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Statistics 5401 Lecture 11 September 30, 2005

Unpooled two-sample T?
Parameter vector is & = §. - J,

Estimate vector is 8 = X, - X,
e Unpooled estimate of V[6] i
V8] = VIx,1 + VIX,] = (1/n ) + (1/n))S,
where S and S, are (unblased) sample
variance matrlces.

V[8] is an unbiased estimate of V[8]

* T2: Tunpooled2 - (X_1 - x_2)'\/[e]_1(x_1 - X_2)
= (X - %)(n,'s, + n,'8,) (X,

- X,)
tests H: © = . - W =
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e With large n, and n,, the null Classical (pooled) Hotelling's
o 2~ 2 sample T°
distribution of T . °= X~ Thus the
test of W = p, is In the special case when & = & = &
‘reject when T, .0 > X, ()" VIX, - X1 = (1/n, + 1/n)E = KE
You don’'t need normality, although the where K = 1/n + 1/n, = (n + n)/(nn,).
further from multivariate normal, the Now you can estimate £ by the pooled
larger the n. must be for the Xp2 variance matrix
approximation to "work as advertised.” §.s5 - (n, - 1)S, + (n, - 1)S,
e Even with normal x, and X, and £, = ¥, Pooe (n, - 1)+ (n - 1)
whenn =zn, T *°is not
e - 1)S + - 1)S f S +f S
(pf)/(f, - p + 1DF, ., I -1)8, +(n, - 1)8, 1.8 + 15,
although using ((pf)/(f -p+1)F , () N, +N,- 2 T,
to decide significance may "work” with f =1, « T =n+n, -2
better than using X *(c0). S and S, are the unbiased sample cova-
e Unpooled T? z "classical” pooled two- riance matrices from the two samples.
sample T* except when n = n.. Because £ = £ = Z, ¥ is unbiased:,

E[E] = E[S] = (f, &+ £ 8)/(f, +f) =%

1 €

3 4
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Recall we are dealing with two indepen-

dent random samples ix,} .. and X} . .
When all the X,,'s are MVN,

* feSpooled - Wp(fe’ Z)’ fe - n1 * r‘|2 - 2

* S .. Is independent of X, and X,.

Then the standard (pooled) two sample T?
statistic to test H: 4. - 4, = 0 is
T2 = Tpooled2 = (x_1 - X_2)'{V[X_1 B X_2]}_1(x_1 B x2)
with

VIX, - X1 =KS__=(1/n+1/n)S

pooled pooled

You can factor out the constant K =
(n,+n,)/(n.n)) to get the “"special” formula

2
pooled

o T

= (n.n,/(n.+n,))(X.-X_)'S

2 pooled_ 1 2
© = ((f p)/(f -p+1))F

pooled
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The assumption that £ = ¥ 1is a very
strong assumption because it requires

« g Vg @

i gl =T p
(equality of variances)
® pij(1) - pij(Z), a“ 1 ﬁl < J i p

(equality of correlations).

You can seldom appeal to a priori
evidence that two populations with
possibly different means should have

e exactly the same variances ¢, ..., O

and
e exactly the same p(p - 1) correlations
p1,2’ p1,3’ e pp-1,p'

Instead, you need to use the data to check
it.
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The problem of testing H: M, = M,
without assuming that & = ¥ is the
multivariate Behrens-Fisher problem.

When & z & and n, z n,,
EIV o] = ELCI/N+1/0)S, 1 = VX -X].

The pooled T* is not (f p/(f -p+1))F
and not X °, even in large samples.

pooled

P.fe-p+1

But, whenn =n =n,
¢ Ve = (1/0)S, + (1/n,)8,
=(2/0) S, s = Ve
¢ Tiooes = (X, = X)(N7"S +n, 78 )7 (X, - X,)
= (%, - x)((2/ms )X - %) =T 7

will be approximately X ° whether or
not ¥ = . This provides a reason to
use equal sample sizes.
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Two sample T? computation

Cmd> irisdata <- read(™,"t11_05",quiet:T) #read JWdata5.txt
Read from file "TP1:Stat5401:Data:JWData5.txt"

Cmd> varieties <- irisdata[,1]

Cmd> setosa <- irisdata[varieties == 1,-1] # Group 1
Cmd> versicolor <- irisdatalvarieties == 2,-1] # Group 2
Cmd> xbarl <- tabs(setosa,mean:T) # column vector

Cmd> xbar2 <- tabs(versicolor,mean:T) # column vector

Cmd> sl <- tabs(setosa, covar:T) # 4 by 4 matrix

Cmd> s2 <- tabs(versicolor, covar:T)

Cmd> nl <- nrows(setosa) # n1 = 50

Cmd> n2 <- nrows(versicolor) # n2 = 50

Cmd> dfl <-nl - 1; df2 <- n2 - 1# both 49
Cmd>fe<-dfl+df2#98=nl1+n2-2

Cmd> s_pooled <- (df1*s1 + df2*s2)/fe # pooled variance matrix

Cmd> diff <- xbarl - xbar2 # column vector

Cmd> vhat <- (1/n1 + 1/n2)*s_pooled # vhat[xbarl-xbar2]

Cmd> se <- sqrt(diag(vhat)) # std errors sqrt(vhat[i,i])

Cmd> print(diff, se)

diff: di fferences of neans
1) -0.93 0.658 -2.798 -1.08
se: standard errors of differences

(1) 0.088395 0.069593 0.070849 0.03169
Cmd> tstats <- diff/se;print(tstats) #2-sample pooled t-stats

tt:
(1) -10521 9455 -39.493 -34.08

Cmd> twotailt(tstats,fe) # two-tail P-values
(1) 8.9852e-18 1.8712e-15 5.4049e-62 3.8311e-56

The t-statistics here are classic pooled
two-sample univariate t-statistics.
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The groups differ very significantly on S, and S, are quite different so possibly
all 4 variables based on univariate t- S 25
1 2"
te S t S. Cmd> print(variances1:diag(s1),variances2:diag(s2))
ing's T2 _ () 002425 014369 0030159 0011106
CompUte HOteHlng S T tO teSt Ho: p] - }12: variances2: “Versicolor variances

(1) 0.26643 0.098469 0.22082 0.039106
Cmd> t2 <- diff %*% solve(vhat) %*% diff; t2
(1,1) 2580.8
Cmd> p <- ncols(setosa) #p=4

The variances appear to be different.

Cmd> f value < (fe-p+1)*2/(fe*p) You could formally test
d f_value,p, fe-p+1,upper: -val . M _ 2 7 _
8r,r1)>2(.;gé121|;(6__é/$uep e-p+1,upper:T) # P-value HO' Ojj - Ojj ) J = ] .. 4
. . ” : ” : (1) (2)
This is the "white box" approach. by Bonferronized F-tests (F ='s /s ™) or
hotell2val() allows a "black box Levine tests (t-tests computed from z, =
approach: —
PP , |x.. - x.|, see for example, Ott and

Cmd> hote!l2va|(setosa,versmolor,pvaI:T) 1] ]

LA Longnecker, Ed 5, p. 368).

E:fT)ponent(:) pvalue Cmd> z1 <- abs(setosa - xbarl')

, . . . Cmd> z2 <- abs(versicolor - xbar2')
B on fer roni Zed t -S t a t 1S t ICS Cmd> levinetstats <- t2val(z1,z2,pooled:F); levinetstats
. : component: t

Cmd> t2val(setosa,versicolor,df:T) #pooled (1)  -2.9043 076051 -59514 -3.9224

component: t Pool ed 2-sanple t and d.f. component: df

@) -10.5?1 9.455 -39.493 -34.08 (1) 91554 90.063 65.087 75.844

component: df

@ 98 98 98 98 Cmd> 4*twotailt(levinetstats$t, levinetstats$df)

Cmd> stuff <- t2val(setosa,versicolor,pooled:F); stuff @ 0018455 ~ 1.7958 4.6761e-07 0.D0076399

component: t Unpool ed 2-sanmple t and d.f. . .

(D 10521 0455 30498 3408 These are Bonferronized approximate P-

component: df . . .

(1) 86538 94698 6214 74.755 values. Conclusion: the variances differ.

Cmd> 4*twotailt(stuff$t,stuff$df) # Bonferronized P-values
1) 0 9.77e-15 0 0
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Comparison of correlations

Cmd> R1 <- cor(setosa); R2 <- cor(versicolor)

Cmd> print(R1, R2)
R1: Setosa Correl ations

September 30, 2005

(1,2) 1 074255 026718 0.2781
(21) 0.74255 1 01777 0.23275
(31) 026718 0.1777 1 0.33163

(41) 0.2781 0.23275 0.33163 1
R2: Versi col or Correl ations
1,2) 1 0.52591 0.75405 0.54646
(2,1) 0.52591 1 0.56052 0.664
(3,1) 0.75405 0.56052 1 0.78667
(41) 054646 0.664 0.78667 1

Here is a graphical method to compare
the correlations.

The first few lines extract the correla-
tions below the diagonals into vectors of

length 6,
Cmd> J <- matrix(vector(1,2, 1,3, 1,4, 2,3, 2,4, 3,4),2)';J
1,0 1 2 Matri x of indices of
(2,2) 1 3 correl ati ons bel ow the
(3.1) 1 4 di agonal
4,1) 2 3
(5,1) 2 4
6,1) 3 4

Cmd> rl <- R1[J]; r1 # uses "matrix" subscript
(1) 0.74255 0.26718 0.2781 0.1777 0.23275
(6) 0.33163 Bel ow di agonal setosa correlations

Cmd> r2 <- R2[J]; r2 # see help on topic subscripts
(1) 0.52591 0.75405 0.54646 0.56052
(6) 0.78667 Bel ow di agonal

0.664

versicolor correlations

11
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| plotted them with the correlations for

each sample conected by lines:

Cmd> lineplot(1, hconcat(rl,r2), ymin:0, ymax:1,\
min:.5, xmax:6.5,xticks:run(6),\
xticklabs:vector("1,2","1,3","1,4","2,3","2,4","3,4"),\

title:"Correlations for setosa and versicolor")

Correlations for setosa and wersicolor
T T T T

1 -
Versicolor correlations
0.ar -
C . L
[n] e
r o - - -
roopef e e e
=) - R -
: Setosa correlations
t
i 0.4F
o
IL
0.2-
1]

It looks like most setosa correlations are
smaller than the corresponding versicolor
correlations.

12
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You can use Fisher's z-transform of the
sample correlations to carry out a formal
test of
. (1 _ (2)_ : :
Hye Py = Py = Py all b <)
Cmd> z1<- atanh(rl); z2<- atanh(r2) # Fisheer z-transforms

Cmd> z <- (z1 - z2)/sqrt(1/(n1-3) + 1/(n2-3)); z
(1) 18017 -3.4344 -1.5886 -2.2008
(6) -3.4805

-2.7284

Under H, (and approximate multivariate
normality), each z, = tanh™ r  is approx-
imately N(tanh™(p ),1/(n-3)).

]
However, since you are testing them all
simultaneously, you need to Bonferronize
Dg K = 6:
Cmd> 6*2*cumnor(abs(z),upper:T) # Bonferronized P-values

1) 0.42958 0.0035637  0.67291 0.16651
(6) 0.003003

0.03818

Three differ significantly at the 5% level
SO you reject H..

Note: 2*cumnor(abs(z),upper:T) com-
putes the non-Bonferronized two-tail P-
values.

13
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| did a simulation to evaluate the actual
« of this test and the power = 1 - B
when NN

| used M = 10,000 independent pairs of
random samples with n = n, = 50 and £, =

¥,=S, .- (49S +495))/98 (H, true)
and 10,000 pairs of samples with & = S,
£, =S, (H, false) (S, were the sample
variance matrices for Iris setosa and

Iris versicolor data). Here are the

results
o< .10 .05 01
~x | 0.0868 0.0452 0.0107
1 - 8| 0.9936 0.9803  0.8995

The o comes from the H_ true simulation;

power = 1 - B (power) line comes from
the H, false simulation

14
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| did another simulation to see how much [ ran a similar simulation with n, = 30
¥ =z X might affect the distribution of and n, = 150 (n2 - 3xn]),

T?. 1 generated M = 5000 pairs of
samples with J = g and ¥ =S,1=1,2
and computed M values of T* with £ =z Z..

Now the two ways to compute T?, with
Voo = (1/0+1/0)S, and with V -

pooled unpooled

S./n+S,/n, give different results.
Here are the proportions exceeding the

i . Here are the estimated actual «'s.
small sample critical values for various

s wh h - 50 (equal ) X 10 05 025 o1
oS whenn, = h, = oY tequal n. Unpooled & |1102* 0546 0268 .0112
| 10 05 01 .

e _ * P <.05 tP <.01, H:Eld =
* = significantly different from .10.
Note that, except for o« = .01, the esti-

exceeding the small sample critical mated or's when using the biased V ,,, In

values are close to "advertised” « even computirlg T* are further from intenAded <
though £ =z & than Is o« when using the unbiased V
1 2°

The observed proportions « of T2

unpooled”®

This is mainly because, when n. = n,,

E[VApooled[X_1_x_2]] - E[Vunpooled[x_1_)(_2]:| - V[x_1_x_2]

15 16
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Paired Hotelling's T°
In the two-sample situation there is no
meaningful correspondence between any
observation in sample 1 and any observa-
tion in sample 2. In the paired case there
1s a complete correspondence.

Example: Administer a battery of p tests
to n subjects before a treatment and
after a treatment. Suppose the outcome
s represented by a vector x of scores.
Data are of the form

¥ ¥ ¥ Y ¥ ¥

X, X, 0o X

pre-treatment

ni 127

post-treatment

The first subscript has the same meaning
In both samples -- 1t identifies the
subject. That is, there is a pairing of
observations X, @ X_, all i. The arrows

12

above link paired vectors.

17
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In a paired situation, you should always
assume that x. and x_ are not indepen-
dent. A two sample test is not OK.

That is, you must not ignore pairing.

Putd =x, 6 -Xx,1=1,.,n. Thatis, the
d’'s are the Pre-Post differences.

Eld] = p, = J - 1,
The usual null hypothesis is
HO: “1 - JJ‘Q = O’
that is, H;: M, = 0.
This is a now single sample (of d.'s)
problem. Hotelling’'s paired T° is
T2 = d'(VId])'d =d'((1/n)s,))'d,
the 1-sample T° based on {d}. Here,
S, = (1/(n-1))>...(d -

d)(d, - d)".
MacAnova: hotellval(x1 - x2,pval:T)

1<i<n

18
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For small n, assuming normality of the
d's, T is distributed (under H ) as

T = (pf/(f_ - p + 1))F
= (p(n - 1)/(n - p)F

since f_=n-Tand f_-p+1=n-p.

p.f -p+1

p.n-p’

Reversing this, as usual, you get
((f,-p+1)/(pfNT* = ((n-p)/(p(n-1))T" = F

For both the large- and small-sample
distributions, {d} __ must be a random
sample, that 1s

p.n-p

e The d’'s must be mutually independent
e All d's have the same distribution.

When the X, and x, consist of measure-

ments or observations on individuals
randomly selected from a population of
individuals, {d} is a random sample.

19
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An alternative formulation for

paired T?
Define the combined 2p x 1 vector
[ X ]
y = | | with sample y., .... y_
[ x, |

e The first p elements y,, y,, .... y of y
are the "before” scores

e The last p elementsy .Y . ...y, are
the "after” scores.
Then
d=x -x,=1[1,-11y=Cy, where
'100..0-1 00 ...0 7
c=1[1,-11=1010..0 0-10..0
000 1 0 0 0 ..-1

20
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e C=1I

Lecture 11 September 30, 2005

» -Llis p = 2p

e Rows of C define p linear combinations
d =Y -y, =X, -X,,1=1,..,pof
Yy, Y, ..., Y,, the variables in y.

d is p by 1 because C is p by 2p.

You know a lot about sets of linear
combinations:

e d=Cy=10,-1Ty= x -x,
[ 1]
e 5, =CSC' = 1[I -115s | |
-1, ]

e The estimated variance of d is

VId] = VICy] = CVIYIC" = (1/n)CSC".
This is exactly (1/n)S, but Comuted
from S,.

21
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d is an intra-subject or within-subject
comparison where different variables
measured on a case are compared.

[t is a linear combination of the var-
lables.

This is quite different from an inter-
subject comparison where comparisons
are made between different cases or
individuals. This idea is fundamental to
the analysis of repeated measures data.

22
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A short example with Iris setosa data:

Cmd> getlabels(setosa,2) # labels for second dimentions
(1) "SepLen”

(2) "Sepwid"

(3) "PetLen"

(4) "Petwid"

Cmd> x1 <- setosa[,vector(1,3)] # lengths
Cmd> x2 <- setosa[,vector(2,4)] # widths

Cmd> hotellval(x1 - x2, pval:T)
component: hotelling

(1,1 40121

component: pvalue

1,1) 0

x1 - x2 1s the matrix of differences.
Cmd> ¢ <- matrix(vector(l,—l,(g),o, 0,061, -1),4)'c

1,1) 1 -1
2.1) 0 0 1 1

This 1s a different form of C because of
the way the variables are ordered. It
compares sepal lengths with sepal
widths, and petal lengths with petal
widths. The null hypothesis says some-
thing about the shape of the flowers.

Cmd> hotellval(setosa %*% c',pval:T) # note the transpose on ¢
component: hotelling

(1,1) 40121 Bl ack box conputed T2
component: pvalue

1,1 0

Cmd> s_x <- tabs(setosa,covar.T) ;  Xbar <- tabs(setosa,mean:T)

Cmd> vhat xbar <-s_x/n

Cmd> (c %*% xbar)' %*% solve(c %*% vhat_xbar %*% c') %*% \
(c %*% xbar)
(1,1) 40121 VWite box conputed T"2 is the sane

23



