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e With large n, and n,, the null Classical (pooled) Hotelling's
e 2~ 2 2 sample T?
distributionof T _ .~ = X" Thus the
test of M, = J, is In the special case when £, = £, = X
‘reject when T . ° > X, (0" VIX, - X1 = (1/n, + 1/n)% = KL,
You don’t need normality, although the where K = 1/n + 1/n, = (n, + n)/(nn,).
further from multivariate normal, the Now you can estimate £ by the pooled
larger the n. must be for the Xp2 variance matrix
approximation to "work as advertised.” §_.g5 - (n, - 1)8, + (n, - 1)8,
e Even with normal x, and x, and £ = X, Pooes (n, - 1)+(n -1)
whenn =z n, T *is not
((pfe)/(fe - p + ]))Fp,fe—p+1’ : (n1 - 1)81 + (n2 - ])82 - fews1 + T.(9282
although using ((pf)/(f-p+1))F () n,+n,-2 f
to decide significance may "work” with f =1, +f, =n +n, - 2.
better than using X *(). S and S, are the unbiased sample cova-
e Unpooled T? z “classical” pooled two- riance matrices from the two samples.
sample T” except when n, = n.. Because £ = £ = £, ¥ is unbiased:,

E[S] = E[S] = (f, £+ f 2)/(f, +f)=%

1 €
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Recall we are dealing with two indepen-
dent random samples {X.} and {x_}

i171<i<n, i2? 1<i<n,”

When all the X, 's are MVN,

¢ T.espooled = Wp(fe' Z)' fe = n] * n2 - 2
e S .. Is independent of X, and X,.

Then the standard (pooled) two sample T?
statistic totest H: u, - B, = 0 is
T T = (X - VX - (X - X))
with

VIX, - X,]=KS, = (1/n,+1/n)S

pooled - pooled

You can factor out the constant K =
(n,+n,)/(n.n,) to get the "special” formula

? = (n1n2/(n1+n2))(x_1_x_2)'s
© = (1) (-p1)F,
(p(n,+n,-2)/(n +n,-p-1))F

pooled

pooled

P.Ny+Ny-p-1
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The problem of testing H: W, = W,
without assuming that & = X is the
multivariate Behrens-Fisher problem.
When ¥ =z ¥ and n =z n,

ELV . = El(1/n+1/n)S 1= VIX-XI.
The pooled T* is not (f p/(f_-p+1))F
and not X even in large samples.

ooled

P,[e‘P"]

2

But, whenn =n, =n,
/ )S, + (1/n,)8,

* Vunpooled = (1 /n1 N
= ( 2 / n) Spooled = Vpooled
* Tunpooled2 = (x_1 - x_2),(n1_1s1+n2_1s2)_1(x_1 - X_2)

= (x, - X)((2/mS,,
will be approximately X * whether or
not ¥ = ¥,. This provides a reason to

use equal sample sizes.

K -X) =T,

pooled
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The assumption that £ = ¥ is a very
strong assumption because it requires

m _ @ ;5 _
* 0, =0, 1=1,....p

(equality of variances)

° pij(U - pij(2), all 1 El < _] < P
(equality of correlations).

You can seldom appeal to a priori
evidence that two populations with
possibly different means should have

e exactly the same variances ¢, , ..., O

and

e exactly the same p(p - 1) correlations
Py Prgr v Py

Instead, you need to use the data to check
it.
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Two sample T? computation

Read from file "TP1:Stat5401:Data:JWData5.txt"
Cmd> varieties <- irisdata[,1]

Cmd> setosa <- irisdata[varieties == 1,-1] # Group 1
Cmd> versicolor <- irisdata[varieties == 2,-1] # Group 2
Cmd> xbarl <- tabs(setosa,mean:T) # column vector

Cmd> xbar2 <- tabs(versicolor,mean:T) # column vector

Cmd> sl <- tabs(setosa, covar:T) # 4 by 4 matrix

Cmd> s2 <- tabs(versicolor, covar:T)

Cmd> nl <- nrows(setosa) # n1 = 50

Cmd> n2 <- nrows(versicolor) # n2 = 50

Cmd> dfl <- n1 - 1; df2 <- n2 - 1# both 49
Cmd>fe<-dfl+df2#98=nl+n2-2

Cmd> s_pooled <- (df1*s1 + df2*s2)/fe # pooled variance matrix

Cmd> diff <- xbarl - xbar2 # column vector

Cmd> vhat <- (1/n1 + 1/n2)*s_pooled # vhat[xbarl-xbar2]

Cmd> se <- sgrt(diag(vhat)) # std errors sqrt(vhat[i,i])

Cmd> print(diff, se)

diff: di fferences of nmeans

(1) -093 0658 -2798 -1.08

se: standard errors of differences
(1) 0.088395 0.069593 0.070849 0.03169

Cmd> tstats <- diff/se;print(tstats) #2-sample pooled t-stats

tt:
(1) -10521 9455 -39.493 -34.08

Cmd> twotailt(tstats,fe) # two-tail P-values
(1) 8.9852e-18 1.8712e-15 5.4049e-62 3.8311e-56

The t-statistics here are classic pooled
two-sample univariate t-statistics.
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The groups differ very significantly on
all 4 variables based on univariate t-
tests.

. B 2 _ .
Compute Hotelling’s T° to test H: 4, = J.:
Cmd> t2 <- diff' %*% solve(vhat) %*% diff; t2
(1,1) 2580.8
Cmd> p <- ncols(setosa) # p = 4
Cmd> f_value <- (fe-p+1)*t2/(fe*p)

Cmd> cumF(f_value,p, fe-p+1,upper:T) # P-value
(1,1) 2.6649e-67

This is the "white box" approach.
hotell2val() allows a "black box”
approach:

Cmd> hotell2val(setosa,versicolor,pval:T)
component: hotelling

(11) 25808
component: pvalue
1.1)

Bonferronized t-statistics

Cmd> t2val(setosa,versicolor,df:T) #pooled

component: t Pool ed 2-sanple t and d.f.
(1) -10521 9.455 -39.493 -34.08

component: df

1) 98 98 98 98

Cmd> stuff <- t2val(setosa,versicolor,pooled:F); stuff
component: t Unpool ed 2-sanple t and d.f.

(1) -10521 9.455 -39.493 -34.08
component: df
(1) 86.538 94698 6214 74.755

Cmd> 4*twotailt(stuff$t,stuff$df) # Bonferronized P-values
) 0 9.77e-15 0 0
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Comparison of correlations

Cmd> R1 <- cor(setosa); R2 <- cor(versicolor)

Cmd> print(R1, R2)

R1: Setosa Correl ations

1,1) 1 0.74255 0.26718 0.2781
(2,1) 0.74255 1 01777 0.23275
(3,1) 0.26718 0.1777 1 0.33163
(41) 02781 0.23275 0.33163 1
R2: Versi col or Correl ations
1,1) 1 052591 0.75405 0.54646
(2,1) 0.52591 1 056052 0.664

(3,1) 0.75405 0.56052 1 0.78667
(41) 054646 0.664 0.78667 1

Here is a graphical method to compare
the correlations.

The first few lines extract the correla-
tions below the diagonals into vectors of
length 6,

Cmd> J <- matrix(vector(1,2, 1,3, 1,4, 2,3, 2,4, 3,4),2)';J
2

1,1) 1 Matrix of indices of
(2,1) 1 3 correl ati ons below the
(3,1) 1 4 di agonal

4,2) 2 3

(5,1) 2 4

6,1) 3 4

Cmd> rl <- R1[J]; rl # uses "matrix" subscript
(1) 0.74255 0.26718 02781 0.1777 0.23275
(6) 0.33163 Bel ow di agonal setosa correlations

Cmd> r2 <- R2[J]; r2 # see help on topic subscripts
(1) 052591 0.75405 0.54646 0.56052  0.664
(6) 0.78667

Bel ow di agonal versicolor correlations
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S, and S, are quite different so possibly
X, oz X;

Cmd> print(variances1:diag(sl),variances2:diag(s2))
variancesl: Setosa variances

(1) 0.12425 0.14369 0.030159 0.011106
variances2: Versi col or variances
(1) 0.26643 0.098469 0.22082 0.039106

The variances appear to be different.
You could formally test

H,: O”(” = 6”(2), j=1,...4
by Bonferronized F-tests (F = s "'/s @) or
Levine tests (t-tests computed from zZ, =
|x”. - x_l| see for example, Ott and
Longnecker, Ed S, p. 368).

Cmd> z1 <- abs(setosa - xbarl’)
Cmd> z2 <- abs(versicolor - xbar2')

Cmd> levinetstats <- t2val(z1,z2,pooled:F); levinetstats
component: t

(1) -2.9043 0.76051 -5.9514 -3.9224
component: df
(1) 91554 90.063 65.087 75.844

Cmd> 4*twotailt(levinetstats$t, levinetstats$df)
1) 0.018455  1.7958 4.6761e-07

These are Bonferronized approximate P-
values. Conclusion: the variances differ.

0.00076399
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| plotted them with the correlations for
each sample conected by lines:

Cmd> lineplot(1, hconcat(rl,r2), ymin:0, ymax:1,\
min:.5, xmax:6.5,xticks:run(6),\
xticklabs:vector("1,2","1,3","1,4","2,3","2,4","3,4"),\
xlab:"i,j",ylab:"Correlation”,\
title:"Correlations for setosa and versicolor")

Correlations for setosa and versicolor

ir :
Versicolor correlations
0.8F
[
o
r - - —
roagl 'y = T
= - LN -~
! Setosa correlations
t
i 0.4F
=]
L
0.2k
1)

It looks like most setosa correlations are
smaller than the corresponding versicolor
correlations.
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You can use Fisher's z-transform of the
sample correlations to carry out a formal
test of
. M _ (2)_ : :
Ho: Py = Py = Py all 1< ]
Cmd> z1<- atanh(rl); z2<- atanh(r2) # Fisheer z-transforms

Cmd> z <- (z1 - z2)/sqrt(1/(n1-3) + 1/(n2-3)); z
(1) 1.8017 -3.4344 -15886 -2.2008
(6) -3.4805

Under H, (and approximate multivariate
normality), each z, = tanh™ r, is approx-
imately N(tanh™(p,),1/(n-3)).

1]
However, since you are testing them all
simultaneously, you need to Bonferronize
bg K = 6:
Cmd> 6*2*cumnor(abs(z),upper:T) # Bonferronized P-values

(1) 0.42958 0.0035637  0.67291 0.16651
6) 0.003003

-2.7284

0.03818

Three differ significantly at the 5% level
SO you reject H,.
Note: 2*cumnor(abs(z),upper:T) com-

putes the non-Bonferronized two-tail P-
values.
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[ did another simulation to see how much
%, =z ¥, might affect the distribution of
T?. 1 generated M = 5000 pairs of
samples with o, = g oand & =S,1=1,2
and computed M values of T* with £ =z ..

Here are the proportions exceeding the

small sample critical values for various
«'s when n = n, = 50 (equal n).
el 10 .05 01

X |.1004* 056  .0122

* > significantly different from .10.

The observed proportions « of T2
exceeding the small sample critical
values are close to "advertised” « even
though & =z ..

This is mainly because, when n = n,,

E[\/Apooled[x_1_)(_2]:| = E[\/Aunpooled[x_1_)(_2]:| = V[X_1—X_2:|
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| did a simulation to evaluate the actual
o of this test and the power = 1 - 8
when & =z ..

| used M = 10,000 independent pairs of
random samples with n, = n, = 50 and &, =
£,=5 .= (498 +495)/98 (H true)
and 10,000 pairs of samples with & = S,
%, =S, (H, false) (S, were the sample
variance matrices for Iris setosa and

Iris versicolor data). Here are the

results
o< 10 .05 01
& | 0.0868 0.0452 0.0107
1 - B| 0.9936 0.9803 0.8995

The & comes from the H_ true simulation;

power = 1 - B (power) line comes from
the H, false simulation
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I ran a similar simulation with n = 50
and n, = 150 (n, = 3xn,).

Now the two ways to compute T?, with
Voo = (1/n,+1/n)S  and with V -

pooled unpooled

S,/n.+S./n, give different results.

Here are the estimated actual o's.

[l 10 .05 .025 01
Unpooled & [[1102* 0546 .0268 .0112
Pooled & |-08461 .0440 .0224 .0100

* P<.05 TP <.01, H;: Elod] =

Note that, except for « = .01, the esti-
mated «'s when using the biased V _ in

ooled

computing T? are further from intended «
than is & when using the unbiased V

unpooled”
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Paired Hotelling's T°
In the two-sample situation there is no
meaningful correspondence between any
observation in sample 1 and any observa-
tion in sample 2. In the paired case there
Is a complete correspondence.

Example: Administer a battery of p tests
to n subjects before a treatment and
after a treatment. Suppose the outcome
is represented by a vector x of scores.
Data are of the form

¥ ¥ ¥ ¥ ¥ ¥

X Xy e X

pre-treatment

post-treatment

The first subscript has the same meaning
in both samples -- it identifies the
subject. That is, there is a pairing of
observations x 2 x_, all i. The arrows

above link paired vectors.
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For small n, assuming normality of the
d’s, T* is distributed (under H ) as

T2 = (pf /(f_-p + 1))F
= (p(n - 1)/(n - p)IF

since f_ =n-1Tand f_ -p+1=n-p.

p.f -p+1

p.n-p’

Reversing this, as usual, you get
((f -p+1)/(pf))T? = ((n-p)/(p(n-1))T* = F

For both the large- and small-sample
distributions, {d} . must be a random

17 1<i<

sample, that is

p.n-p

e The d’'s must be mutually independent
e All d,'s have the same distribution.

When the x, and x, consist of measure-
ments or observations on individuals
randomly selected from a population of
individuals, {d.} is a random sample.
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In a paired situation, you should always
assume that x and X, are not indepen-
dent. A two sample test is not OK.

That is, you must not ignore pairing.

Putd =x, -x, 1=1,.,n. Thatis, the
d’'s are the Pre-Post differences.

E[di] = Ho= M- K

The usual null hypothesis is
Ho: p‘] - J“lz = 0’

that is, H: M, = 0.

This is a now single sample (of d.'s)
problem. Hotelling’s paired T is

T2 = d'(V[dD'd = d'((1/n)S)'d ,
the 1-sample T* based on {d}. Here,

S, = (17(n-1))2,...(d -

d)(d, - d)".
MacAnova: hotellval(x1 - x2,pval:T)

1<i<n
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An alternative formulation for

paired T?
Define the combined 2p x 1 vector
X ]
y = | | with sample y,, ..., Yy,
X, |

e The first p elements y,, y,, .... Yy, of y
are the "before” scores

e The last p elements y_, |
the "after” scores.

y,, are

pe2? ttt

Then

d=x -x,=1[,-11y =Cy, where
100..0-1 00..0

C=[,-11=]010..0 0-10..0

20
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e C=1I,-1Tispx2p

September 30, 2005

e Rows of C define p linear combinations
d =Y -Y, =X, -X,1=1,...pof
Yo Yy -n U,,. the variables in y.

d is p by 1 because C is p by 2p.

You know a lot about sets of linear
combinations:

ed=Cy=10,-11y:=

e The estimated variance of d is
VId] = VICy] = CVIyIC’ = (1/n)CSC".
This is exactly (1/n)S, but comuted
from Sg.
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A short example with Iris setosa data:

Cmd> getlabels(setosa,2) # labels for second dimentions
(1) "SepLen"”

(2) "Sepwid"

(3) "PetLen"

(4) "PetWid"

Cmd> x1 <- setosa[,vector(1,3)] # lengths

Cmd> x2 <- setosa[,vector(2,4)] # widths

Cmd> hotellval(x1 - x2, pval:T)
component: hotelling

(1,1) 40121

component: pvalue

11

x1 - x2 is the matrix of differences.

Cmd> ¢ <- matrix(vector(1,-1,0,0, 0,0, 1, -1),4)';c
1,1) 1 -1 0 0
2,1) 0 0 1 1

This is a different form of C because of
the way the variables are ordered. It
compares sepal lengths with sepal
widths, and petal lengths with petal
widths. The null hypothesis says some-
thing about the shape of the flowers.

Cmd> hotellval(setosa %*% c',pval:T) # note the transpose on ¢
component: hotelling
(1,1 40121
component: pvalue
11

Cmd> s_x <- tabs(setosa,covar:T)
Cmd> vhat_xbar <-s_x/n

Cmd> (c %*% xbar)' %*% solve(c %*% vhat_xbar %*% c') %*% \
(c %*% xbar)
(1,1) 40121

Bl ack box conputed T"2

; xbar <- tabs(setosa,mean:T)

White box conputed T*"2 is the sanme
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d is an intra-subject or within-subject
comparison where different variables
measured on a case are compared.

It is a linear combination of the var-
lables.

This is quite different from an inter-
subject comparison where comparisons
are made between different cases or
individuals. This idea is fundamental to
the analysis of repeated measures data.
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