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Statistics 5401 Lecture 9 September 26, 2005

| did a small simulation experiment to
accomplish two purposes:

e Examine the power of the Q-Q /X’
correlation test for normality

e Check robustness to non-normality of
the small sample Hotelling's T?distri-
bution . 1 used M = 5000 trials, with n
= 00 and p = 4.

In each table there are four lines

Intended o The significance level used in
the normality test or T° test

Power = power of the normality test
with significance level «.

o With F. = actual « =

4,46

P(reject H: = 0) using T* with small
n critical value ((f_p)/(f_-p+1))F . ().

p.fg-peT
o With X.? = actual o = P(reject H_:
M = 0) using T? with large n critical
value X, ()



Statistics 5401 Lecture 9 September 26, 2005

Statistics 5401 Lecture 9 September 26, 2005

1. X,, X,, X,, X, independent Student’s t, 3. Independent X..° W, = rep(10, 4).
Intended .01 .02 .05 10 Intended o« | .01 .02 .05 10
Power .2282 . 2902 .3982 .5042 Power .129 .1852 .2886 .3884
o« With F,,. [.0068 .0162 .0446 .0996 Actual « |.016 .027 .0522 .1022
o with X2 |- 0206 .0356 .0778 .1412 o with x> |-0306 .0438 .083 .1418

Distribution of t, has symmetric bell-
shaped density but with thicker tails
than normal density.

Power is moderate, small sample actual
Is reasonably close to intended but large
sample actual « 1s not.

2. Independent Student’s t,, g, = O.

Intended « | .01 .02 .05 .10
Power . 5560 . 6328 .7490 .8250
Actual o« |.0064 .0154 .0422 .0958
o with x? |- 0174 .0336 .0772 .1388

t. 1s less normal than t_ and power of

correlation test is larger; actual small
sample o« 1s a little worse than for t..

3

X, 1s quite skewed with mean 10.
Power is less than for t,, actual o 1s not

bad, a little larger than intended.
4. Independent X,°, W, =rep(4, 4).

Intended « 01 .02 .03 10
Power . 3306 .4304 .5952 .7142
Actual « . 0206 .0332 .067 .1214
< With 7(42 . 0396 .0574 .1016 .160

X,” is more skewed with mean 4.

Power is larger than for X ‘and t_, actual

« 1s double the intended « for o« = .10
and somewhat too large for smaller «.
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Test of a vector parameter
Problem: Test H: 8 = 8, where 6 is a

vector of q parameters estimated by 8,
with V[8] consistently estimated by VI[8].

If C = V[6]"? is a square root of V[8] (i.e.,
C'C = VIB]) you might hope to base a test
on the multistandardized statistic

Z=(C")(6-8)=({VIE]}'"*)(6 - 8)
When 6 =~ N (8,,V[6]), Z = N (0,1 ).
Because V[8]"? is not unique, this is

problematical. However, the statistic
T2 = 1Z1%= (6 - 8)'(VIe)'(é - 8,)
IS unique.

This forms the basis for many tests in
both univariate and multivariate analysis.

.« 1- Wag ANOVA F-test (8 = [1,,... 1T
= [X,, X,, ..., x I, VIB] = diag{s®/n}

17 1<i<g

7( Z 0.-E)?/E, goodness of fit test.
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Comment: There are several statistics
called Hotelling's T?
e one-sample Hotelling's T* (H: p = j )

e two-sample Hotelling's T* (H Moo= J)
e paired Hotelling's T* (H: j, = 0), etc

They may differ in

e The dimension p = number of means
being tested.

 The error degrees of freedom f_.

f_1s usually the same as for the anal-
ogous Student’'s t degrees of freedom

Expressed in terms of p and f_, with

normal data, their small sample distri-
butions are all the same:

= (pf /U, - p+ 1NF .,
To use this you must know 2 numbers:
e p = dimension. This is usually obvious.
e f =error d.f. You can usually use f_

used in univariate test.

6
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There are special formulas for particular
cases, but | recommend you don’t use
them.

Examples:
For a one-sample T¢, when you plug in f_ =
n-11nto

={pf/(f -p+ 1)} F

P.fe-p+1

formula
7% = {p(n-1)/(n-p)iF__

[n the two-sample case, f_ = n +n-2.
When you plug this into the general form
you get the "special” formula

T = {p(n,+n,-2)/(n +n-p-1)}F

you get the "special”

p.Ny+Ny-p-1
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Hotelling's one-sample

T2 = (x - W) VX)'(x - p,)
Is one way to test H: H = M.
Another way is to use Bonferronized
Student’s t tests.

H: M = M 1s equivalent to the p univa-
rlate null hypotheses H : 4 = j . You
can test each of them Wlth a t-statistic
to= (X-p,,)/+/(s, . /n),
Jt2 - (X2 “02 /\/ S22/n

t, = (X -H,,)7+/(s,,/n)
When H  1s true t is Student’'s t on f_ =
n-1 d.f.

You can reject H: g = j if any t is sig-
nificantly large.
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You have to be careful about how you
determine which t, are significant. If

you just compare t with t (et/2) (two-

tail tests), you will reject H, with
probability substantially greater than «.

The solution is to Bonferronize the p t-
tests. You do this by one of two ways:

o Use critical value t, ((«/p)/2)

e Multiply each P-value by p

The resulting test of H  has true
significance level < «,

This 1s just as truly a multivariate test
as is T°.
Because (actual «) < (intended «), this is

a conservative test. In many cases,
(actual &) = (intended ).
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MacAnova example based on Fisher
Iris setosa data

Qmd> y <-read(™,"t11_05",quiet:T) # read JWData5.txt
Read fromfile "TP1: St at 5401: Dat a: JWDat a5. t xt "

qui et : T prevents descriptive comments.
Test H: B =y =1[5.0, 3.4, 1.4, 0.2]"

Qmd> setosa <- y[y[,1]==1,-1] # extract setosa flower variables
Omd> stats <- tabs(setosa,mean:T,covar:T) # compute

Ord> compnames(stats) # names of components
(1) "rmean" 1 by p Row vector
(2) "covar" p by p matrix

Qrd> n <- nrows(setosa) # n = 50

Qrd> p <- ncols(setosa) # 4

Ond> xbar <- stats$mean # column vector

VIx] = S/n
Qrd> mu_0 <- vector(5.0,3.4,1.4,0.2) # hypothesized value
COrd> stderrs <- sgrt(diag(vhat)) # sqrt(s[i,ij/n),i=1,...,p

Ord> vhat <- stats$covar/n #

Qmd> tstats <- (xbar - mu_0)/stderrs; tstats # white box

(1) 0. 12036 0. 52231 2.5245 3. 0865
Crd> tval(setosa - mu_Q") # black box t-statistics

(1) 0. 12036 0. 52231 2.5245 3. 0865
Qrd> fe <-n-1#error d.f. 49

COrd> pvalues <- p*twotailt(tstats,fe); pvalues #Bonferronized

(1) 3.6188 2. 4152 0. 059508 0.013314

Omd> alpha <- .05; invstu((alpha/p)/2,fe,upper:T) #Bonf critval
(1) 2.5933 Bonferronized critical value
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Conclusion: Since t, = 3.0865 > 2.5933

(or pval ues[ 4] < .05), you can reject the
overall H: 4 = W and the 5% level.

But you can also reject H_,: 4, = U ,. Thus

you have learned something about how the
overall H, is untrue.

11
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Testing using T°

Qmd> tsq <- hotellval(setosa - mu_0"; tsq

(1,1) 13. 616 Hotelling's T2
Cnd> invchi(.05 p upper T) # upper tail probability point
(1) 9.4 5% critical value for large n

Qrd> cumchi(tsqg,p,upper:T) # upper tail probability

(1,1) 0. 0086268 P-value for large n

Qrd> (fe*p/(fe p+ 1))*|nvF( 05, p, fe - p + 1, upper:T)

(1) 5% critical value for small n

Qrd> cumF(((fe p+1)/(fe*p))*tsq p.fe-p+1, upper:T)

(1,1 P-value for small n
Conclusion:

Since T = 13.616 > T _* = 10.968 (or
because P = .02133 < .05), you can
reject H: J = J_.

However, T gives no information about
how this overall H  is violated. This is a
disadvantage of T as compared to Bon-
ferronized t-statistics.

At this point it is sometimes suggested
you do a "post hoc” analysis using t-

statistics. But if you do that, you might
as well start out with t-statistics.

12
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Notes on MacAnova Computation
e solve(a,b) or a % % b computes A'b
and can be more accurate than
solve(a) % %Db.
e cunchi (x,df) = P(X,* < x)
cunchi (x, df , upper: T) = P(X °* > x)
P(X,? <invchi(p,df)) = p.
P(X,” > invchi (p,df,upper:T)) = p
e cunk(x,df1,df2 [,upper:T]) and
i nvF(p,dfl,df2 [, upper:T]) compute
lower tail [upper taill cumulative
probabilities and critical values for
the F distribution.
e | prefer first to compute V to use in
T2 = (X = W) VIXT'(x - pp),
rather than use a formula like
T =n(x - P )S'(x- u)
n which VIX] = S/n is sort of "hidden.”

13
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Ellipses and Ellipsoids

Here is an ellipse, a curve in the p = 2
dimensional x-y plane:

Ellipse

| Major and minor
| axes are the

1 longest and

{ shortest "diam-
| eters” and are

| perpendicular to
(1) tangent lines

&0f : — -
£values i Tangent lines
S0F each s —_— : ..

20

¥ ank

20F

10F

1]

Other diameters are not L tangent lines.
All points (x,y) on an ellipse with center
(x,. y,) satisfy an equation like

a(x-x,)* + 2b(x-x )(y-y,) + c(y-y, ) = K*
where a, b, ¢ and K are constants with

e 3>0,c>0andK >0
e ac - b*>0

14
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To get an expression for y in terms of x,
you solve a quadratic equation to get:

y = f(x) =y, - blx-x,)/c
+ /{K?/c - (ac - b*)((x-x,)/c)’}
You can't get a real square root of a

negative number, so y is defined only for
x that satisfy

K?/c - (ac - b*)((x-x,)/c)* > O,
that 1s, only for x that satisfy

| x-x,| < Ky/(c/D), with D = ac - b* > 0

x, - Kol 22 \L x, + Kl 2
Define q'', q'%, ¢*', and q** by
q”sa q°=q"=b q“=c

In terms of q”, the ellipse equation is
x,)(y-y,) + q*(y-y,)° =
Wlth qH > O, q22 > O, D - q11q22 _ (q12)2 > O

qH(X_XO)z N 2C|12(X—
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Role of the constants
e The center of the ellipse is at (x,, y,).

e For given q'', q'* and ¢*, the size of the
ellipse is determined by K. A larger K
produces a larger ellipse

September 26, 2005

e The shape of the ellipse is determined
by the ratios q''/K? q'*/K? and gq*/K*.

Define the matrix
q" "
[q” q* }
Then
e the conditions
¢'>0 g*>0 D=q"g%(q%*>0

are completely equivalent to Q' being
positive definite.

e D = det(Q™)

Q' =
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