Statistics 5401 Lecture 10

Displays for Statistics 5401/8401

Lecture 10

September 28, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page

http://www.stat.umn.edu/~kb/classes/5401 © 2005 by Christopher Bingham

Ellipsoids

When $\mathbf{Q} = [q_{ij}]$ is $p \times p$ <u>positive definite</u> with inverse $\mathbf{Q}^{-1} = [q^{jk}]$, then

$$\sum_{1 \le i \le p} \sum_{1 \le j \le p} q^{ij} (x_i - x_{i0}) (x_j - x_{j0}) = (\mathbf{x} - \mathbf{x}_0) \cdot \mathbf{Q}^{-1} (\mathbf{x} - \mathbf{x}_0) = K^2$$

defines a p-dimensional **ellipsoid** with center at \mathbf{x}_0 (<u>ellipse</u> when p = 2).

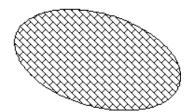
The <u>surface or boundary</u> of the ellipsoid consists of all **x** such that this equation is satisfied:

$$\{x \mid (x-x_0)'Q^{-1}(x-x_0) = K^2\}.$$

The surface together with the <u>interior</u> of the ellipsoid consists is

$$\{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_0), \mathbf{Q}^{-1}(\mathbf{x} - \mathbf{x}_0) \leq \mathbf{K}^2\}$$

Ellipse together with its interior

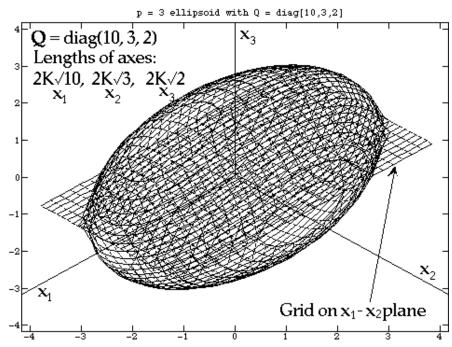


September 28, 2005

Statistics 5401

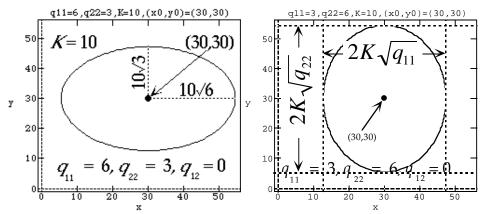
Here is an ellipsoid with p = 3, centered at $\mathbf{x}_0 = [0, 0, 0,]'$ with $\mathbf{Q} = \text{diag}(10, 3, 2)$.

Lecture 10



When Q is <u>diagonal</u> (as here), $q_{ij} > 0$ and the equation for the surface is $(\mathbf{x} - \mathbf{x}_0)' \mathbf{Q}^{-1} (\mathbf{x} - \mathbf{x}_0) = \sum_{1 \le i \le p} (\mathbf{x}_i - \mathbf{x}_{0i})^2 / \mathbf{q}_{ii} = K^2$ For p = 2, this is $(x_1 - x_{01})^2/q_{11} + (x_2 - x_{02})^2/q_{22} = K^2$

 Ellipsoids with <u>diagonal</u> Q have principal axes parallel the coordinate axes



- When $q_{11} = q_{22}$, $q_{12} = 0$ the ellipse is a circle with radius $K\sqrt{q_{11}}$ and diameter $2K\sqrt{q_{11}}$.
- When $q_{11} \neq q_{22}$, $q_{12} = 0$ lengths (diameters) in the x- and y- directions are $2K\sqrt{q_{11}}$ and $2K\sqrt{q_{22}}$.

A diagonal Q:

- Has <u>eigenvalues</u> q_{11} , q_{22} , ..., q_{pp} , rearranged in decreasing order. That is, if $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_p$ are the eigenvalues, each $\lambda_i = q_{\ell\ell}$ for some ℓ .
- Has <u>eigenvectors</u> consisting of one 1 and p-1 0's like

They are parallel the coordinate axes in p-dimensional space.

For p = 2, the eigenvectors are

$$\mathbf{u}_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 , $\mathbf{u}_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

When \mathbf{Q} is **not** diagonal, The *center* of the ellipsoid is at \mathbf{x}_0 Its *shape* is determined by the eigenvalues $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ of \mathbf{Q}

Its orientation is determined by the eigenvectors $\mathbf{u}_1, ..., \mathbf{u}_p$, $||\mathbf{u}_i|| = 1$ of \mathbf{Q} .

Its <u>size</u> depends on $K\sqrt{\lambda_i}$, i = 1,...,p.

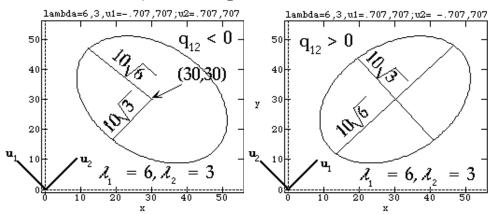
- The <u>longest axis</u> of the ellipsoid is parallel to \mathbf{u}_1 and has length $2\sqrt{\lambda_1}K$.
- The <u>2nd longest axis</u> perpendicular to ${\bf u}_{_1}$ is parallel ${\bf u}_{_2}$ and has length $2\sqrt{\lambda_{_2}}{\rm K}$.
- The shortest axis is parallel ${\bf u}_{\rm p}$ and has length $2\sqrt{\lambda_{\rm p}}K$. It is perpendicular to ${\bf u}_{\rm l},...,{\bf u}_{\rm p-1}$.

Reminder: $\mathbf{u}_1, ..., \mathbf{u}_p$ are orthonormal, that is, $\mathbf{u}_j'\mathbf{u}_k = 0$ (\mathbf{u}_j orthogonal to \mathbf{u}_k), $j \neq k$, and $\|\mathbf{u}_i\| = 1$ (\mathbf{u}_i normalized).

Two ellipses with same eigenvalues, and eigenvectors in different order

Lecture 10

$$\lambda_1 = 6, \lambda_2 = 3, K = 10$$



$$\mathbf{Q}_{left} = \begin{bmatrix} 4.5 & -1.5 \\ -1.5 & 4.5 \end{bmatrix} \mathbf{Q}_{right} = \begin{bmatrix} 4.5 & 1.5 \\ 1.5 & 4.5 \end{bmatrix}$$

Both Q's have

$$\lambda_1 = 6$$
, $\lambda_2 = 3$, $\lambda_1 \lambda_2 = 18$, $\lambda_1 / \lambda_2 = 2$.

Eigenvectors

Left Plot

Right Plot

 $\begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$ $\begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$

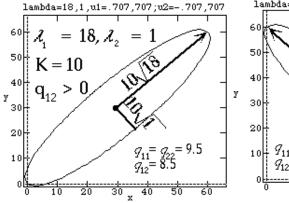
The larger λ_1/λ_2 the "thinner" the ellipse.

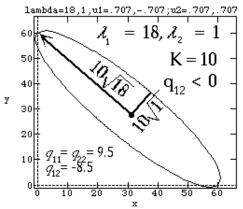
$$\lambda_1 = 18, \lambda_2 = 1, \lambda_1\lambda_2 = 18, \lambda_1/\lambda_2 = 18$$

$$\lambda_1 = 18, \lambda_2 = 18, \lambda_1/\lambda_2 = 18$$

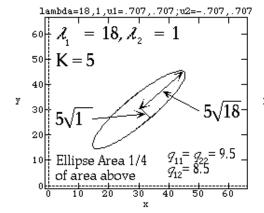
$$\lambda_1 = 18, \lambda_2 = 18, \lambda_1/\lambda_2 = 18$$

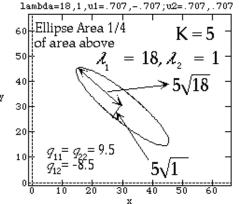
$$\lambda_1 = 18, \lambda_2 = 18, \lambda_1/\lambda_2 = 18$$





Linear dimensions with K = 5 are half those with K = 10 but area is 1/4 (in higher dimensions volume would be $(1/2)^p$ as large.





Contours

Vocabulary: Let h(x) be a function of a p-dimensional vector x.

For a constant c, a contour of h(x) is $\{x \mid h(x) = c\}$, the set of x with h(x) = c. When p = 2, a contour is a level curve on the surface whose height at x is h(x).

A multivariate normal density is $h(x) = f(x, \mu, \Sigma) = (2\pi)^{-(p/2)} \det(\Sigma)^{-1/2} e^{-(1/2)(x-\mu)^{-\Sigma^{-1}}(x-\mu)}$ It has ellipsoidal contours:

Each contour is

$$\{x \mid f(x, \mu, \Sigma) = c > 0\}$$

which is equivalent to

$$\{x \mid (x-\mu)^{T} \Sigma^{-1} (x-\mu) = K^{2}\}$$

where

$$K^2 = -2\log(c) + \log(\det \Sigma)/2 + (p/2)\log\pi$$

Note: The maximum (mode) of the density is at $\mathbf{x} = \boldsymbol{\mu}$ so for the contour to exist, $\mathbf{c} \leq f(\boldsymbol{\mu}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-(p/2)} \det(\boldsymbol{\Sigma})^{-1/2}$.

The contour

$$\{x \mid (x-\mu)'\Sigma^{-1}(x-\mu) = K^2\}$$

is an ellipsoid

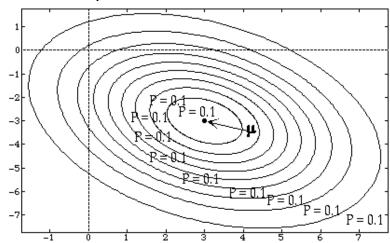
- centered at $\mathbf{x}_{0} = \boldsymbol{\mu}$
- with $Q = \Sigma$

For any fixed K, the larger the eigenvalues of Σ are

- the larger the ellipsoid (contour) is.
- the more scattered data will tend to be.

Statistics 5401 Lecture 10 September 28, 2005 Statistics 5401 Lecture 10 September 28, 2005

Contour plot of bivariate normal.



The contours plotted are the ellipses

 $\{\mathbf{x} \mid (\mathbf{x} - \mathbf{\mu})^{2} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu}) = \chi_{2}^{2} (i/10)\},$ i = 1, 2, ..., 9, where $\{\chi_{2}^{2} (i/10)\}$ are χ_{2}^{2} probability points computed by invchi(run(9)/10,2, upper:T).

Because $(\mathbf{x} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) = \chi_2^2$, there is probability 1/10 = 0.1

- in the central ellipse
- between any two "adjacent" ellipses
- beyond the outer ellipse.

Univariate situations when a sum of squares has a χ^2 distribution

- $x_1,...,x_n$ is $N_1(\mu, \sigma^2)$ random sample. Then $f_e s^2/\sigma^2 = \sum_i (x_i - \overline{x})^2/\sigma^2 = RSS/\sigma^2$ is exactly $\chi_{f_0}^2$, where $f_e = n-1$.
- Multiple regression or ANOVA model with independent $N(0,\sigma^2)$ errors ϵ_i with mean square error $s^2 = RSS/f_e$. Then $f_e s^2/\sigma^2 = RSS/\sigma^2$ is exactly $\chi_{f_e}^2$, where $f_e = \frac{error\ degrees\ of\ freedom}{e} = n k$, where $k = number\ of\ parameters$ including the intercept, if any.

You can express both these facts as

$$f_e s^2 = RSS = \sigma^2 \chi_{f_e}^2$$

Additional (monastic) fact:

 s^2 is *independent* of \overline{x} or of the estimated regression or ANOVA coefficients.

Wishart distribution

Lecture 10

The Wishart distribution is a generalization of $\sigma^2 \chi_f^2$ to random matrices.

A Wishart random matrix W is a random p*p positive definite symmetric matrix with a specific distribution $W_{p}(f;\Sigma)$.

- $W_p(f;\Sigma)$ depends on <u>degrees of freedom</u> f (as $\sigma^2 \chi_f^2$ does).
- $W_p(f;\Sigma)$ depends on a <u>positive definite</u> variance matrix Σ ($\sigma^2 > 0$ for $\sigma^2 \chi_f^2$).

When p = 1, $W_1(f;\sigma^2) = \sigma^2 \chi_f^2$.

See Rao or Anderson for full details.

Facts

- $E[W] = f \times \Sigma$ so $E[(1/f)W] = \Sigma$
- When \mathbf{X}_1 , \mathbf{X}_2 ,..., \mathbf{X}_n are a <u>random sample</u> from $N_{_D}(\mu, \Sigma)$,

$$f_e S = (n-1)S = \sum_{1 \le i \le n} (\mathbf{x}_i - \overline{\mathbf{x}})(\mathbf{x}_i - \overline{\mathbf{x}})'$$
 is $W_p(f_e; \Sigma), f_e = n - 1 (= univariate f_e)$

Thus $E[f_e S] = f_e \Sigma \Rightarrow E[S] = \Sigma$, so $\widehat{\Sigma} = S$ is unbiased for Σ \overline{X} is independent of S

• In <u>multivariate</u> linear regression and MANOVA with errors (true residuals) ϵ_i that are <u>independent</u> $N_p(\mathbf{0}, \mathbf{\Sigma})$, the pxp matrix of **residual sums of squares and products**

RCP =
$$\sum_{i} (\mathbf{x}_{i} - \hat{\mathbf{x}})(\mathbf{x}_{i} - \hat{\mathbf{x}})' = W_{D}(f_{e}; \Sigma)$$

where $f_e = error degrees of freedom$, (same as error df in univariate regression or ANOVA).

Example - One-way ANOVA and MANOVA One-way analysis of variance is a way to analyze

Lecture 10

- independent
- (univariate) normal
- random samples of sizes n₁, n₂, ..., n_q from g groups or populations, all with variance o².

A one-way ANOVA with g groups has

- Error d.f. $f_{a} = N g$, $N = n_{1} + ... + n_{d}$.
- Error SS = SSW = RSS = $\sum_{1 \le j \le g} \sum_{1 \le i \le n_i} (X_{ij} - \overline{X_{.j}})^2 = \sigma^2 \chi_{f_a}^2 = \sigma^2 \chi_{N-g}^2$
- Hypothesis d.f. f, = g 1
- Among groups SS = SS_{groups} = $SSB = \sum_{1 < i < n} n_i (\overline{X}_i - \overline{X}_i)^2$ When H_0 : $\mu_1 = \mu = ... = \mu_q$ is true, SS_{qroups} is $\sigma^2 \chi_{f_1}^2 = \sigma^2 \chi_{g_{-1}}^2$.

You need normality for exactness.

A one-way *multivariate ANOVA* (MANOVA) based on

- independent
- $N_{p}(\mu_{i}, \Sigma), j = 1, ..., g$
- <u>random samples</u> of sizes n₁, n₂, ..., n_d from g groups or populations, all with variance matrix Σ has
- Error d.f. $f_{p} = N g$, $N = n_{1} + ... + n_{d}$
- $\bullet \quad \widehat{X}_{i} = \overline{X}_{i},$
- Error SSCP matrix = E = RCP = $\sum_{1 < j < q} \sum_{1 < i < n_{i}} (\mathbf{X}_{ij} - \overline{\mathbf{X}_{i}}) (\mathbf{X}_{ij} - \overline{\mathbf{X}_{i}})' = W_{D}(f_{e}; \Sigma)$ = $W_{n}(N - g; \Sigma)$
- Hypothesis d.f. f, = g 1
- Among groups SSCP = = $H = \sum_{1 < i < 0} n_i (\overline{\mathbf{X}}_i - \overline{\mathbf{X}}_i) (\overline{\mathbf{X}}_i - \overline{\mathbf{X}}_i)'$ When H_0 : $\mu_1 = \mu = \dots = \mu_q$ is true, **H** is $W_{p}(f_{p}; \Sigma) = W_{p}(g-1; \Sigma)$, independent of E.

You need normality for <u>exactness</u>.

Here is situation which often occurs in MANOVA and multivariate regression with $N_{_{\! D}}$ errors.

You have an estimator $\hat{\boldsymbol{\theta}}$ of a vector $\boldsymbol{\theta}$ of parameters such that

- $\hat{\Theta}$ is $N_p(\Theta, V[\hat{\Theta}])$
- $V[\hat{\Theta}] = K \Sigma$, where K is a <u>known</u> constant but Σ is unknown and must be estimated

Example: for $N_{p}(\mu, \Sigma)$, $\Theta = \mu$, $\widehat{\Theta} = \overline{X}$, \overline{X} is $N_{p}(\mu, K \Sigma)$, with K = 1/n

• S is an unbiased estimate of Σ , <u>independent</u> of $\hat{\Theta}$, with $f_e S = W_p(f_e, \Sigma)$.

Example:
$$S = (1/f_e) \sum_{1 \le i \le n} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})'$$

 $f_e = n - 1$ and $f_e S = W_p (n-1, \Sigma)$

Facts: Under these conditions (normal estimator, independent Wishart estimate of $\boldsymbol{\Sigma}$

- $\hat{V}[\hat{\Theta}] = KS$ is an <u>unbiased</u> estimator of $V[\hat{\Theta}] = K\Sigma$.
- $T^2 \equiv (\hat{\Theta} \Theta)' \{ \hat{V} [\hat{\Theta}] \}^{-1} (\hat{\Theta} \Theta)$ = $(\hat{\Theta} - \Theta)' \{ KS \}^{-1} (\hat{\Theta} - \Theta)$ = $((f_e p)/(f_e - p + 1)) F_{p,f_e - p + 1}$

Equivalently $\{(f_e - p + 1)/(pf_e)\}T^2 = F_{p,f_e-p+1}$

Particular cases

• Single Sample Hotelling's T^2 , based on a random sample \mathbf{x}_1 , ..., \mathbf{x}_n from a multivariate population with mean $\boldsymbol{\mu}$ and variance matrix $\boldsymbol{\Sigma}$:

$$\Theta = \mu$$
, $\widehat{\Theta} = \overline{x}$
 $V[\overline{x}] = (1/n)\Sigma$ so $K = 1/n$
 $\widehat{V}[\overline{x}] = (1/n)S$, with $f_e = n - 1$
 $T^2 = (\overline{x} - \mu)'\widehat{V}[\overline{x}]^{-1}(\overline{x} - \mu)$
 $= n(\overline{x} - \mu)'S^{-1}(\overline{x} - \mu)$

When x is $N_{p}(\mu \Sigma)$,

$$T^{2} = ((f_{e}p)/(f_{e}-p+1))F_{p,f_{e}-p+1}$$
$$= \{(p(n-1))/(n-p)\}F_{p,n-pn}.$$

You use $T^2 = (\overline{\mathbf{x}} - \boldsymbol{\mu}_0)' \hat{\mathbf{V}} [\overline{\mathbf{x}}]^{-1} (\overline{\mathbf{x}} - \boldsymbol{\mu}_0)$ as a test statistic to test $H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$, computing P-value or critical value using the F-distribution.

Two sample comparison of means

Suppose you have two

- independent
- random samples

$$\mathbf{x}_{1,1}, \mathbf{x}_{2,1}, ..., \mathbf{x}_{n_1,1}$$
 and $\mathbf{x}_{1,2}, \mathbf{x}_{2,2}, ..., \mathbf{x}_{n_2,2}$ from two populations

Population 1: mean = $E[\mathbf{x}_1] = \boldsymbol{\mu}_1$, $V[\mathbf{x}_1] = \boldsymbol{\Sigma}_1$ Population 2: mean = $E[\mathbf{x}_2] = \boldsymbol{\mu}_2$, $V[\mathbf{x}_2] = \boldsymbol{\Sigma}_2$ Suppose your interest is in $\boldsymbol{\Theta} = \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2$.

Then

- $\hat{\Theta} \equiv \overline{X}_1 \overline{X}_2$
- $V[\hat{\boldsymbol{\Theta}}] = V[\overline{\mathbf{X}_1}] + V[\overline{\mathbf{X}_2}]$ = $(1/n_1)\Sigma_1 + (1/n_2)\Sigma_2$.

Unpooled two-sample T²

• Unpooled estimate of $V[\hat{\Theta}]$ is $\hat{V}[\hat{\Theta}] = \hat{V}[\overline{X_1}] + \hat{V}[\overline{X_2}] = (1/n_1)S_1 + (1/n_2)S_2$ where S_1 and S_2 are (unbiased) sample variance matrices.

 $\hat{V}[\hat{\boldsymbol{\theta}}]$ is an unbiased estimate of $V[\hat{\boldsymbol{\theta}}]$

- $T^2 = (\overline{\mathbf{x}}_1 \overline{\mathbf{x}}_2)' \hat{V}[\hat{\boldsymbol{\theta}}]^{-1}(\overline{\mathbf{x}}_1 \overline{\mathbf{x}}_2)$ $= (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)' (n_1^{-1}S_1 + n_2^{-1}S_2)^{-1}(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)$ tests H_0 : $\boldsymbol{\theta} = \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 = \mathbf{0}$ When H_0 : $\boldsymbol{\mu}_1 = \boldsymbol{\mu}_2$ is true and n_1 and n_2 are <u>large</u>, $T^2 = \chi_p^2$
- Even with normal x₁ and x₂, when n₁ ≠ n₂, unpooled T² is not ((pf₂)/(f₂ p + 1))F(p, f₂ p + 1)
- Unpooled $T^2 \neq$ "classical" <u>pooled</u> twosample T^2 except when $n_1 = n_2$.