Displays for Statistics 5401/8401

Lecture 10

September 28, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page

http://www.stat.umn.edu/~kb/classes/5401 © 2005 by Christopher Bingham

## Ellipsoids

When  $\mathbf{Q} = [q_{ij}]$  is  $p \times p$  <u>positive definite</u> with inverse  $\mathbf{Q}^{-1} = [q^{jk}]$ , then

$$\sum_{1 \le i \le p} \sum_{1 \le j \le p} q^{ij} (x_i - x_{i0}) (x_j - x_{j0}) = (x - x_0)' Q^{-1} (x - x_0) = K^2$$

defines a p-dimensional **ellipsoid** with center at  $\mathbf{x}_{0}$  (<u>ellipse</u> when p = 2).

The <u>surface or boundary</u> of the ellipsoid consists of all  $\mathbf{x}$  such that this equation is satisfied:

$$\{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_0), \mathbf{Q}^{-1}(\mathbf{x} - \mathbf{x}_0) = \mathbf{K}^2 \}.$$

The surface together with the <u>interior</u> of the ellipsoid consists is

$$\{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_0), \mathbf{Q}^{-1}(\mathbf{x} - \mathbf{x}_0) \leq \mathbf{K}^2\}$$

Ellipse together with its interior



Statistics 5401

Lecture 10

September 28, 2005

Statistics 5401

Lecture 10

September 28, 2005

Here is an ellipsoid with p = 3, centered at  $\mathbf{x}_0 = [0, 0, 0,]'$  with  $\mathbf{Q} = \text{diag}(10, 3, 2)$ .



• When **Q** is <u>diagonal</u> (as here),  $q_{ii} > 0$  and the equation for the surface is  $(\mathbf{x} - \mathbf{x}_0)'\mathbf{Q}^{-1}(\mathbf{x} - \mathbf{x}_0) = \sum_{1 \le i \le p} (x_i - x_{0i})^2/q_{ii} = K^2$  For p = 2, this is  $(x_1 - x_{01})^2/q_{11} + (x_2 - x_{02})^2/q_{22} = K^2$ 

 Ellipsoids with <u>diagonal</u> **Q** have principal axes parallel the coordinate axes



- When  $q_{11} = q_{22}$ ,  $q_{12} = 0$  the ellipse is a circle with radius  $K \sqrt{q_{11}}$  and diameter  $2K \sqrt{q_{11}}$ .
- When  $q_{11} \neq q_{22}$ ,  $q_{12} = 0$  lengths (diameters) in the x- and y- directions are  $2K\sqrt{q_{11}}$  and  $2K\sqrt{q_{22}}$ .

### A diagonal Q:

- Has <u>eigenvalues</u> q<sub>11</sub>, q<sub>22</sub>, ..., q<sub>pp</sub> rearranged in decreasing order. That is, if  $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_p$  are the eigenvalues, each  $\lambda_i = q_{ii}$  for some  $\ell$ .
- Has <u>eigenvectors</u> consisting of one 1 and p-1 O's like

$$\begin{bmatrix} 0 \\ 0 \\ \dots \end{bmatrix} \quad \text{A column of } \mathbf{I}_{p}$$
 
$$\begin{bmatrix} 1 \\ \dots \\ 0 \end{bmatrix}$$

They are parallel the coordinate axes in p-dimensional space.

For p = 2, the eigenvectors are

$$\mathbf{u}_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 ,  $\mathbf{u}_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 

Statistics 5401

September 28, 2005

### Two ellipses with same eigenvalues, and eigenvectors in different order $\lambda_{1} = 6, \lambda_{2} = 3, K = 10$

$$\mathbf{Q}_{left} = \begin{bmatrix} 4.5 & -1.5 \\ -1.5 & 4.5 \end{bmatrix} \mathbf{Q}_{right} = \begin{bmatrix} 4.5 & 1.5 \\ 1.5 & 4.5 \end{bmatrix}$$

Both Q's have

$$\lambda_1 = 6$$
,  $\lambda_2 = 3$ ,  $\lambda_1 \lambda_2 = 18$ ,  $\lambda_1 / \lambda_2 = 2$ .

## Eigenvectors

- Left Plot  $\mathbf{u}_{_{1}}$
- Right Plot
- $\begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}, \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$

When Q is not diagonal,

Statistics 5401

The *center* of the ellipsoid is at  $\mathbf{x}_{0}$ 

Lecture 10

Its shape is determined by the <u>eigenvalues</u>  $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_p$  of **Q** 

Its *orientation* is determined by the eigenvectors  $\mathbf{u}_1, \dots, \mathbf{u}_p$ ,  $\|\mathbf{u}_i\| = 1$  of  $\mathbf{Q}$ .

Its <u>size</u> depends on  $K\sqrt{\lambda_i}$ , i = 1,...,p.

- The longest axis of the ellipsoid is parallel to  $\mathbf{u}_1$  and has length  $2\sqrt{\lambda_1}K$ .
- The 2nd longest axis perpendicular to  $\mathbf{u}_1$  is parallel  $\mathbf{u}_2$  and has length  $2\sqrt{\lambda_2}K$ .
- ullet The <u>shortest axis</u> is parallel  $oldsymbol{u}_{\scriptscriptstyle D}$  and has length  $2\sqrt{\lambda_{D}}K$ . It is perpendicular to  $u_{1},..., u_{n-1}.$

Reminder:  $\mathbf{u}_{_{1}},...,\ \mathbf{u}_{_{D}}$  are orthonormal, that is,  $\mathbf{u}_{i}'\mathbf{u}_{k} = 0$  ( $\mathbf{u}_{i}$  orthogonal to  $\mathbf{u}_{k}$ ),  $j \neq k$ , and  $\|\mathbf{u}_i\| = 1$  ( $\mathbf{u}_i \text{ normal} ized$ ).

Statistics 5401

September 28, 2005

September 28, 2005

The larger  $\lambda_1/\lambda_2$  the "thinner" the ellipse.  $\lambda_{1} = 18, \ \lambda_{2} = 1, \ \lambda_{1}\lambda_{2} = 18, \ \lambda_{1}/\lambda_{2} = 18$ 

Lecture 10



Linear dimensions with K = 5 are half those with K = 10 but area is 1/4 (in higher dimensions volume would be (1/2) as large.





#### Contours

**Vocabulary**: Let  $h(\mathbf{x})$  be a function of a p-dimensional vector  $\mathbf{x}$ .

For a constant c, a contour of h(x) is  $\{x \mid h(x) = c\}$ , the set of x with h(x) = c. When p = 2, a contour is a *level curve* on the surface whose height at x is h(x).

A multivariate normal density is  $h(\mathbf{x}) = f(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-(p/2)} det(\boldsymbol{\Sigma})^{-1/2} e^{-(1/2)(\mathbf{x}-\boldsymbol{\mu})^{\boldsymbol{\Sigma}} - 1} (\mathbf{x}-\boldsymbol{\mu})$  It has <u>ellipsoidal contours</u>:

Each contour is

$$\{x \mid f(x, \mu, \Sigma) = c > 0\}$$

which is equivalent to

$$\{\mathbf{x} \mid (\mathbf{x}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) = K^2\}$$

where

$$K^2 = -2\log(c) + \log(\det \Sigma)/2 + (p/2)\log\pi$$

**Note:** The maximum (mode) of the density is at  $\mathbf{x} = \boldsymbol{\mu}$  so for the contour to exist,  $\mathbf{c} \leq f(\boldsymbol{\mu}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-(p/2)} \det(\boldsymbol{\Sigma})^{-1/2}$ .

The contour

$$\{\mathbf{x} \mid (\mathbf{x} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) = K^2\}$$

is an ellipsoid

- centered at  $\mathbf{x}_{\circ} = \boldsymbol{\mu}$
- with  $Q = \Sigma$

For any fixed K, the larger the eigenvalues of  $\Sigma$  are

- the larger the ellipsoid (contour) is.
- the more scattered data will tend to be.

10

Statistics 5401

Lecture 10

September 28, 2005

Statistics 5401

Lecture 10

September 28, 2005

# Contour plot of bivariate normal.



The contours plotted are the ellipses  $\{\mathbf{x} \mid (\mathbf{x} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) = \chi_2^2(i/10)\},$ 

 $\{\mathbf{x} \mid (\mathbf{x} - \boldsymbol{\mu}) \geq (\mathbf{x} - \boldsymbol{\mu}) = \chi_2(1/10)\},\$   $\mathbf{i} = 1, 2, ..., 9, \text{ where } \{\chi_2^2(1/10)\} \text{ are } \chi_2^2 \}$ probability points computed by

invchi(run(9)/10,2, upper:T).

Because  $(\mathbf{x} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) = \chi_2^2$ , there is probability 1/10 = 0.1

- in the central ellipse
- between any two "adjacent" ellipses
- beyond the outer ellipse.

# Univariate situations when a sum of squares has a $\chi^2$ distribution

- $x_1,...,x_n$  is  $N_1(\mu, \sigma^2)$  random sample. Then  $f_e s^2/\sigma^2 = \sum_i (x_i - \overline{x})^2/\sigma^2 = RSS/\sigma^2$  is exactly  $\chi_{f_e}^2$ , where  $f_e = n-1$ .
- Multiple regression or ANOVA model with independent  $N(0,\sigma^2)$  errors  $\epsilon_i$  with mean square error  $s^2 = RSS/f_e$ . Then  $f_e s^2/\sigma^2 = RSS/\sigma^2$  is exactly  $\chi_{f_e}^2$ , where  $f_e = \frac{error\ degrees\ of\ freedom}{e} = n k$ , where  $k = number\ of\ parameters$  including the intercept, if any.

You can express both these facts as

$$f_e s^2 = RSS = \sigma^2 \chi_{f_e}^2$$

# Additional (monastic) fact:

 $s^2$  is *independent* of  $\overline{x}$  or of the estimated regression or ANOVA coefficients.

#### Wishart distribution

Lecture 10

The Wishart distribution is a generalization of  $\sigma^2 \chi_f^2$  to random matrices.

A Wishart random matrix W is a random pxp positive definite symmetric matrix with a specific distribution  $W_{_{\mathbb{D}}}(f;\Sigma).$ 

- $W_{\alpha}(f;\Sigma)$  depends on <u>degrees of freedom</u> f (as  $\sigma^2 \chi^2$  does).
- $W_{_{\mathbb{Q}}}(f;\mathbf{\Sigma})$  depends on a <u>positive definite</u> variance matrix  $\Sigma$  ( $\sigma^2 > 0$  for  $\sigma^2 \chi_{,2}$ ).

When p = 1,  $W_1(f;\sigma^2) = \sigma^2 \chi_f^2$ .

See Rao or Anderson for full details.

13

Statistics 5401

September 28, 2005

Example - One-way ANOVA and MANOVA

One-way analysis of variance is a way to analyze

- independent
- (univariate) <u>normal</u>
- random samples of sizes n<sub>1</sub>, n<sub>2</sub>, ..., n<sub>n</sub> from g groups or populations, all with variance  $\sigma^2$ .

A one-way ANOVA with g groups has

- Error d.f.  $f_{a} = N g$ ,  $N = n_{1} + ... + n_{d}$ .
- Error SS = SSW = RSS =  $\sum_{1 \le j \le q} \sum_{1 \le i \le n_j} (x_{ij} - \overline{x_{ij}})^2 = \sigma^2 \chi_{f_a}^2 = \sigma^2 \chi_{N-q}^2$
- Hypothesis d.f.  $f_h = g 1$
- Among groups  $SS = SS_{groups} =$  $SSB = \sum_{1 \le i \le n} n_i (\overline{x}_i - \overline{x})^2$ When  $H_0$ :  $\mu_1 = \mu = ... = \mu_g$  is true,  $SS_{groups}$ is  $\sigma^2 \chi_{f_1}^2 = \sigma^2 \chi_{g_{-1}}^2$ .

You need normality for exactness.

#### Facts

- $E[W] = f \times \Sigma$  so  $E[(1/f)W] = \Sigma$
- When X<sub>1</sub>, X<sub>2</sub>,..., X<sub>n</sub> are a <u>random sample</u> from  $N_{D}(\mu,\Sigma)$ ,

$$f_e S = (n-1)S = \sum_{1 \le i \le n} (\mathbf{x}_i - \overline{\mathbf{x}})(\mathbf{x}_i - \overline{\mathbf{x}})'$$
 is  $W_p(f_e; \Sigma), f_e = n - 1 (= univariate f_e)$ 

Thus  $E[f_{e}S] = f_{e}\Sigma \Rightarrow E[S] = \Sigma$ , so  $\hat{\Sigma} = S$  is unbiased for  $\Sigma$ 

 $\overline{\mathbf{x}}$  is independent of **S** 

In multivariate linear regression and MANOVA with errors (true residuals)  $\varepsilon$ , that are independent  $N_{s}(0,\Sigma)$ , the pxp matrix of *residual sums of* squares and products

$$RCP = \sum_{i} (\mathbf{x}_{i} - \hat{\mathbf{x}})(\mathbf{x}_{i} - \hat{\mathbf{x}})' = W_{p}(f_{e}; \mathbf{\Sigma})$$

where f = error degrees of freedom, (same as error df in univariate regression or ANOVA).

Lecture 10

September 28, 2005

A one-way *multivariate ANOVA* (MANOVA) based on

- <u>independent</u>
- $N_p(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}), j = 1, ..., g$
- random samples of sizes n<sub>1</sub>, n<sub>2</sub>, ..., n<sub>q</sub> from g groups or populations, all with variance matrix Σ has
- Error d.f.  $f_e = N g$ ,  $N = n_1 + ... + n_q$
- $\hat{X}_{ij} = \overline{X}_{ij}$ ,
- Error SSCP matrix = E = RCP =  $\sum_{1 \le j \le p} \sum_{1 \le i \le n_i} (\mathbf{X}_{ij} - \overline{\mathbf{X}_{j}}) (\mathbf{X}_{ij} - \overline{\mathbf{X}_{j}})' = W_p(f_e; \mathbf{\Sigma})$ =  $W_{\scriptscriptstyle D}(N - g; \Sigma)$
- Hypothesis d.f.  $f_b = g 1$
- Among groups SSCP = =  $\mathbf{H} = \sum_{1 < j < q} \mathbf{n}_{j} (\overline{\mathbf{X}_{j}} - \overline{\mathbf{X}_{j}}) (\overline{\mathbf{X}_{j}} - \overline{\mathbf{X}_{j}})^{T}$ When  $H_0$ :  $\mu_1 = \mu = ... = \mu_g$  is true, H is  $W_{p}(f_{h};\Sigma) = W_{p}(g-1;\Sigma)$ , independent of E.

You need normality for exactness.

Statistics 5401

Here is situation which often occurs in MANOVA and multivariate regression with N<sub>D</sub> errors.

Lecture 10

You have an estimator  $\hat{\boldsymbol{\theta}}$  of a vector  $\boldsymbol{\theta}$  of parameters such that

- **θ̂** is N<sub>n</sub>(**θ**, V[**θ̂**])
- $V[\hat{\theta}] = K \Sigma$ , where K is a known constant but  $\Sigma$  is unknown and must be estimated

**Example**: for  $N_{p}(\mu,\Sigma)$ ,  $\theta = \mu$ ,  $\hat{\theta} = \overline{x}$ ,  $\overline{\mathbf{x}}$  is  $N_{D}(\boldsymbol{\mu}, K \boldsymbol{\Sigma})$ , with K = 1/n

• S is an unbiased estimate of  $\Sigma$ , <u>independent</u> of  $\hat{\boldsymbol{\theta}}$ , with  $f_{\boldsymbol{\rho}} = W_{\boldsymbol{\rho}}(f_{\boldsymbol{\rho}}, \boldsymbol{\Sigma})$ .

**Example:** 
$$S = (1/f_e) \sum_{1 \le i \le n} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})$$
  
 $f_e = n - 1$  and  $f_e S = W_D (n-1, \Sigma)$ 

Facts: Under these conditions (normal estimator, independent Wishart estimate of  $\Sigma$ 

- $\hat{V}[\hat{\theta}] = KS$  is an <u>unbiased</u> estimator of  $V[\hat{\Theta}] = K\Sigma.$
- $T^2 \equiv (\hat{\boldsymbol{\theta}} \boldsymbol{\theta})' \{ \hat{V} [\hat{\boldsymbol{\theta}}] \}^{-1} (\hat{\boldsymbol{\theta}} \boldsymbol{\theta})$  $= (\widehat{\Theta} - \Theta)'\{KS\}^{-1}(\widehat{\Theta} - \Theta)$ =  $((f_e p)/(f_e - p + 1))F_{p,f_e - p + 1}$

Equivalently

$$\{(f_e - p + 1)/(pf_e)\}T^2 = F_{p,f_e-p+1}$$

17

Statistics 5401

September 28, 2005

Statistics 5401

Lecture 10

September 28, 2005

#### Particular cases

Single Sample Hotelling's T2, based on a random sample  $\mathbf{x}_1, ..., \mathbf{x}_n$  from a multivariate population with mean  $\mu$ and variance matrix  $\Sigma$ :

$$Θ = μ, Θ = \overline{x}$$
 $V[\overline{x}] = (1/n)Σ$  so  $K = 1/n$ 
 $\widehat{V}[\overline{x}] = (1/n)S$ , with  $f_e = n - 1$ 

$$T^2 = (\overline{x} - μ)'\widehat{V}[\overline{x}]^{-1}(\overline{x} - μ)$$

$$= n(\overline{x} - μ)'S^{-1}(\overline{x} - μ)$$

When x is  $N_{\mu}(\mu \Sigma)$ ,

$$T^{2} = ((f_{e}p)/(f_{e}-p+1))F_{p,f_{e}-p+1}$$
$$= \{(p(n-1))/(n-p)\}F_{p,n-pn}.$$

You use  $T^2 = (\overline{\mathbf{X}} - \mu_0)' \hat{\mathbf{V}} [\overline{\mathbf{X}}]^{-1} (\overline{\mathbf{X}} - \mu_0)$  as a test statistic to test  $H_0$ :  $\mu = \mu_0$ , computing P-value or critical value using the F-distribution.

19

## Two sample comparison of means

18

Suppose you have two

- independent
- random samples

$$\mathbf{X}_{1,1},\!\mathbf{X}_{2,1},\!\dots,\!\mathbf{X}_{n_1,1}$$
 and  $\mathbf{X}_{1,2},\!\mathbf{X}_{2,2},\!\dots,\!\mathbf{X}_{n_2,2}$  from two populations

Population 1: mean =  $E[x_1] = \mu_1$ ,  $V[x_1] = \Sigma_1$ Population 2: mean =  $E[\mathbf{x}_{2}] = \boldsymbol{\mu}_{2}$ ,  $V[\mathbf{x}_{2}] = \boldsymbol{\Sigma}_{2}$ Suppose your interest is in  $\theta = \mu_1 - \mu_2$ .

Then

- $\hat{\boldsymbol{\theta}} \equiv \overline{\boldsymbol{X}_1} \overline{\boldsymbol{X}_2}$
- $V[\hat{\boldsymbol{\theta}}] = V[\overline{\boldsymbol{\chi}_1}] + V[\overline{\boldsymbol{\chi}_2}]$ =  $(1/n_1)\Sigma_1 + (1/n_2)\Sigma_2$ .

# Unpooled two-sample T<sup>2</sup>

• Unpooled estimate of  $V[\hat{\boldsymbol{\theta}}]$  is  $\hat{V}[\hat{\boldsymbol{\theta}}] = \hat{V}[\overline{\mathbf{X}_1}] + \hat{V}[\overline{\mathbf{X}_2}] = (1/n_1)\mathbf{S}_1 + (1/n_2)\mathbf{S}_2$  where  $\mathbf{S}_1$  and  $\mathbf{S}_2$  are (unbiased) sample variance matrices.

 $\hat{V}[\hat{\mathbf{\theta}}]$  is an unbiased estimate of  $V[\hat{\mathbf{\theta}}]$ 

- $T^2 = (\overline{\mathbf{x}}_1 \overline{\mathbf{x}}_2)' \hat{\nabla} [\hat{\boldsymbol{\theta}}]^{-1} (\overline{\mathbf{x}}_1 \overline{\mathbf{x}}_2)$   $= (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)' (n_1^{-1} S_1 + n_2^{-1} S_2)^{-1} (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)$ tests  $H_0: \boldsymbol{\theta} = \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 = \mathbf{0}$ When  $H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2$  is true and  $n_1$  and  $n_2$ are <u>large</u>,  $T^2 = \chi_0^2$
- Even with normal x₁ and x₂, when n₁ ≠ n₂, unpooled T² is not
   ((pfe)/(fe p + 1))F(p, fe p + 1)
- Unpooled  $T^2 \neq$  "classical" pooled twosample  $T^2$  except when  $n_1 = n_2$ .