Displays for Statistics 5401/8401

Lecture 9

September 26, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall

Class Web Page

 $\label{linear_http://www.stat.umn.edu/~kb/classes/5401} $$ @ 2005 by Christopher Bingham $$$

Statistics 5401 Lecture 9 September 26, 2005

1. X_1 , X_2 , X_3 , X_4 independent Student's t_5

Intended ⊲	.01	.02	.05	.10
Power	.2282	.2902	.3982	.5042
∝ with F₄₄ҕ	.0068	.0162	.0446	.0996
∝ with X₄²	.0206	.0356	.0778	.1412

Distribution of $t_{\rm s}$ has symmetric bellshaped density but with thicker tails than normal density.

Power is moderate, small sample actual is reasonably close to intended but large sample actual α is not.

2. Independent Student's t_3 , $\mu_0 = 0$.

Intended ⊲	.01	.02	.05	.10
Power	.5560	.6328	.7490	.8250
Actual ∝	.0064	.0154	.0422	.0958
\propto with $\chi_{_4}^{^2}$.0174	.0336	.0772	.1388

 t_3 is less normal than t_5 and power of correlation test is larger; actual small sample α is a little worse than for t_5 .

I did a small <u>simulation experiment</u> to accomplish two purposes:

- Examine the *power* of the Q-Q $\sqrt{\chi^2}$ correlation test for normality
- Check robustness to non-normality of the small sample Hotelling's T² distribution. I used M = 5000 trials, with n = 50 and p = 4.

In each table there are four lines

Intended
 The significance level used in
 the normality test or T² test
Power = power of the normality test
 with significance level
 α.

 α with $F_{4.46}$ = actual $\alpha = 0$ P(reject H_0 : $\mu = 0$) using T^2 with <u>small</u> <u>n</u> critical value $((f_p)/(f_p-p+1))F_{p,f_a-p+1}(\alpha)$.

 \propto with χ_4^2 = actual $\propto = P(\text{reject H}_0: \mu = 0)$ using T^2 with <u>large n</u> critical value $\chi_4^2(\propto)$

2

Statistics 5401 Lecture 9

September 26, 2005

3. Independent χ_{10}^2 , μ_0 = rep(10, 4).

Intended ∝	.01	.02	.05	.10
Power	.129	.1852	.2886	.3884
Actual ⊲	.016	.027	.0522	.1022
∝ with χ₄²	.0306	.0438	.083	.1418

 χ_{10}^{2} is quite skewed with mean 10.

Power is less than for t_s , actual α is not bad, a little larger than intended.

4. Independent χ_4^2 , μ_0 = rep(4, 4).

		0		
Intended ⊲	.01	.02	.05	.10
Power	.3306	.4304	.5952	.7142
Actual ∝	.0206	.0332	.067	.1214
\propto With χ_4^2	.0396	.0574	.1016	.160

 $\chi_{_{4}}^{^{2}}$ is more skewed with mean 4.

Power is larger than for χ_{10}^{2} and t_{s} , actual α is double the intended α for $\alpha = .10$ and somewhat too large for smaller α .

Test of a vector parameter <u>Problem</u>: Test H_0 : $\theta = \theta_0$, where θ is a vector of q parameters estimated by $\hat{\mathbf{\theta}}$, with $V[\hat{\boldsymbol{\theta}}]$ consistently estimated by $\hat{V}[\hat{\boldsymbol{\theta}}]$.

If $C = \hat{V}[\hat{\boldsymbol{\theta}}]^{1/2}$ is a square root of $\hat{V}[\hat{\boldsymbol{\theta}}]$ (i.e., $C'C = \hat{V}[\hat{\theta}]$) you might hope to base a test on the multistandardized statistic

 $Z = (C^{-1})'(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{\alpha}) = (\{\hat{V}[\hat{\boldsymbol{\theta}}]\}^{-1/2})'(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{\alpha})$ When $\hat{\Theta} \approx N_{q}(\Theta_{Q}, V[\hat{\Theta}]), Z \approx N_{q}(0, I_{q}).$ Because $\hat{V}[\hat{\boldsymbol{\theta}}]^{1/2}$ is *not* unique, this is problematical. However, the statistic

$$T^2 = \|\mathbf{Z}\|^2 = (\hat{\mathbf{\Theta}} - \mathbf{\Theta}_0)'(\hat{\mathbf{V}}[\hat{\mathbf{\Theta}}])^{-1}(\hat{\mathbf{\Theta}} - \mathbf{\Theta}_0)$$
 is unique.

This forms the basis for many tests in both univariate and multivariate analysis.

- 1-way ANOVA F-test ($\boldsymbol{\Theta} = [\mu_1, ..., \mu_q]'$, $\hat{\boldsymbol{\Theta}} = [\overline{X}_1, \overline{X}_2, ..., \overline{X}_q]', \hat{V}[\hat{\boldsymbol{\Theta}}] = \text{diag}\{s^2/n_i\}_{1 \le i \le q}$
- $\chi^2 = \sum_i (O_i E_i)^2 / E_i$ goodness of fit test.

Statistics 5401

September 26, 2005

There are special formulas for particular cases, but I recommend you don't use them.

Examples:

For a <u>one-sample</u> T^2 , when you plug in f_e = n - 1 into

$$T^2 = \{pf_e/(f_e - p + 1)\} F_{p,f_e-p+1}$$

you get the "special" formula

$$T^2 = \{p(n-1)/(n-p)\}F_{n-n-p}$$

In the <u>two-sample</u> case, $f_2 = n_1 + n_2 - 2$. When you plug this into the general form you get the "special" formula

$$T^2 = \{p(n_1 + n_2 - 2)/(n_1 + n_2 - p - 1)\}F_{p,n_1 + n_2 - p - 1}$$

Comment: There are several statistics called Hotelling's T²

- one-sample Hotelling's $T^2(H_0: \mu = \mu_0)$
- two-sample Hotelling's T^2 (H_0 : $\mu_1 = \mu_2$)
 paired Hotelling's T^2 (H_0 : $\mu_4 = 0$), etc.

They may differ in

- The <u>dimension</u> p = number of means being tested.
- The <u>error degrees of freedom</u> f_a. f is usually the same as for the analogous Student's t degrees of freedom

Expressed in terms of p and f, with normal data, their small sample distributions are all the same:

$$T^2 = (pf_e/(f_e - p + 1))F_{p,f_e - p + 1}$$

To use this you must know 2 numbers:

- p = <u>dimension</u>. This is usually obvious.
- f = error d.f. You can usually use f used in univariate test.

Lecture 9

September 26, 2005

Hotelling's one-sample

$$T^{2} = (\overline{\mathbf{x}} - \mu_{0})'\hat{\mathbf{V}}(\overline{\mathbf{x}})^{-1}(\overline{\mathbf{x}} - \mu_{0})$$

is one way to test $H_0: \mu = \mu_0$.

Another way is to use Bonferronized Student's t tests.

 H_0 : $\mu = \mu_0$ is equivalent to the p <u>univa-</u> <u>riate</u> null hypotheses H_{0i} : $\mu_i = \mu_{0i}$. You can test each of them with a t-statistic

$$t_1 = (\overline{x_1} - \mu_{01}) / \sqrt{(s_{11}/n)},$$

 $t_2 = (\overline{x_2} - \mu_{02}) / \sqrt{(s_{22}/n)}$

$$t_{D} = (\overline{X_{D}} - \mu_{02}) / \sqrt{(s_{DD}/n)}$$

When H_{o_i} is true t_i is Student's t on f_e = n-1 d.f.

You can reject H_0 : $\mu = \mu_0$ if any t_i is significantly large.

Statistics 5401 Lecture 9 September 26, 2005

Statistics 5401

Lecture 9

You have to be careful about how you determine which t, are significant. If you just compare t_i with $t_{r_a}(\alpha/2)$ (twotail tests), you will reject Howith probability substantially greater than α .

The solution is to *Bonferronize* the pttests. You do this by one of two ways:

- Use critical value t₁((α/p)/2)
- Multiply each P-value by p

The resulting test of H_o has true significance level $\leq \alpha$.

This is just as truly a multivariate test as is T^2 .

Because (actual α) \leq (intended α), this is a conservative test. In many cases, $(actual \ \alpha) = (intended \ \alpha).$

Statistics 5401

Lecture 9

September 26, 2005

Conclusion: Since $t_1 = 3.0865 > 2.5933$ (or pvalues[4] < .05), you can reject the overall H_n : $\mu = \mu_n$ and the 5% level.

But you can also reject H_{n_4} : $\mu_4 = \mu_{n_4}$. Thus you have learned something about how the <u>overall</u> H_n is untrue.

MacAnova example based on Fisher *Iris setosa* data

Cmd> $y \leftarrow read("","t11_05",quiet:T)$ # read JWData5.txt Read from file "TP1:Stat5401:Data:JWData5.txt"

quiet: T prevents descriptive comments.

Test H_0 : $\mu = \mu_0 = [5.0, 3.4, 1.4, 0.2]'$:

Cmd> setosa <- y[y[,1]==1,-1] # extract setosa flower variables

Cmd> stats <- tabs(setosa,mean:T,covar:T) # compute</pre>

Cmd> compnames(stats) # names of components

1 by p Row vector p by p matrix (2) "covar"

Cmd > n < -nrows(setosa) # n = 50

Cmd> p <- ncols(setosa) # 4

Cmd> xbar <- stats\$mean # column vector

Cmd> vhat <- stats\$covar/n # $\hat{V}[X] = S/n$

Cmd> $mu_0 \leftarrow vector(5.0,3.4,1.4,0.2)$ # hypothesized value

Cmd> stderrs <- sqrt(diag(vhat)) # sqrt(s[i,i]/n),i=1,...,p

Cmd> tstats <- (xbar - mu_0)/stderrs; tstats # white box 0.12036 0.52231 2.5245

Cmd> fe <- n-1 # error d.f. 49

Cmd> pvalues <- p*twotailt(tstats,fe); pvalues #Bonferronized (1) 3.6188 2.4152 0.059508 0.013314

Cmd> alpha <- .05; invstu((alpha/p)/2,fe,upper:T) #Bonf critval (1) 2.5933 Bonferronized critical value

10

Statistics 5401

Lecture 9

September 26, 2005

Testing using T²

Cmd> tsq <- hotellval(setosa - mu_0'); tsq</pre> (1,1)13.616 Hotelling's T^2

Cmd> invchi(.05,p,upper:T) # upper tail probability point 5% critical value for large n 9.4877

Cmd> cumchi(tsq,p,upper:T) # upper tail probability 0.0086268 P-value for large n

Cmd> (fe*p/(fe - p + 1))*invF(.05, p, fe - p + 1, upper:T)10.968 5% critical value for small n

 $\label{eq:cmd} \mbox{Cmd> } \mbox{cumF}(((\mbox{fe-p+1})/(\mbox{fe*p}))*tsq,p,\mbox{fe-p+1}, \mbox{ upper:T})$ 0.02133 P-value for small n

Conclusion:

Since $T^2 = 13.616 > T_{.05}^2 = 10.968$ (or because P = .02133 < .05), you can reject Η_α: μ = μ_α.

However, T² gives no information about how this overall H_o is violated. This is a disadvantage of T² as compared to Bonferronized t-statistics.

At this point it is sometimes suggested you do a "post hoc" analysis using tstatistics. But if you do that, you might as well start out with t-statistics.

September 26, 2005

Statistics 5401

Notes on MacAnova Computation

Lecture 9

- solve(a,b) Or a $%\$ b computes $A^{-1}b$ and can be more accurate than solve(a) %*% b.
- cumchi(x,df) = $P(\chi_{df}^2 \leq \chi)$ cumchi(x,df,upper:T) = $P(\chi_{df}^2 \ge X)$ $P(\chi_{df}^2 \leq invchi(p,df)) = p.$ $P(\chi_{df}^2 \ge invchi(p,df,upper:T)) = p$
- cumF(x,df1,df2 [,upper:T]) and invF(p,df1,df2 [,upper:T]) COMPUte lower tail [upper tail] cumulative probabilities and critical values for the F distribution.
- I prefer first to compute $\hat{\mathsf{V}}$ to use in $\mathsf{T}^2 = (\overline{\mathbf{x}} - \boldsymbol{\mu}_0)' \widehat{\mathsf{V}} [\overline{\mathbf{x}}]^{-1} (\overline{\mathbf{x}} - \boldsymbol{\mu}_0),$ rather than use a formula like $T^2 = n(\overline{x} - \mu_0)'S^{-1}(\overline{x} - \mu_0)$ n which $\hat{V}[\overline{x}] = S/n$ is sort of "hidden."

Statistics 5401

September 26, 2005

To get an expression for y in terms of x, you solve a quadratic equation to get:

$$y = f(x) \equiv y_0 - b(x-x_0)/c$$

 $\pm \sqrt{\{K^2/c - (ac - b^2)((x-x_0)/c)^2\}}$

You can't get a real square root of a negative number, so y is defined only for x that satisfy

$$K^2/c - (ac - b^2)((x-x_0)/c)^2 \ge 0$$
,

that is, only for x that satisfy

$$\left| x - x_0 \right| \le K \sqrt{(c/D)}$$
, with D = ac - b² > 0

Define q^{11} , q^{12} , q^{21} , and q^{22} by

$$q^{11} \equiv a$$

$$q^{11} \equiv a$$
 $q^{12} = q^{21} \equiv b$ $q^{22} \equiv c$

$$q^{22} \equiv 0$$

In terms of q^{ij}, the ellipse equation is

$$q^{11}(x-x_0)^2 + 2q^{12}(x-x_0)(y-y_0) + q^{22}(y-y_0)^2 = K^2$$

with
$$q^{11} > 0$$
, $q^{22} > 0$, $D = q^{11}q^{22} - (q^{12})^2 > 0$.

Ellipses and Ellipsoids

Here is an ellipse, a curve in the p = 2dimensional x-y plane:

<u>Major</u> and <u>minor</u> axes are the longest and shortest "diameters" and are perpendicular to (⊥) tangent lines

Other diameters are not \bot tangent lines. All points (x,y) on an ellipse with center (x_0, y_0) satisfy an equation like

$$a(x-x_0)^2 + 2b(x-x_0)(y-y_0) + c(y-y_0)^2 = K^2$$

where a, b, c and K are constants with

- a > 0, c > 0 and K > 0
- $ac b^2 > 0$

Statistics 5401

September 26, 2005

Role of the constants

Lecture 9

- The <u>center of the ellipse</u> is at (x_0, y_0) .
- For given q¹¹, q¹² and q²², the <u>size of the</u> ellipse is determined by K. A larger K produces a larger ellipse
- The shape of the ellipse is determined by the ratios q^{11}/K^2 , q^{12}/K^2 and q^{22}/K^2 .

Define the matrix

$$\mathbf{Q}^{-1} \equiv \begin{bmatrix} \mathbf{q}^{11} & \mathbf{q}^{12} \\ \mathbf{q}^{12} & \mathbf{q}^{22} \end{bmatrix}$$

Then

• the conditions

$$q^{11} > 0$$
 $q^{22} > 0$ $D = q^{11}q^{22} - (q^{12})^2 > 0$ are completely equivalent to \mathbf{Q}^{-1} being positive definite.

• D = $det(\mathbf{Q}^{-1})$