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Bonferronized t vs Hotelling's T?

Both prescribe rules describing when you
reject H,.

Two-sample case with H: J, = J..

Hotelling's T? test rule is:

Reject H, when
T2 = (X, - X)'VIX, - X]'(X - X)) > T*(X)

1 2 1 20 —

Bonferronized t test rule is:
Reject H when any

|tj| > t((x/p)/2)
with t = (X, - X)//{v [, - X1}

1

The null hypotheses are identical.
v [x, - x] :A(l/n1_+ 1/n,)s  is a diagonal
element of VIX, - x,1 = (1/n, + 1/n,)S

pooled
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Advantages of Bonferronized t Disadvantages of Bonferronized t
e Easy to compute, well understood . . .
e Bonferronized t can give different
* When you reject H, (because at least result from T°
one |tj| is large), you know how H, e It can give different results when you
appears to be violated because you replace the original p varlgbles by p
know which t-statistics are signi- linear combinations Y, = a/’x, J = 1.....p.
ficant. That is x » y = Ax = [a,’x, ..., a'x] where
e Weaker assumptions: univariate norm- A =1la, ....,al is pxp and invertible.
ality and equality of ¢ 's not p’s. 101 1 1 .1 T
e When you have no good reason to be- -1 00.. O
lieve the variances are equal, you can Example: A - 11 -20... 0
use the "Unpooled" t_statistics ............................
111 L =(p-1)
t = (X, - X )/ /{V Jb with ,
% Y, =@, X =X + X, + ...+ X,
df = 2{V[Xn] ' V[ij]}2 y, = 3,X = X, - X,
VIX Fr(n,-1) + VIX F/(n,-1) y, = a,'x = 2{(x, + x,)/2 - x.}, ...
V[X_jk] “Win, k=1, 2 y, = a’'x = (p-1H(x,+...+x )/(p-1) - x }
There 1s no easg "fix” for T when you  This might be useful with repeated
can't assume . = .. measures data.

2

3 4
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Two sample case:

M, = Al B = AL,

Mo= AT W = AT
Thus Hp: W = W, and Hp: B = J are
essentially the same.

For Hotelling's T?

e (T? based on X) = (T? based on y = AX).

e Conclusions about H: M, = 4, will be
the same whether you analyze x or \.

But for Bonferronized t

* The t's computed from {y, = a 'x} will
almost certainly not be the same as
the t's computed from {x }.

e The conclusions from y can differ from
the conclusions from X.
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Power issues

October 3, 2005

Depending on

° X

and

e the actual mean vector or vectors,

T? may have higher or lower power than
Bonferronized t.

e When some correlations p, are large,

T? may be much more powerful (more
likely to reject H ) than Bonferronized
t

e For some alternative hypothesis H_,
particularly when one element of W or
M, - HW, 1s large and the others are
small, Bonferronized t may have larger
power than T2
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Simultaneous estimation

Suppose you are estimating g unknown
parameters 6 ,....6,, say g means, simul-

taneously, that is, in parallel.
Let © = [B,

o 81,

q

Example: 1 sample multivariate mean u
e q = p = dimension of X
*®=pwith® =p,]=1,..p

A point estimate of 8 is a vector 8 -
6(X) computed from data X which is a
"good (?) guess” for the value of 8.
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In some cases the best point estimate of
® is the vector of the best univariate
estimates of each 6.

Example (continued):
Estimate }1 by J =
Here e = p = X..

X = [X,, X, 1

Even in this simple case, Stein showed
that X was not an "admissible” estimator
with p > 2, in the sense that with
respect to one criterion, you can always
find a "better” estimator thatn Xx.

Nonetheless, we will ignore the problem.
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A point estimate 6 is not enough. Tiy
aksi want to know which values of © are
plausible in light of X, that is which (8,

...,eq) are not inconsistent with the data.

For q = 1, you usually use interval
estimation. In frequentist statistics
this is a confidence interval (6, 8 ),

where 8, = 6/(X) and 8, = 8,(X) are
random variables computed from data X.
The interval 1s random.

Generally (6, 8,) encloses 6, that is

6 <8 <8,
Often ® =8 - KG,, 8,= 6 + KG,, K=t or z
where K is a critical value. KS, is the
margin of error.
When estimating a scale parameters, 6, =
6/K,, 8, = 6/K, with K, > 1 and K, < 1.

9
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The defining property for (6., 6) =
(6.(X), 6 (X)) to be a confidence interval

L u

with confidence level 1 - & 1S

October 3, 2005

P((e,, 6,)) encloses true 8) >1 -
where “encloses” means 6, < 8 < 6,

This has meaning because (6., 6 ) is a
random interval.

Often, "> 1-«" 1s actually "= 1-&".

wWhen P(encloses) > 1 - «, the interval is
conservative.

A confidence interval gives a reasonably
clear idea of how far 6 might be from 6.

[t also gives an idea as to how far 6
might be from 6.

Note the switch of © and 8.

10
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With a vector ® = [8, 8, ..., 6 ] of g
parameters, you could work with each 8,

separately, and compute individual 1 -
confidence intervals (6, ,8, ) for each 6:
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o, =6.(X), 8, =06,/,X),1=1,...
With q intervals, any of which might

not contain the true 0., there is an
increased probability that at least one

of the intervals does not contain the
true ej.

That means

P(all intervals contain their 6) =

P(6, < B8,<6 , ...,engqueqU) ~ 1-qot << T-o
so you would not have high simultaneous
confidence.

This 1s the multiple confidence interval
problem.

11
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If the {8, } and {6 } are computed so that

iL Y]
P(6,< 8 <6 and ...
the intervals (8,6 ), 1 = 1,...,q are called

simultaneous confidence intervals with
confidence level > 1 - o

and engqueqU) > 1 - o

You can accomplish this is by Bonfer-
ronizing univariate confidence intervals,
that 1s using o' = «/q to compute each
interval (individual confidence level 1 -
o/q). Then
1 -P(e,<86<8,..6,<6<8 ) -
P((e,.8,) does not contain 6, for some i)
< Qo= o,

SO

P(6,<8,<8, .. 8,8<8)>1 -

so the simultaneous confidence level is
at least 1 - «.

12
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Confidence regions
e Suppose 8 = [8,, 8,, ..., 8] is a vector

of @ unknown parameters.

October 3, 2005

e Let R(X) be a q dimensional region
(area, volume, etc.) that depends on a
data matrix X.

For any ©, when you know X, you can
determine whether or not © is in R(X).

Since X is random
e R(X) is random
e For each 8, whether R(X) contains ©
Is random event with some probability.

When p = 1, R(X) is usually the interval:
R(X) = {8 | 8,(X) <8 <86,X)

between confidence limits 6 and 6,,.

In higher dimensions, R(X) can have a
variety of shapes, including (hyper)
rectangular or ellipsoidal.

13
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Definition
R(X) is a 1 - « confidence region for 6
if P(R(X) contains ©) > 1 - «, for all 8

When q > 1, useful confidence regions are
usually

e bounded

e connected

e have no holes.

or

Has hole

Ellipse

and not

Disconnected

14



) or ellipsoids (p > 2)

Shapes
e Ellipses (p = 2 (
{e|(6 - 6)'Q(X) (6 - 8) < K7}
0

Ellipse

3]

1

Q(X) is an invertible matrix which

depends on sample size usually on the

data X.

The region R(X) consists of the interior

and boundary of the ellipse.
Q(X) will usually be V[8].

For example, Q(X) = S/n when 8 = J and

6 - X.

15
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e "‘Boxes”: rectangles when p = 2, rectan-
gular boxes when p=3, or their gener-
alization to p > 3:

{o| |8 -6 <k(X),i=1,..q}
0 ~——2XkP0—

2

AA
091 6

20—

Rectangle
0,

where k.(X) are numbers computed from
the data and critical values, for instance
K(X) = t_ ((et/p)/2)3/{s. /n)}

Other shapes might be

Shapes like the one on the right arise in
non-linear problems.

16
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Relationship of confidence regions and
tests

Suppose for every value 8 of 8 there is
a test statistic T(X,8") and critical value
designed to test H(8): 8 = 8™ at
significance level «. Then

R(X) = {8|H,(8) not rejected by T(X,8)}

1s a 1 - ¢ confidence region for 8.

why?
The true value © is contained in R(X)
when and only when H (8) is not
rejected and this occurs with
probability 1 - «.

Conversely, when R(X) is a 1 - «
confidence region it defines a signi-

ficance level o« test of H: © = 6 :

"Reject H_ if &, is not in R(X)"
When H_ is true, P(reject H ) < «

17
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Shape of a confidence region based on
Hotelling's T* test

Suppose a test of H: 8 = 8, 1s

Reject H, when T* = T (eo) 7°(8,,X) > K’

where T (eO,X) - (6 - 8,){VI6]}'(6 - 8,)

with
K 2 = X () (large n)
or
K7 = {(f,9)/(f,-q+1IF, (=) (small n)
f =n-1orn+n-2,or whatever is
appropriate.

When do you use small as opposed to
large sample critical values?

[n my opinion, you use the small sample
critical value whenever f_1s defined and
you can determine F_ ().

That is, essentially always.

18
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The confidence region R(X) corresponding
to T? consists of all ® you would not

reject (T*(6) < K ?)

R(X) = {8] T%8) < K7}
- e| (6 - 8){VIe]}'(6 - 8) <K 7}
= {e] (8 - 6){VI6I}"(6 - 6) <K}

Note the swap of 8 in 6 in this last.

e R(X) is an ellipsoid

e R(X) is centered at 6

e R(X) has shape and orientation deter-
mined by the eigenvalues and vectors

of V[6]

o R(X) has size proportional to K.

Note: In the formula for an ellipsoid
{x | (x-x.)'Q"(x-x,) < K?,

E =

X =6, X,

- 6 and Q = V[él.

19
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When V[6] = ¢xS, with c = 1/n (1 sample)
or ¢ = 1/n+1/n, (2 sample), say,

e V[6] has the same eigenvectors as S

* The eigenvalues of V[8] are cx\ , where
A, are eigenvalues of S

 Lengths of axes are 2K_ /{cxX\ }.

> orientation and shape of R(X) is
determined by the eigenvectors and
eigenvalues X of S.

e The "cloud of points” in a scatter plot
of the data will have the same shape
orientation as a confidence ellipse for
the mean.

e The cloud of points will be larger than
the confidence ellipse.

20
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Shape of a confidence region
corresponding to Bonferronized

z- or t-tests
A confidence region R(X) related to g
Bonferronized t- or z-tests of H: © = 6

(6, - 8,)/G,) j=1,...q is
R(X) =

{6 6 -K XCSAJ_ < GJ < éj+de8gJ-J:1 ..... ql,
with

K, =t (x'/72) or K= z(x'/2), &' = /q
R(X) is rectangular or "box shaped”.

8,

] )
<

s (é

When q = 2, R(X) is

)
&)
X
hV
N
¥

a rectangle centered at 8 with sides
having lengths k (X) = 2K xG,:

21
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wWhen q = 3,
R(X) is

a box with sides k (X) = 2xK xG, ..

The length 2K _x&, of dimension j of the

box is proportional to the estimated
standard error 6, of 6.
e 5.2

j

is a diagonal element of V[8].

e Smaller o« = larger K_= larger box

e The area or volume of the box is
proportional to (K ).

22
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For box-shaped confidence regions,
P(R(X) contains 8) > 1 - «

with inequality (> 1 - &) when p > 1

Example: A

When 6, = . and 6 = X, so g = p, the

dimensions of the box are proportional to

the standard errors
~ i , i
S = V(s /n) = /(s?/n) = s /4/n,

s, = s’ = the sample variance of x..

°
A
1

small sample

t (x'/2)

z(x'/2) large sample

where Bonferronized o = ot/p

23
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Summary

e Box shaped confidence regions based
on Bonferronized z-tests or -t-tests

R(X) = X

{6 | éj-ﬁdxcéj <8 <6+ x5.,j=1,....q},

] ] S 9
with

K =t (o'/72) or K = z(e'/2), o' = ot/

G is the estimated standard error of éj.

o

The shape is determined by the values of
G,?, the diagonal elements of V[8].

e Ellipsoidal confidence regions based
on Hotelling's T? test:

R(X) e| 6 - 6){VI6l} (e - 6) <K'},
K7 = 7( r(F,q)/(f-qe1F (o).
The shape is determined by eigenvalues

of V[8]. The orientation is determined
by the eigenvectors of VI[8].
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