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Cmd> hist(R,run(.94,1,.001),xlab:"Correlation", show:F,\
title:"Histogram of 10,000 Correlation Statistics")

Ond> addlines(rep(r_obs,2),vector(0,25),linetype:2)
Histogram of 10,000 Correlation Statistics
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Clearly r _obs = 0.9909 is not unusual.

You can estimate a P-value by counting
the number of values in R less than or
equal to the observed value.

Ond> sum(R <=r_obs)/M # estimated P-value
(1,1) 0. 5102

MacAnova notes

show. F in hi st () suppresses immediate
display.

addl i nes() makes the completed plot
visible.
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Correlation normality test based on

VX

Ond> d1234 <- distcomp(setosa)#4 variable dist

Ond> p <- ncols(setosa)

Ond> sqrtchisg4 <- sqrt(invchi((run(n)-.5)/n,p))

Cmd> plot(sqgrtchisg4, sqrt(sort(d1234)),symbols:" ARAY
xmin:0, ymin:0, ylab:"Sqgrt D1234", \
xlab:"Sqrt Chi square 4 Probability points”, \
title:"Setosa petals & sepals sqrt Q-Q plot, p = 4")

Setosa petals & sepals sqrt Q-0 plet, p = 4
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Ond> r_obs <- cor(sqrtchisg4,sqrt(sort(d1234)))[1,2]; r_obs
(1,1) 0. 99086 Observed value of correlation statistic

Cmd> M <- 10000;R <- rep(0,M) # vector to hold simulated stats

Ond> for(i,1,M){ # compute M correlations
@y <- matrix(rnorm(n*p),n) # rows are N_4(0,|_4
R{i] <- cor(sqrt(sort(distcomp(@y))), sqrtchisg4)[1,2];;
}

Ond> min(R)# minimum value observed in 10000 trials

(1) 0. 94608 Used to set xmin on histogram
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Multivariate Sampling Distributions

Inferential procedures are based on sam-
pling distributions -- distributions of
statistics and estimates computed from
random samples.

Suppose X,.X_,...,X_are a random sample
from a p-dimensional multivariate dis-
tribution with

Elx] = p and VIX] = £
Facts: The mean vector and variance
matrix of
x = (1/n)y, . X are
o« o= EXI =y
o £_=VIx]=(1/n)g
When p = 1, this is familiar:
* Hy = Elx] = H,
e 02 =VIxI=07/n
Don’t forget of the conceptual difference
between jp_and U .
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More generally, suppose X,,X,,....X are px]

random vectors such that

e They are independent but may have
differing mean vectors:

Elx]=p,1=1,..n
e They have the same variance matrix:
VIx] =%, 1=1,..n.

As usual, we collect the x's in a data
data matrix X = [x,.X,....x ' = [X
with rows corresponding to cases.

Similarly, collect the mean vectors in to
a mean matrix

[ oW
M
M=EIXT=| W' | = 1. K]
L M
When p = W = =K =, M=1n
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When a, = 1/n, so A = n''1, you get the

familiar result:

o VIx]=V[y .axl=3% .3’€=(~/ng
Note that
X'A=(AX) =[AX,, ..., AX] is a
p-vector with elements
AX =2 .aX, =1, ..p
A'X = (X'A)’ is a row vector with the

same elements
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Suppose A =[a,, ....,al andB =1[b, ... b T
are vectors of constants for each case.
Then > .__.ax = X'A,and > . bx = X'B,

11n11

are linear combinations of the X.'s with
* E[Z15i<naixi] = Z1<I<n IJ'l - M A (A'M)'

* V[Z1<1<n 1x1] = (Z1<1<n 1)2 - ”A” Z
o Covly . .aX, 2, ..bXx]=CovIX'A, X'B] =
(2,..8b)E = (A'B)E = (B'A)Z

The last is shorthand for
CoVIZ @ Xr 2 DX d = COVIAX, B'X] =

1<i<n i ij’ 1<i<n—i" ik

(2,4.8b)0,= ABo,

1<i<n i i

j=T1,....p,
Note: When A and B are orthogonal
(AB = 0), X'A and X'B are uncorrelated.

These results are not valid
e When X, and X, are correlated for i z ]

e When VIx ] is not constant
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Multivariate Central Limit Theorem
As before, let x,, ..., X_be a random
sample from a random vector with mean
M and variance matrix Z.

1. As n - oo, (*for large n")
J/Nn(x - W) is approximately N.(0.Z).

Informally, you can interpret this as:
When n is "large”, x is approximately
N.(J, (1/n)E)

This is the multivariate central limit
theorem (CLT).

As in the univariate case, there is no
universal rule of thumb as to what
constitutes "large.” Generally you need
somewhat larger n than for the univariate
CLT.
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2. A more general CLT shows that, as
n - oo, many vector statistics

y = g(X) = [g,(X), g,(X), ..., g.(X)T

q
computed from a data matrix with
independent rows are approximately
multivariate normal.

That is, if Yy has dimension g, as n -» o,
y is approximately N (E[yl, VIyl).
In many cases, V[yl = (1/n)g" for some

variance matrix £ . Sometimes £ = &
or £ is depends on E.
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The transformation of r
z = z(r) = tanh™'r = 0.5*1og((1+r)/(1-r))

is the Fisher z-transformation for cor-
relation coefficients.

When X, and X, are bivariate normal,

distribution of z(r) is very closely
approximated by to N (tanh™'p, 1/(n-3)).

the

Because V(z) = 1/(n-3) doesn’'t depend on
p, you can use z(r) for inference about p
from one or more bivariate random
samples.

Examples: Confidence limits for p
tanh(z)) < p < tanh(z,), where

(z.,z) =2(r) £z //(n-3)
Test statistic for H: p, = p,
Z = (z(r)) - z(r)))//{1/(n-3)+1/(n-3)}

With non-normal data, z(r) is often close
to normality but with V(z) =z 1/(n - 3).
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Example:
Suppose p = 2 and s,, and s,, are sample

variances and r, = sample correlation
between x, and x,.

Then for large n
y = [\/s,,. /s, tanh'r T’
is approximately N,(Elyl, VIyl), where
Elyl = /o, /o, tanh'p 1.
and VI[yl = £/n where £ can be expressed

in terms of moments of y (in terms of &
when x is normal).

Here q = 3 and g,(X) =
g,(X) = tanh’r .
Note: tanh'r = (1/2)(log(1+r) - log(1-r))

MacAnova
Function z <- atanh(r) computes
z = tanh™'(r) and r <- tanh(z)
computes r = (e*-e™)/(e*+e”) from z.

\/SH 92(x) = \/322'
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These graphs from simulation display the
distribution of r and z(r) for n = 30 With
p = Inrow 1, (x,.x, were N(O,1); i

the row 2, X, and X, Were 7(
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Although the distribution of r is skewed,
the distribution of z(r) is nearly normal.
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why did [ choose /s, ,, +/s,, and tanh’'r
for this example? It might seem more
natural to use the variances and
covariances s, s, and s,

1’ 22

In fact,as n- o, [s, ,s ,s I'is
approproximately N.([c,, ©,,, ¢ 1", £7/n),
where, when x is bivariate normal, £

depends on X.

S

However, you need a larger n for
[s,,. s,,. s,,]" to be approximately N, than

1m? 227

for [y/s,, 4/s,,, tanh™r 1.
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Example: Large sample test of multi-
variate mean:

e Yy =X with E[yl = u, VIyl = VIx] = n”'S.
Then, g = p and
T2 = T(W) = (X - W) VIXI'(X - p)
= (X - W{s/n}'(x -y
in(X_ - p)'s(x - )
&

A large sample test of H: p = W with
significance level « is

"Reject H: p=p, when T*(J,) > X *(e)".
Vocabulary
T*(J,) is the one-sample Hotelling's T*

statistic for testing H: B = M.
When p = 1

, T2 = t%, where
t = (x - p)/(s/y/n)
is the usual one sample t-statistic.
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The CLT and the generalized CLT are
important because of the following
related facts.

3. When a gq-vector § of estimates or
statistics computed from a random
sample, is approximately N_, then
T? = d(y.E[yD)?= (y-ElyD{VIyl}'(y-Elyl)
is approximately distributed as X’

4. In large samples, when Yy is approx-
imately N, and when V[y] is a consis-
tent estimator of VIy],

= (y - ElyD'{VIyl'(y - ElyD)
is approximately X

(y is a gq-vector)

This generalizes the fact that in many
cases t* = {(6 - 8)/G, ) = X ? for large n,
where 6 is an estimate with estimated
variance &,

14
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MacAnova
You can compute X *(ot) by
I nvchi (1-al pha, p)

or
I nvchi (al pha, p, upper: 1)

You can compute T? using hot el | val ()
Ond> irisdata <- read( "t11_05",quiet:T)
Read fromfile "TPL: Stat 5401: St at 5401F05: Dat a: JWpat a5. t xt
Ond> setosa <- irisdatafirisdata[,1] == 1,-1]
Ond> stats <- tabs(setosa, mean:T,covar:T)
Ord> ybar <- stats$mean; s <- stats$covar

Ond> ybar # sample mean vector
(1) .0 3.428 1. 462

Ond> mu_0 <- vector(4.5,3,2,1) # hypothesized p

Ond> n <- nrows(setosa); vhat <- s/n

Ond> tsq <- (ybar - mu_0)' %*% solve(vhat) %*% (ybar - mu_0)
Cmd> tsq # T2 computed by white box method

0. 246

(1,1) 28.102
Ond> hotellval(setosa - mu_0'# T2 by black box method
(1,1) 28.102
Ond> cumchi(tsg,ncols(setosa),upper:T) # P-value
(1,1) 1. 1891e- 05 Strong evidence against HO: p = pO
Ond> tval(setosa - mu_0") # univariate t-statistics
1) -3.8917 -1.3431 -1.5472 - 3.6232
MacAnova

e solve(A) computes A™
e solve(A b) or A % %b computes A™'b
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Small sample distribution for normal X

5. When x is N (J, ¥)

X is N.(u, (1/n)Z), for any n

e T?= (X - W){sS/n}'(x - p) is distri-

buted, for any n > p, as

{(pf)/(f. - p + 1IF

Put another way,
((f.-p+1)/(fp) T2 = F

e This is a small sample result which
requires normality to be exactly
correct

e [t is quite robust against non-nor-
mality. That is, it at least approxi-
mately "works as advertised” even
when the data are not normal, except
when n is very small.

The denominator degrees of freedom are

f - (p-1): Inacertain sense you lose a
d.f. for each dimension after the first.

fo=n-1

pvfe_p"']

pvfe_p+]
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Here's a slightly less artificial example
with the iris data.

The variables are sepal length, sepal
width, petal length and petal width.

A hypothesis conceivably of interest
might be that the mean sepal lengths =
mean sepal widths and mean petal
lengths = mean petal widths.

Symbolically this is

Hot B, = H, My = H,
or
Hp: M, - 4, =0and g, - 4, =0
or [ X, - X,]
He: B, = 0, where y = | |
L x, - x,]

H, is a hypothesis about the shape of the

sepals and petals (probably a very
implausible one).
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Small sample test of H: U = H ,
"Reject H, when
((f -p+1)/(f p))T?(W,) > F

You can compute F, () by
I nvF(1- al pha, p, f e-p+1)
or
i nvF(al pha, p, f e- p+1, upper: T)

For large n (large f,), the small sample
{(pf)/(f - p + 1)}Fp'fe_p+1 distribution is
consistent with the large sample sz
distribution:

p-fe'p+1 (d) ’

e For large f,
(fp)/(f, - p+ 1) =pQ(1 + (p-1)/f)
e F =F .= X°/p.

p.fo-pe

So

~

p

((,p)/ (fe—pﬂ»FpW
PFsp = PF = X

”2 11
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Ond> Y <- hconcat(setosal,1] - setosa [,2],\
setosa [,3] - setosa [,4])

Ond> t sq<- hotellvaI(Y 0);t sq
(1,1) 4012

Ond> p<- ncoIs(Y) fe <-n - 1; vector(p, fe)
(1 49

Ond> |nvch|( 01 p upperT)#ChlSq 2(.01)
(1) large sample 1% critical value

Qmd> (p* fe/(fe p+1)) invF(.01,p, fe-p+1, upper:T)
(1) small sample 1% critical value

o> f<-((fe- p+1)/(p*fe))*t sq; f
(1,1) 196 F form of T"2

Ond> invF(. Olp fe p+1 upper:T) # F_2_48(.01)
(1) 5.0 small sample 1% crit. val. for F

Ond> cumF((fe-p + 1)*t sqg/(fe*p),p,fe-p+1,upper:T)
(1,1) 9.0628e-4

T much much larger than X,*(.01) =
9.2103 and ((f_-p+1)/(f_p))T* is far beyond
F 01) = 5.0767.

2.48( )

20



