Displays for Statistics 5401/8401

Lecture 8

September 23, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page

http://www.stat.umn.edu/~kb/classes/5401

© 2005 by Christopher Bingham

Statistics 5401 Lecture 8 September 23, 2005

Cmd> addlines(rep(r_obs,2),vector(0,25),linetype:2) Histogram of 10,000 Correlation Statistics

Clearly $r_{obs} = 0.9909$ is not unusual. You can estimate a P-value by counting the number of values in R less than or equal to the observed value.

Cmd> $sum(R \le r_obs)/M$ # estimated P-value (1,1) 0.5102

MacAnova notes

show: F in hist() suppresses immediate display.

addlines() makes the completed plot visible.

Correlation normality test based on

Cmd> p <- ncols(setosa) Cmd> sqrtchisq4 <- sqrt(invchi((run(n)-.5)/n,p))</pre>

Cmd> d1234 <- distcomp(setosa)#4 variable dist

Cmd> r_obs <- cor(sqrtchisq4,sqrt(sort(d1234)))[1,2]; r_obs</pre> (1,1)0.99086 Observed value of correlation statistic Cmd> M <- 10000; R <- rep(0, M) # vector to hold simulated stats Cmd> for(i,1,M){ # compute M correlations
 @y <- matrix(rnorm(n*p),n) # rows are N_4(0,I_4)
 R[i] <- cor(sqrt(sort(distcomp(@y))), sqrtchisq4)[1,2];;</pre> Cmd> min(R)# minimum value observed in 10000 trials Used to set xmin on histogram

Statistics 5401 Lecture 8 September 23, 2005

Multivariate Sampling Distributions

Inferential procedures are based on sampling distributions -- distributions of statistics and estimates computed from random samples.

Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ are a random sample from a p-dimensional multivariate distribution with

$$E[x] = \mu_x$$
 and $V[x] = \Sigma_x$

Facts: The mean vector and variance matrix of

$$\overline{\mathbf{x}} = (1/n) \sum_{1 < i < n} \mathbf{x}_i$$
 are

•
$$\mu_{\overline{x}} = E[\overline{x}] = \mu_{\overline{x}}$$

•
$$\Sigma_{\overline{X}} = \sqrt{[\overline{X}]} = (1/n)\Sigma_{X}$$

When p = 1, this is familiar:

•
$$\mu_{\overline{x}} = E[\overline{x}] = \mu_{\overline{x}}$$

•
$$\sigma_{\overline{x}}^2 = V[\overline{X}] = \sigma_{x}^2/n$$

Don't forget of the conceptual difference between $\mu_{\overline{+}}$ and $\mu_{\overline{+}}$.

More generally, suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ are p×1 random vectors such that

Lecture 8

 They are independent but may have differing mean vectors: $E[x_i] = \mu_i, i = 1,...,n$

• They have the same variance matrix: $V[\mathbf{x}_i] = \mathbf{\Sigma}, i = 1,...,n.$

As usual, we collect the \mathbf{x}_i 's in a data data matrix $X = [x_1, x_2, ..., x_n]' = [X_1, ..., X_n],$ with rows corresponding to cases.

Similarly, collect the mean vectors in to a mean matrix

$$M = E[X] = \begin{bmatrix} \mu_1' \\ \mu_2' \\ \mu_2' \\ \dots \\ \mu_n' \end{bmatrix} = [\mu_1, \mu_2, \dots, \mu_n]'$$

When $\mu_1 = \mu_2 = ... = \mu_n = \mu$, $M = 1_n \mu$.

Statistics 5401

September 23, 2005

When $a_i = 1/n$, so $A = n^{-1} \mathbf{1}_n$, you get the familiar result:

- $\sum_{1 < i < n} a_i \mathbf{X}_i = \overline{\mathbf{X}}$
- $V[\overline{\mathbf{x}}] = V[\sum_{1 \le i \le n} a_i \mathbf{x}_i] = \sum_{1 \le i \le n} a_i^2 \mathbf{\Sigma} = (1/n) \mathbf{\Sigma}$

Note that

 $X'A = (A'X)' = [A'X_1, ..., A'X_n]'$ is a p-vector with elements

$$A'X_i = \sum_{1 < i < n} a_i x_{ij}, j = 1, ..., p$$

A'X = (X'A)' is a row vector with the same elements

Suppose $A = [a_1, ..., a_n]'$ and $B = [b_1, ..., b_n]'$ are vectors of constants for each case.

Lecture 8

Then $\sum_{1 \le i \le n} a_i \mathbf{X}_i = \mathbf{X}' \mathbf{A}$, and $\sum_{1 \le i \le n} b_i \mathbf{X}_i = \mathbf{X}' \mathbf{B}$, are linear combinations of the \mathbf{x}_i 's with

- $E[\sum_{1 \le i \le n} a_i \mathbf{x}_i] = \sum_{1 \le i \le n} a_i \boldsymbol{\mu}_i = \mathbf{M}' \mathbf{A} = (\mathbf{A}' \mathbf{M})'$
- $V[\sum_{1 \le i \le n} a_i \mathbf{X}_i] = (\sum_{1 \le i \le n} a_i^2) \mathbf{\Sigma} = \|\mathbf{A}\|^2 \mathbf{\Sigma}$
- $Cov[\sum_{1 \le i \le n}^{-} a_i \mathbf{X}_i, \sum_{1 \le i \le n} b_i \mathbf{X}_i] = Cov[\mathbf{X}'\mathbf{A}, \mathbf{X}'\mathbf{B}] =$ $(\sum_{1 \le i \le n} a_i b_i) \Sigma = (A'B) \Sigma = (B'A) \Sigma$

The last is shorthand for

$$Cov\left[\sum_{1 \le i \le n} a_i x_{ij}, \sum_{1 \le i \le n} b_i x_{ik}\right] = Cov[\mathbf{A}' \mathbf{X}_j, \mathbf{B}' \mathbf{X}_k] = \left(\sum_{1 \le i \le n} a_i b_i\right) \sigma_{jk} = \mathbf{A}' \mathbf{B} \sigma_{jk}$$
$$j = 1, ..., p, k = 1, ..., p$$

Note: When A and B are orthogonal (AB = 0), X'A and X'B are uncorrelated.

These results are not valid

- When \mathbf{x}_i and \mathbf{x}_i are correlated for $i \neq j$
- When V[x] is not constant

Statistics 5401

Lecture 8

September 23, 2005

Multivariate Central Limit Theorem

As before, let $\mathbf{X}_1, ..., \mathbf{X}_n$ be a <u>random</u> sample from a random vector with mean μ and variance matrix Σ .

1. As $n \rightarrow \infty$, ("for large n") $\sqrt{n(\mathbf{x} - \boldsymbol{\mu})}$ is approximately $N_{\mathfrak{g}}(\mathbf{0}, \boldsymbol{\Sigma})$.

Informally, you can interpret this as:

When n is "large", $\overline{\mathbf{x}}$ is approximately $N_{\mu}(\mu, (1/n)\Sigma)$

This is the multivariate central limit theorem (CLT).

As in the univariate case, there is no universal rule of thumb as to what constitutes "large." Generally you need somewhat larger n than for the univariate CLT.

2. A more general CLT shows that, as $n \rightarrow \infty$, many vector statistics

Lecture 8

$$y = g(X) = [g_1(X), g_2(X), ..., g_q(X)]'$$

computed from a data matrix with independent rows are approximately multivariate normal.

That is, if \mathbf{y} has dimension \mathbf{q} , as $\mathbf{n} \to \infty$, y is approximately $N_a(E[y], V[y])$.

In many cases, $V[y] = (1/n)\Sigma^*$ for some variance matrix Σ^* . Sometimes $\Sigma^* = \Sigma$ or Σ^* is depends on Σ .

Statistics 5401

September 23, 2005

The transformation of r

$$z = z(r) \equiv \tanh^{-1}r \equiv 0.5*\log((1+r)/(1-r))$$

is the Fisher z-transformation for correlation coefficients.

When X_1 and X_2 are bivariate normal, the distribution of z(r) is very closely approximated by to $N_1(\tanh^{-1}\rho, 1/(n-3))$.

Because V(z) = 1/(n-3) doesn't depend on ρ , you can use z(r) for inference about ρ from one or more bivariate random samples.

Examples: Confidence limits for ρ $tanh(z_{i}) \leq \rho \leq tanh(z_{ii})$, where $(z_{L}, z_{U}) = z(r) \pm z_{\alpha/2} / \sqrt{(n-3)}$

Test statistic for $H_0: \rho_1 = \rho_2$ $Z = (z(r_1) - z(r_2))/\sqrt{1/(n_1-3)+1/(n_2-3)}$

With non-normal data, z(r) is often close to normality but with $V(z) \neq 1/(n-3)$.

Example:

Statistics 5401

Suppose p = 2 and s_{11} and s_{22} are sample variances and r_{12} = sample correlation between x_1 and x_2 .

Lecture 8

Then for large n

$$\mathbf{y} = [\sqrt{s_{11}}, \sqrt{s_{22}}, \tanh^{-1}r_{12}]'$$
 is approximately $N_3(E[\mathbf{y}], V[\mathbf{y}])$, where $E[\mathbf{y}] = [\sqrt{\sigma_{11}}, \sqrt{\sigma_{22}}, \tanh^{-1}\rho_{12}]'$.

and $V[y] = \Sigma^*/n$ where Σ^* can be expressed in terms of moments of y (in terms of Σ when \mathbf{x} is normal).

Here q = 3 and $g_1(X) = \sqrt{s_{11}} g_2(X) = \sqrt{s_{22}}$, $g_{3}(X) = \tanh^{-1}r_{13}$.

Note: $tanh^{-1}r = (1/2)(log(1+r) - log(1-r))$

MacAnova

Function $z \leftarrow atanh(r)$ computes $z = \tanh^{-1}(r)$ and $r < -\tanh(z)$ computes $r = (e^z - e^{-z})/(e^z + e^{-z})$ from z.

Statistics 5401 Lecture 8 September 23, 2005

These graphs from simulation display the distribution of r and z(r) for n = 30 with $\rho = .5$. In row 1, $(x_1, x_2 \text{ were } N(0,1); in$ the row 2, x_1 and x_2 were χ_2^2

Although the distribution of r is skewed, the distribution of z(r) is nearly normal.

Why did I choose $\sqrt{s_{11}}$, $\sqrt{s_{22}}$ and $\tanh^{-1}r$ for this example? It might seem more natural to use the variances and covariances s_{11} , s_{22} , and s_{12} .

Lecture 8

In fact, as $n \to \infty$, $[s_{11}, s_{22}, s_{12}]'$ is approproximately $N_3([\sigma_{11}, \sigma_{22}, \sigma_{12}]', \Sigma^{**}/n)$, where, when **x** is bivariate normal, Σ^{**} depends on Σ .

However, you need a larger n for $[s_{11}, s_{22}, s_{12}]$ to be approximately N_x than for $[\sqrt{s_{11}}, \sqrt{s_{22}}, \tanh^{-1}r_{12}]'$.

13

Statistics 5401

Lecture 8

September 23, 2005

Example: Large sample test of multivariate mean:

• $\mathbf{y} = \overline{\mathbf{x}}$ with $E[\mathbf{y}] = \mu$, $\hat{V}[\mathbf{y}] = \hat{V}[\overline{\mathbf{x}}] = n^{-1}\mathbf{S}$. Then, q = p and

$$T^{2} = T^{2}(\mu) = (\overline{\mathbf{x}} - \mu)' \widehat{\mathbf{V}}[\overline{\mathbf{x}}]^{-1}(\overline{\mathbf{x}} - \mu)$$

$$= (\overline{\mathbf{x}} - \mu)' \{S/n\}^{-1}(\overline{\mathbf{x}} - \mu)$$

$$= n(\overline{\mathbf{x}} - \mu)' S^{-1}(\overline{\mathbf{x}} - \mu)$$

$$\stackrel{\sim}{=} \chi_{n}^{2}$$

A large sample test of $H_0: \mu_x = \mu_0$ with significance level α is

"Reject $H_0: \mu = \mu_0$ when $T^2(\mu_0) > \chi_0^2(\alpha)$ ".

Vocabulary

 $T^2(\mu_0)$ is the <u>one-sample</u> Hotelling's T^2 statistic for testing $H_0: \mu_v = \mu_0$.

When p = 1,
$$T^2 = t^2$$
, where

$$t = (\overline{X} - \mu_0)/(s_v/\sqrt{n})$$

is the usual one sample t-statistic.

The CLT and the generalized CLT are important because of the following related facts.

3. When a q-vector \mathbf{y} of estimates or statistics computed from a random sample, is approximately N_a , then

 $T^2 \equiv d(y,E[y])^2 = (y-E[y])'\{V[y]\}^{-1}(y-E[y])$ is approximately distributed as χ_{a}^{2}

4. In *large samples*, when **y** is approximately $N_{_{\hspace{-0.05cm} ext{ iny}}}$ and when $\hat{V}[\boldsymbol{y}]$ is a <u>consis-</u> tent estimator of V[y],

$$T^2 \equiv (y - E[y])'\{\hat{V}[y]\}^{-1}(y - E[y])$$

is approximately χ_{q}^{2} (y is a q-vector)

This generalizes the fact that in many cases $t^2 = \{(\hat{\theta} - \theta)/\hat{\sigma}_{\hat{\theta}}\}^2 = \chi^2$ for large n, where $\hat{\theta}$ is an estimate with estimated variance $\hat{\sigma}_{\hat{a}}^2$.

Lecture 8

September 23, 2005

MacAnova

Statistics 5401

You can compute $\chi_{2}^{2}(\alpha)$ by invchi(1-alpha,p)

invchi(alpha,p,upper:T)

You can compute T² using hotellval()

Cmd> irisdata <- read("","t11 05",quiet:T) Read from file "TP1:Stat5401:Stat5401F05:Data:JWData5.txt" Cmd> setosa <- irisdata[irisdata[,1] == 1,-1]</pre> Cmd> stats <- tabs(setosa, mean:T,covar:T)</pre> Cmd> ybar <- stats\$mean; s <- stats\$covar Cmd> ybar # sample mean vector 0.246 1.462 5.006 3.428 Cmd> $mu_0 \leftarrow vector(4.5,3,2,1) \# hypothesized \mu$ Cmd> n <- nrows(setosa); vhat <- s/n Cmd> tsq <- (ybar - mu_0)' %*% solve(vhat) %*% (ybar - mu_0) Cmd> tsq # T^2 computed by white box method Cmd> hotellval(setosa - mu_0 ')# T^2 by black box method (1,1) 28.102 Cmd> cumchi(tsq,ncols(setosa),upper:T) # P-value Strong evidence against H0: μ = μ 0 1.1891e-05 Cmd> tval(setosa - mu_0') # univariate t-statistics

MacAnova

solve(A) computes A⁻¹

-3.8917

solve(A,b) Or A $%\$ b computes $A^{-1}b$

-1.3431

Small sample distribution for normal **x** 5. When \mathbf{x} is $N_{\scriptscriptstyle D}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

Lecture 8

- $\overline{\mathbf{x}}$ is $N_{\mu}(\boldsymbol{\mu}, (1/n)\boldsymbol{\Sigma})$, for any n
- $T^2 \equiv (\overline{\mathbf{x}} \mu)' \{ \mathbf{S}/n \}^{-1} (\overline{\mathbf{x}} \mu) \text{ is distri-}$ buted, for any n > p, as

$$\{(pf_e)/(f_e - p + 1)\}F_{p,f_e-p+1} f_e = n - 1$$

Put another way,

$$((f_e - p + 1)/(f_e p)) T^2 = F_{p,f_e - p + 1}$$

- This is a *small sample* result which requires normality to be exactly correct
- It is quite <u>robust</u> against non-normality. That is, it at least approximately "works as advertised" even when the data are not normal, except when n is very small.

The denominator degrees of freedom are f - (p - 1): In a certain sense you lose a d.f. for each dimension after the first.

17

Statistics 5401

September 23, 2005

Here's a slightly less artificial example with the iris data.

The variables are sepal length, sepal width, petal length and petal width.

A hypothesis conceivably of interest might be that the <u>mean sepal lengths</u> = mean sepal widths and mean petal lengths = mean petal widths.

Symbolically this is

$$H_0: \mu_1 = \mu_2, \mu_3 = \mu_4$$

or

$$H_0$$
: μ_1 - μ_2 = 0 and μ_3 - μ_4 = 0

or

$$H_0: \mu_y = \mathbf{0}, \text{ where } \mathbf{y} = \begin{bmatrix} x_1 - x_2 \\ x_3 - x_4 \end{bmatrix}.$$

 H_0 is a hypothesis about the *shape* of the sepals and petals (probably a very implausible one).

Small sample test of H_0 : $\mu_x = \mu_0$,

"Reject Howhen

$$((f_e^-p+1)/(f_e^p))T^2(\mu_0) > F_{p,f_e^-p+1}(\alpha)$$
"

You can compute $F_{p,f_0-p+1}(\alpha)$ by invF(1-alpha,p,fe-p+1)

or

invF(alpha,p,fe-p+1,upper:T)

For large n (large f₂), the *small* sample $\{(pf_e)/(f_e - p + 1)\}F_{p,f_e-p+1}$ distribution is consistent with the *large* sample $\chi_{_{D}}^{^{2}}$ distribution:

- For large f_e, $(f_e p)/(f_e - p + 1) = p(1 + (p-1)/f_e) = p$
- $F_{p,f_{n}-p+1} = F_{p,\infty} = \chi_{p}^{2}/p$.

So

$$T^{2} = ((f_{e}p)/(f_{e}-p+1))F_{p,f_{e}-p+1}$$

$$\stackrel{\sim}{=} pF_{p,f_{e}-p+1} \stackrel{\sim}{=} pF_{p,\infty} \stackrel{\sim}{=} \chi_{p}^{2}$$

Statistics 5401

Lecture 8

September 23, 2005

Cmd> Y <- hconcat(setosa[,1] - setosa [,2],\</pre> setosa [,3] - setosa [,4])

 $\begin{array}{lll} \text{Cmd>} & t_sq & \leftarrow & hotellval(Y - 0); & t_sq \\ (1,1) & & 4012.1 \end{array}$

Cmd> $p \leftarrow ncols(Y)$; fe $\leftarrow n - 1$; vector(p, fe) (1) 2 49

Cmd> invchi(.01,p,upper:T) # ChiSq_2(.01)

9.2103 large sample 1% critical value

 $\label{eq:cmd} \mbox{Cmd>} \ (p*fe/(fe-p+1))*invF(.01,p,\ fe-p+1,\ upper:T)$ small sample 1% critical value

Cmd> invF(.01,p, fe-p+1, upper:T) # F_2_48(.01) small sample 1% crit. val. for F

Cmd> $cumF((fe - p + 1)*t_sq/(fe*p),p,fe-p+1,upper:T)$ (1,1) 9.0628e-47

 T^2 much much larger than $\chi_2^2(.01) =$ 9.2103 and $((f_p-p+1)/(f_pp))T^2$ is far beyond $F_{248}(.01) = 5.0767.$