

The region R(X) consists of the <u>interior</u> and <u>boundary</u> of the ellipse.

Q(X) will usually be $\hat{V}[\hat{\theta}]$.

For example, Q(X) = S/n when $\theta = \mu$ and $\hat{\theta} = \overline{x}$.

• "Boxes": rectangles when p = 2, rectangular boxes when p=3, or their generalization to p > 3:

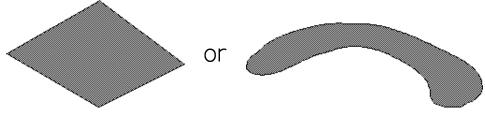
$$\{\boldsymbol{\Theta} \mid \boldsymbol{\Theta}_{i} - \boldsymbol{\Theta}_{i} \mid \leq k_{i}(X), i = 1,...,q\}$$

$$\boldsymbol{\theta}_{2} \mid \underbrace{-2k_{i}(X)}_{\text{Rectangle}} \boldsymbol{\theta}_{1}, \boldsymbol{\hat{\theta}}_{2} \mid \boldsymbol{\xi}_{1}$$

$$Rectangle \boldsymbol{\theta}_{2} \mid \boldsymbol{\theta}_{2}$$

where $k_i(\mathbf{X})$ are numbers computed from the data and critical values, for instance $k_i(\mathbf{X}) = t_{n-1}((\alpha/p)/2)\sqrt{\{s_{ii}/n\}\}}$

Other shapes might be



Shapes like the one on the right arise in non-linear problems.

Relationship of confidence regions and tests

Suppose for *every* value $\boldsymbol{\theta}^*$ of $\boldsymbol{\theta}$ there is a test statistic $T(\mathbf{X}, \boldsymbol{\theta}^*)$ and critical value designed to test $H_o(\boldsymbol{\theta}^*)$: $\boldsymbol{\theta} = \boldsymbol{\theta}^*$ at significance level $\boldsymbol{\alpha}$. Then

 $R(X) = \{ \Theta \mid H_0(\Theta) \text{ not rejected by } T(X,\Theta) \}$

is a 1 - \propto confidence region for Θ .

Why?

The true value Θ is contained in R(X) when and only when $H_{\circ}(\Theta)$ is *not* rejected and this occurs with probability 1 - α .

Conversely, when R(X) is a 1 - α confidence region it defines a significance level α test of H₀: $\Theta = \Theta_0$:

"Reject H_0 if Θ_0 is not in R(X)" When H_0 is true, $P(\text{reject } H_0) \leq \alpha$

Shape of a confidence region based on Hotelling's T² test

Suppose a test of H_0 : $\theta = \theta_0$ is

Reject H_0 when $T^2 = T^2(\boldsymbol{\theta}_0) = T^2(\boldsymbol{\theta}_0, \mathbf{X}) > K_{\alpha}^2$ where $T^2(\boldsymbol{\theta}_0, \mathbf{X}) = (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)'\{\hat{V}[\hat{\boldsymbol{\theta}}]\}^{-1}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)$ with

$$K_{\alpha}^{2} = \chi_{\alpha}^{2}(\alpha)$$
 (large n)

or

Statistics 5401

$$K_{\alpha}^{2} = \{(f_{e}q)/(f_{e}-q+1)\}F_{q,f_{e}-q+1}(\alpha) \text{ (small n)}$$

 $f_e = n-1$ or n_1+n_2-2 , or whatever is appropriate.

When do you use small as opposed to large sample critical values?

In my opinion, you use the small sample critical value whenever f_e is defined and you can determine $F_{0,f_{a-0+1}}(\alpha)$.

That is, <u>essentially always</u>.

The confidence region R(X) corresponding to T^2 consists of all Θ you would *not* reject $(T^2(\Theta) \leq K_\alpha^2)$

$$R(X) = \{\Theta \mid T^{2}(\Theta) \leq K_{\alpha}^{2}\}$$

$$= \{\Theta \mid (\widehat{\Theta} - \Theta)'\{\widehat{V}[\widehat{\Theta}]\}^{-1}(\widehat{\Theta} - \Theta) \leq K_{\alpha}^{2}\}$$

$$= \{\Theta \mid (\Theta - \widehat{\Theta})'\{\widehat{V}[\widehat{\Theta}]\}^{-1}(\Theta - \widehat{\Theta}) \leq K_{\alpha}^{2}\}$$

Note the swap of Θ in $\hat{\Theta}$ in this last.

- R(X) is an ellipsoid
- R(X) is centered at $\hat{\Theta}$
- R(X) has shape and orientation determined by the eigenvalues and vectors of $\hat{V}[\hat{\mathbf{\theta}}]$
- R(X) has size proportional to K_x.

Note: In the formula for an ellipsoid

$$E = \{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_0)' \mathbf{Q}^{-1} (\mathbf{x} - \mathbf{x}_0) \leq \mathbf{K}^2 \},$$

 $\mathbf{X} = \mathbf{\Theta}, \ \mathbf{X}_0 = \hat{\mathbf{\Theta}} \text{ and } \mathbf{Q} = \hat{\mathbf{V}}[\hat{\mathbf{\Theta}}].$

When $\hat{V}[\hat{\boldsymbol{\theta}}] = c \times S$, with c = 1/n (1 sample) or $c = 1/n_1 + 1/n_2$ (2 sample), say,

- $\hat{V}[\hat{\Theta}]$ has the same eigenvectors as **S**
- The eigenvalues of $\hat{V}[\hat{\boldsymbol{\theta}}]$ are $c \times \lambda_i$, where λ_i are eigenvalues of S
- Lengths of axes are $2K_{\alpha}\sqrt{\{c \times \lambda_i\}}$.
- ⇒ orientation and shape of R(X) is determined by the eigenvectors and eigenvalues λ_i of **S**.
- The "cloud of points" in a scatter plot of the data will have the same shape orientation as a confidence ellipse for the mean.
- The cloud of points will be larger than the confidence ellipse.

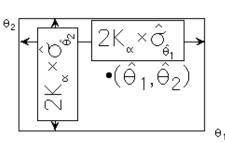
Shape of a confidence region corresponding to Bonferronized z- or t-tests

A confidence region R(X) related to q Bonferronized t- or z-tests of H_0 : $\Theta = \Theta_0$ $((\hat{\theta_j} - \theta_{0j})/\hat{\sigma_{\hat{\theta_j}}})$ j = 1, ..., q, is

$$R(\mathbf{X}) = \{ \mathbf{\Theta} \mid \hat{\theta_{j}} - K_{\alpha} \times \hat{\sigma}_{\hat{\theta_{j}}} \leq \theta_{j} \leq \hat{\theta_{j}} + K_{\alpha} \times \hat{\sigma}_{\hat{\theta_{j}}}, j = 1, ..., q \},$$
with

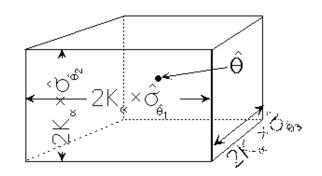
 $K_{\alpha} = t_{f_{\theta}}(\alpha'/2)$ or $K_{\alpha} = z(\alpha'/2)$, $\alpha' = \alpha/q$ R(**X**) is rectangular or "box shaped".

When q = 2, R(X) is



a rectangle centered at $\hat{\Theta}$ with sides having lengths $k_{ij}(\mathbf{X}) = 2K_{a} \times \hat{\sigma}_{\theta_{i}}$:

When q = 3, R(X) is



a box with sides $k_j(\mathbf{X}) = 2 \times K_{\alpha} \times \hat{\sigma}_{\hat{\theta}_i}$..

The length $2K_{\alpha} \times \hat{\sigma}_{\hat{\theta_{j}}}$ of dimension j of the box is proportional to the *estimated* standard error $\hat{\sigma}_{\hat{\theta_{j}}}$ of $\hat{\theta_{j}}$.

- $\hat{\sigma}_{\hat{\theta_{j}}^{2}}$ is a diagonal element of $\hat{V}[\hat{\pmb{\theta}}]$.
- The area or volume of the box is proportional to (K_g)^q.

For box-shaped confidence regions,

$$P(R(X) \text{ contains } \theta) \ge 1 - \alpha$$

with inequality (> 1 - α) when p > 1

Example:

When $\theta_j = \mu_j$ and $\hat{\boldsymbol{\theta}} = \overline{\boldsymbol{x}}$, so q = p, the dimensions of the box are proportional to the standard errors

$$\hat{\sigma}_{\overline{x_j}} = \sqrt{(s_{jj}/n)} = \sqrt{(s_j^2/n)} = s_j/\sqrt{n},$$

 $s_{jj} = s_j^2 = \text{the sample variance of } x_j.$

Here

$$k_{j}(\mathbf{X}) = 2K_{\alpha}\hat{\sigma}_{\overline{x_{j}}} = 2K_{\alpha}\sqrt{(s_{jj}/n)}, j = 1,...,p$$

with

• $K_{\alpha} = t_{f_{\alpha}}(\alpha'/2)$

small sample

or

• $K_{\alpha} = z(\alpha'/2)$

large sample

where Bonferronized $\alpha' = \alpha/p$

Summary

• **Box shaped** confidence regions based on Bonferronized z-tests or -t-tests

$$R(\mathbf{X}) = \{ \mathbf{\Theta} \mid \widehat{\Theta}_{j} - \widetilde{K}_{\alpha} \times \widehat{\sigma}_{\widehat{\Theta}_{j}} \leq \Theta_{j} \leq \widehat{\Theta}_{j} + \widetilde{K}_{\alpha} \times \widehat{\sigma}_{\widehat{\Theta}_{j}}, j = 1, ..., q \},$$

with

$$\widetilde{K}_{\alpha} = t_{f_{\alpha}}(\alpha'/2) \text{ or } \widetilde{K}_{\alpha} = z(\alpha'/2), \alpha' = \alpha/q$$

 $\hat{\sigma}_{_{\theta_{j}}}$ is the estimated standard error of $\hat{\theta_{_{j}}}.$

The shape is determined by the values of $\hat{\sigma}_{\theta_j}^2$, the *diagonal* elements of $\hat{V}[\hat{\boldsymbol{\theta}}]$.

• Ellipsoidal confidence regions based on Hotelling's T² test:

$$R(\mathbf{X}) = \{ \boldsymbol{\Theta} \mid (\boldsymbol{\Theta} - \hat{\boldsymbol{\Theta}})' \{ \hat{\boldsymbol{V}}[\hat{\boldsymbol{\Theta}}] \}^{-1} (\boldsymbol{\Theta} - \hat{\boldsymbol{\Theta}}) \leq K_{\alpha}^{2} \},$$

$$K_{\alpha}^{2} = \chi_{q}^{2} (\boldsymbol{\alpha}) \text{ or } \{ (f_{e}q) / (f_{e}-q+1) \} F_{q,f_{e}-q+1} (\boldsymbol{\alpha}).$$

The *shape* is determined by *eigenvalues* of $\hat{V}[\hat{\boldsymbol{\theta}}]$. The *orientation* is determined by the *eigenvectors* of $\hat{V}[\hat{\boldsymbol{\theta}}]$.