Lecture 9 September 26, 2005 Christopher Bingham, Instructor 612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page http://www.stat.umn.edu/~kb/classes/5401 © 2005 by Christopher Bingham Statistics 5401 Lecture 9 I did a small <u>simulation experiment</u> to accomplish two purposes: September 26, 2005 - Examine the *power* of the Q-Q $\sqrt{\chi^2}$ correlation test for normality - Check robustness to non-normality of the small sample Hotelling's T² distribution. I used M = 5000 trials, with n = 50 and p = 4. In each table there are four lines **Intended** $\boldsymbol{\bowtie}$ The significance level used in the normality test or T^2 test 1. X_1 , X_2 , X_3 , X_4 independent Student's t_5 | 1 2 | 1 | | | 0 | |---------------|-------|-------|-------|-------| | Intended ✓ | .01 | .02 | .05 | .10 | | Power | .2282 | .2902 | .3982 | .5042 | | | .0068 | .0162 | .0446 | .0996 | | ∝ with X₄² | .0206 | .0356 | .0778 | .1412 | Distribution of $t_{\scriptscriptstyle 5}$ has symmetric bellshaped density but with thicker tails than normal density. Power is moderate, small sample actual is reasonably close to intended but large sample actual α is not. 2. Independent Student's t_3 , $\mu_0 = 0$. | • | | | 5 - 0 | | |---------------------------|-------|-------|-------|-------| | Intended ∝ | .01 | .02 | .05 | .10 | | Power | l | | .7490 | | | Actual ∝ | .0064 | .0154 | .0422 | .0958 | | \propto With χ_4^2 | .0174 | .0336 | .0772 | .1388 | $t_{\rm s}$ is less normal than $t_{\rm s}$ and power of correlation test is larger; actual small sample \bowtie is a little worse than for $t_{\rm s}$. 3. Independent χ_{10}^2 , $\mu_0 = \text{rep}(10, 4)$. | Intended ∝ | .01 | .02 | .05 | .10 | |---------------------------|-------|-------|-------|-------| | Power | .129 | .1852 | .2886 | .3884 | | Actual ⊲ | .016 | .027 | .0522 | .1022 | | \propto With χ_4^2 | .0306 | .0438 | .083 | .1418 | χ_{10}^{2} is quite skewed with mean 10. Power is less than for t_s , actual α is not bad, a little larger than intended. 4. Independent χ_4^2 , $\mu_0 = \text{rep}(4, 4)$. | Intended & | .01 | .02 | .05 | .10 | |---------------------------|-------|-------|-------|-------| | Power | .3306 | .4304 | .5952 | .7142 | | Actual ∝ | .0206 | .0332 | .067 | .1214 | | \propto With χ_4^2 | .0396 | .0574 | .1016 | .160 | χ_4^2 is more skewed with mean 4. Power is larger than for χ_{10}^2 and t_5 , actual α is double the intended α for $\alpha = .10$ and somewhat too large for smaller α . Lecture 9 September 26, 2005 Statistics 5401 Lecture 9 September 26, 2005 Test of a vector parameter <u>Problem</u>: Test H_0 : $\Theta = \Theta_0$, where Θ is a vector of q parameters estimated by $\hat{\Theta}$, with $V[\hat{\boldsymbol{\theta}}]$ consistently estimated by $\hat{V}[\hat{\boldsymbol{\theta}}]$. If $C = \hat{V}[\hat{\Theta}]^{1/2}$ is a square root of $\hat{V}[\hat{\Theta}]$ (i.e., $C'C = \widehat{V}[\widehat{\Theta}]$) you might hope to base a test on the multistandardized statistic $Z = (\mathbf{C}^{-1})'(\widehat{\mathbf{\Theta}} - \mathbf{\Theta}_{\alpha}) = (\{\widehat{\nabla}[\widehat{\mathbf{\Theta}}]\}^{-1/2})'(\widehat{\mathbf{\Theta}} - \mathbf{\Theta}_{\alpha})$ When $\hat{\boldsymbol{\Theta}} \approx N_{q}(\boldsymbol{\Theta}_{o}, V[\hat{\boldsymbol{\Theta}}]), Z \approx N_{q}(\boldsymbol{O}, I_{q}).$ Because $\hat{V}[\hat{\boldsymbol{\theta}}]^{1/2}$ is *not* unique, this is problematical. However, the statistic $\mathsf{T}^2 = \mathsf{I} |\mathbf{Z}| \mathsf{I}^2 = (\widehat{\boldsymbol{\Theta}} - \boldsymbol{\Theta}_0)'(\widehat{\mathsf{V}}[\widehat{\boldsymbol{\Theta}}])^{-1}(\widehat{\boldsymbol{\Theta}} - \boldsymbol{\Theta}_0)$ is unique. This forms the basis for many tests in both univariate and multivariate analysis. - 1-way ANOVA F-test ($\Theta = [\mu_1, ..., \mu_n]'$, $\hat{\boldsymbol{\theta}} = [\overline{X}_{1}, \overline{X}_{2}, ..., \overline{X}_{n}]', \hat{V}[\hat{\boldsymbol{\theta}}] = \text{diag}\{s^{2}/n_{i}\}_{1 \le i \le n}$ - $\chi^2 = \sum_i (O_i E_i)^2 / E_i$ goodness of fit test. **Comment**: There are several statistics called <u>Hotelling's T²</u> - one-sample Hotelling's T^2 ($H_0: \mu = \mu_0$) - two-sample Hotelling's T² (H₀: μ₁ = μ₂) paired Hotelling's T² (H₀: μ₁ = 0), etc. They may differ in - The <u>dimension</u> p = number of means being tested. - The <u>error degrees of freedom</u> f_e. $f_{\rm e}$ is usually the same as for the analogous Student's t degrees of freedom Expressed in terms of p and f, with normal data, their small sample distributions are all the same: $$T^2 = (pf_e/(f_e - p + 1))F_{p,f_e - p + 1}$$ To use this you must know 2 numbers: - p = <u>dimension</u>. This is usually obvious. - f = error d.f. You can usually use f used in univariate test. There are special formulas for particular cases, but I recommend you *don't* use them. ### Examples: For a <u>one-sample</u> T^2 , when you plug in $f_e = n - 1$ into $$T^2 = \{pf_e/(f_e - p + 1)\} F_{p,f_e-p+1}$$ you get the "special" formula $$T^2 = \{p(n-1)/(n-p)\}F_{p,n-p}$$ In the <u>two-sample</u> case, $f_e = n_1 + n_2 - 2$. When you plug this into the general form you get the "special" formula $$T^{2} = \{p(n_{1}+n_{2}-2)/(n_{1}+n_{2}-p-1)\}F_{p,n_{1}+n_{2}-p-1}$$ Hotelling's one-sample $$T^{2} = (\overline{\mathbf{x}} - \mu_{0})'\hat{\mathbf{V}}(\overline{\mathbf{x}})^{-1}(\overline{\mathbf{x}} - \mu_{0})$$ is one way to test H_o : $\mu = \mu_o$. Another way is to use **Bonferronized** Student's t tests. H_0 : $\mu = \mu_0$ is equivalent to the p <u>univa-</u> <u>riate</u> null hypotheses H_{0j} : $\mu_j = \mu_{0j}$. You can test each of them with a t-statistic $$t_1 = (\overline{x_1} - \mu_{01}) / \sqrt{(s_{11}/n)},$$ $t_2 = (\overline{x_2} - \mu_{02}) / \sqrt{(s_{22}/n)}$ $$t_{p} = (\overline{x_{p}} - \mu_{02}) / \sqrt{(s_{pp}/n)}$$ When H_{0j} is true t_j is Student's t on $f_e = n-1$ d.f. You can reject H_0 : $\mu = \mu_0$ if any t_j is significantly large. You have to be careful about how you determine which t_j are significant. If you just compare t_j with $t_{f_0}(\alpha/2)$ (twotail tests), you will reject H_0 with probability substantially greater than α . The solution is to *Bonferronize* the p t-tests. You do this by one of two ways: - Use critical value $t_{f_e}((\alpha/p)/2)$ - Multiply each P-value by p The resulting test of H_0 has true significance level $< \alpha$. This is just as truly a multivariate test as is T^2 . Because (actual α) \leq (intended α), this is a <u>conservative test</u>. In many cases, (actual α) = (intended α). #### MacAnova example based on Fisher Iris setosa data Cmd> $y \leftarrow read("","t11_05",quiet:T)$ # read JWData5.txt Read from file "TP1:Stat5401:Data:JWData5.txt" quiet: T prevents descriptive comments. Test $$H_0$$: $\mu = \mu_0 = [5.0, 3.4, 1.4, 0.2]'$: ``` Cmd> setosa \langle y[y[,1]==1,-1] # extract setosa flower variables Cmd> stats <- tabs(setosa,mean:T,covar:T) # compute</pre> Cmd> compnames(stats) # names of components 1 by p Row vector (2) "covar" p by p matrix Cmd> n \leftarrow nrows(setosa) \# n = 50 Cmd> p <- ncols(setosa) # 4 Cmd> xbar <- stats$mean # column vector Cmd> vhat <- stats$covar/n # \hat{V}[X] = S/n Cmd> mu 0 <- vector(5.0,3.4,1.4,0.2) # hypothesized value Cmd> stderrs <- sqrt(diag(vhat)) # sqrt(s[i,i]/n),i=1,...,p</pre> Cmd> tstats <- (xbar - mu_0)/stderrs; tstats # white box 0.12036 0.52231 3.0865 Cmd> tval(setosa - mu 0') # black box t-statistics 0.12036 0.52231 2.5245 Cmd> fe <- n-1 \# error d.f. 49 Cmd> pvalues <- p*twotailt(tstats,fe); pvalues #Bonferronized 2.4152 0.059508 ``` Cmd> alpha <- .05; invstu((alpha/p)/2,fe,upper:T) #Bonf critval Bonferronized critical value **Conclusion**: Since t_4 = 3.0865 > 2.5933 (or pvalues[4] < .05), you can reject the overall H_0 : $\mu = \mu_0$ and the 5% level. But you can also reject H_{04} : $\mu_4 = \mu_{04}$. Thus you have learned something about how the <u>overall</u> H_0 is untrue. # Testing using T² September 26, 2005 ``` Cmd> tsq \leftarrow hotellval(setosa - mu_0'); tsq (1,1) 13.616 Hotelling's T^2 Cmd> invchi(.05,p,upper:T) # upper tail probability point (1) 9.4877 5% critical value for large n Cmd> cumchi(tsq,p,upper:T) # upper tail probability (1,1) 0.0086268 P-value for large n Cmd> (fe*p/(fe - p + 1))*invF(.05, p, fe - p + 1, upper:T) (1) 10.968 5% critical value for small n Cmd> cumF(((fe-p+1)/(fe*p))*tsq,p,fe-p+1, upper:T) (1,1) 0.02133 P-value for small n ``` #### Conclusion: Since $T^2 = 13.616 > T_{.05}^2 = 10.968$ (or because P = .02133 < .05), you can reject H_0 : $\mu = \mu_0$. However, T^2 gives no information about how this overall H_0 is violated. This is a disadvantage of T^2 as compared to Bonferronized t-statistics. At this point it is sometimes suggested you do a "post hoc" analysis using t-statistics. But if you do that, you might as well start out with t-statistics. ### Notes on MacAnova Computation - solve(a,b) Or a %\% b computes A⁻¹b and can be more accurate than solve(a) %*% b. - cumchi(x,df) = $P(\chi_{df}^2 \le X)$ cumchi(x,df,upper:T) = $P(\chi_{df}^2 \ge X)$ $P(\chi_{df}^2 \le invchi(p,df)) = p$. $P(\chi_{df}^2 \ge invchi(p,df,upper:T)) = p$ - cumF(x,df1,df2 [,upper:T]) and invF(p,df1,df2 [,upper:T]) compute lower tail [upper tail] <u>cumulative</u> <u>probabilities</u> and <u>critical values</u> for the F distribution. - I prefer first to compute \hat{V} to use in $T^2 = (\overline{\mathbf{x}} \boldsymbol{\mu}_0)' \hat{V}[\overline{\mathbf{x}}]^{-1} (\overline{\mathbf{x}} \boldsymbol{\mu}_0),$ rather than use a formula like $T^2 = n(\overline{\mathbf{x}} \boldsymbol{\mu}_0)' \mathbf{S}^{-1} (\overline{\mathbf{x}} \boldsymbol{\mu}_0)$ n which $\hat{V}[\overline{\mathbf{x}}] = \mathbf{S}/n$ is sort of "hidden." # Ellipses and Ellipsoids Here is an ellipse, a curve in the p = 2 dimensional x-y plane: Major and minor axes are the longest and shortest "diameters" and are perpendicular to (1) tangent lines Other diameters are not \bot tangent lines. All points (x,y) on an ellipse with <u>center</u> (x_0, y_0) satisfy an equation like $$a(x-x_0)^2 + 2b(x-x_0)(y-y_0) + c(y-y_0)^2 = K^2$$ where a, b, c and K are constants with - a > 0, c > 0 and K > 0 - ac $b^2 > 0$ Lecture 9 September 26, 2005 Statistics 5401 September 26, 2005 To get an expression for y in terms of x, you solve a quadratic equation to get: $$y = f(x) \equiv y_0 - b(x-x_0)/c$$ $$\pm \sqrt{\{K^2/c - (ac - b^2)((x-x_0)/c)^2\}}$$ You can't get a real square root of a negative number, so y is defined only for x that satisfu $$K^2/c - (ac - b^2)((x-x_0)/c)^2 \ge 0$$, that is, only for x that satisfy $$|x-x_0| \le K\sqrt{(c/D)}$$, with D = ac - b² > 0 Define q^{11} , q^{12} , q^{21} , and q^{22} by $$q^{11} \equiv a$$ $$q^{11} \equiv a$$ $q^{12} = q^{21} \equiv b$ $q^{22} \equiv c$ $$Q^{22} \equiv C$$ In terms of qi, the ellipse equation is $$q^{11}(x-x_0)^2 + 2q^{12}(x-x_0)(y-y_0) + q^{22}(y-y_0)^2 = K^2$$ with $$q^{11} > 0$$, $q^{22} > 0$, $D = q^{11}q^{22} - (q^{12})^2 > 0$. #### Role of the constants • The <u>center of the ellipse</u> is at (x_0, y_0) . Lecture 9 - For given q¹¹, q¹² and q²², the <u>size of the</u> ellipse is determined by K. A larger K produces a larger ellipse - The shape of the ellipse is determined by the ratios q^{11}/K^2 , q^{12}/K^2 and q^{22}/K^2 . Define the matrix $$\mathbf{Q}^{-1} \equiv \begin{bmatrix} \mathbf{q}^{11} & \mathbf{q}^{12} \\ \mathbf{q}^{12} & \mathbf{q}^{22} \end{bmatrix}$$ Then - the conditions $q^{11} > 0$ $q^{22} > 0$ $p = q^{11}q^{22} - (q^{12})^2 > 0$ are completely equivalent to Q⁻¹ being positive definite. - D = det(Q⁻¹)