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Statistics 5401 /8401 Lecture 7 September 21, 2005

Multistandardizing with £'*
A matrix square root £'”? of a positive
definite symmetric matrix £ satisfies
(21/2)u(z1/2) -5
Since £ = (%)'((2"%)")", a matrix
square root of &' is ((£'%)")".

When y is a random vector with mean U
and variance matrix £, you can use £'“ to
multistandardize .

Define A = £'? = (£"%)" and let

Z = A(g - }l)
Then
V[Z] - ((21/2)—1)02(21/2)—1
- ((21/2)')—1(21/2)1(21/2)(21/2)—1
=11 =1.

Since Elz] = 0 and V[z] = 1, z is a multi-
standardized version of \.
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To multistandardize a n by p data matrix working as Advertised
Y, you use (S"*)": All statistical procedures, including
Y = (Y -1y)(S7) e confidence intervals or regions
This transforms the data y for case 1 to e hypothesis tests,
y = ((S"))(Y - y) require certain assumptions to be true
Cmd> data <- read(","T01_06") # Multiple sclerosis data Suc h as
Cmd> # Column 1 is group number, 1 = non-MS, 2 = MS
Cmd> nonms <- data[data[,1] == 1,-1] # non-MS data ¢ Data or errors are random Sample

o ybar < @bsinonmsmean) e The data or errors from a normal

Cmd> s <- tabs(honms,covar:T)

Cmd> sqrt_s <- cholesky(s) # triangular matrix square root p OD u l d t 1on

ng> “eb““/<'<“°“m5-ybar'>%’%sqﬂ—s e Variance o or variance matrix £ is
> \ T, T

Somponent mean T Cover) constant.

(1) -2.9606e-16 1.8681e-15-3.1376e-16 -1.0364e-15 2.7997e-16
component: covar
(1,1) 1 9.2946e-17 1.0609e-16 1.3609e-16 9.3937e-17

2,1) 9.2946e-17 1-6.7996e-17 3.15e-17 -8.2594e-18 . .
il e e Y e satistiegy o c assumptions fo
25:13 930376.17 -8.0594¢.18 1.4001e-16 -1.6560e.17 1 be satisfied”

A: So that the procedures should "work as

Except for rounding error, the sample advertised” or "work as claimed.”

mean of newy 1s 0 and the sample
variance matrix is I.. What does this mean?
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A significance or hypothesis test "works
as advertised” when
actual type 1 error rate (P(reject |H,))
= Intended or claimed significance
level «.

A confidence interval or region "works as
advertised” when

actual confidence level =

P(interval or region includes the true
parameter) = intended or claimed
confidence level.

For example, if a univariate sample X,
... X_1s not random but corr[X X 1=1p =z

—_— o~

0, VIX] = (o 2/n)(1 + p).

This means that in large samples,

t = (X - u)/(s/y/n) =N, 1+ p), so
P(|t] >z, TP(|t] >z,.//(1+p)) 2 .

SO 1t’'s important to assess the truth of
assumptions.
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Assessing multivariate Normality

Many multivariate statistical procedures
require multivariate normality in order to
"work as advertised".

Thus 1t 1s important to assess the truth
of null hypotheses like
HO: X 1s Np(}.l,Z)

Better yet is a formal significance test
of H,. This is a hard problem.

The simplest situation is when {X , X,....,
X } is a random sample from some p-
dimensional multivariate distribution
with E[X] = g and V[X] = £ and you want
to determine if there is evidence the
distribution is not normal.
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Testing the goodness-of-fit to a multi-
variate normal is difficult, and virtually
Impossible with small samples.

Focus of most approaches

e Check whether the distribution of X
appears not to have some particular
property of the N distribution.

e When the distribution of X appears to
not to have the property, you conclude
X 1s not multivariate normal.

Even if X does satisfy the property, that
Is no guarantee it is normal.

September 21, 2005
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Properties of Multivariate Normal
e Each individual variable is N..
Every subset of g variables is N_.

e (X - )&’ (X - ) distributed as X *

 Linearity of regression of each X on

the other variables:
ELX | XX, X

i-1 [RREERE

Xp] is linear in

e Constant conditional variances
= VIX [ XXX

i-1 ISRERRE

X ]

§i02..0-1.9+1..p
doesn't depend on X ,....X . X,
] = 1,..., P
You can assess the two last two proper-
ties by standard multiple regression

methods, and in particular by plots of
residuals against fitted values.

September 21, 2005
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The most common way to assess uni-
variate normality (normality of a single
variable) is a normal scores plot - a plot
of

the order statistics X, the values in

the sample arranged in order
><(1)§X(2) <. 2 ><(n)

against
‘normal scores” or probability points
a..
[f there is too much curvature in the
plot, there is evidence against normality.
MacAnova normal scores

rankits(n:N) and rankits(run(N))
compute normal scores by

invnor((run(N) - .375)/(N + .25))

This differs from what the text suggests
for normal scores, which is equivalent to

invnor((run(N) - .5)/N)
The difference is not important.

both

9
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Cmd> irisdata <- matread("JWdata4.txt","jwt11-5")

) Data from Table 11.5 p. 657-658 in

) Applied Mulivariate Statistical Analysis, 5th Edition

) by Richard A. Johnson and Dean W. Wichern, Prentice Hall, 2002
) These data were edited from file T11-5.DAT on disk from book
) The variety number was moved to column 1

) Measurements on petals of 4 varieties of Iris. Originally
published in

) R. A. Fisher, The use of multiple measurements in taxonomic
problems,

) Annals of Eugenics, 7 (1936) 179-198

) Col. 1: variety number (1 = I. setosa, 2 = I. versicolor,

) 3 = 1. virginica)

) Col. 2: x1 = sepal length

) Col. 3: x2 = sepal width

) Col. 4: x3 = petal length

) Col. 5: x4 = petal width

) Rows 1-50: group 1 = Iris setosa

) Rows 51-100: group 2 = Iris versicolor in

) Rows 101-150: group 3 = Iris virginica in

Read from file "TP1:Stat5401:Stat5401F04:Data:JWData5.txt"

Cmd> groups <- irisdata[,1]; y <- irisdata[,-1]
Cmd> setosa <- y[groups==1,]
Cmd> z <- sort(standardize(setosa))

standarize(x) standardizes the columns
of x so the vertical scales of normal
scores plots will be comparable. If
something further isn't done, the plots
for the four variables will overlap.

Cmd> shiftedz <- z + (run(4) - 2.5)'
Adding (run(4)-2.5) adds -1.5, -.5, .5,
1.5 to the 4 columns of standardized
data. This will separate them in a plot.

10
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Cmd> nscores <- rankits(n:nrows(setosa)) # normal scores

Cmd> lineplot(nscores, shiftedz, ylab:"Ordered values", \
symbols:run(4),xlab:"Normal scores",
title:"Shifted normal scores plots for setosa variables")

- Shifted normal scores plots for setosa wvariables

Values plotted are p
" standardized var- &
-iables, shifted so as to
.| separate the plots
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Normal scores plots of standardized data
look the same as normal scores plots of
the original data.

The only one that seems quite curved is
the top plot, the one for variable 4.

Plots like these help assess normality
but do not provide a significance test.

11
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The most common test for univariate
normality (normality of a single variable)
s probably a statistic related to the
Wilk-Shapiro test statistic, namely the
correlation statistic

W 1s one way of measuring how straight
the normal scores plot is. The more
curvature in the plot, the lower W will
be, although 1t will always be positive.

Thus in a test based on W, you reject for
small values. That is, the test is a
lower tail test.

12
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Here | calculate all the correlations of
the sorted data with the normal scores
(rankits) in nscores .

Cmd> w <- vector(cor(nscores,sort(setosa))[1,run(2,5)]); w

(1) 0.99081 0.98188 0.97418 0.89172

cor(nscores,sort(setosa))[1,run(2,5)]

contains row 1 (nscores ) and columns 2
through S (setosa ) of a S by 5 sample
correlation matrix computed by cor()

The correlation for variable 4 (W =
.89172) is the smallest as we should
have expected.

The critical values in the text don't apply
exactly since they assume a slightly
different definition of normal scores, but
they should be very close.

The « = 1% value when n = 50 is .9671,
so normality is rejected when W < .9671.
This is the case only for variable 4.

13
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But we are in a multiple testing situa-
tion. There are 4 ways to reject H: X is

N,(M,E), so, when X is N,(j,£). there are
4 chances to make a type | error.

This means that the actual significance
level

o = P(Reject H, when it is true)

Is larger than « = .01, the significance
level used for each individual test.
Define the overall significance level o« as

« = P(reject at least 1 H0|a11 H, true)

Then the Bonferroni inequality tells us
that, when there are K tests (K = 4 here),
each with significance level o', then «
satisfies

o < <Kot

When «" 1s small, « is often quite close
to K'.

14
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This suggests you Bonferronize the
tests.

You can do this in two ways:

e Use a modified critical value (cut
point) which corresponds to signifi-
cance level o' = /K, where K is the
number of tests. With K = 4, the text
tables (with «" = .10, .05 and .01)
allow only « = .40 = 4x.10, .20 = 4x.05
and .04 = 4x.01.

e Find modified P-values by multiplying
the usual P-values by K and compare
compare the Bonferronized P-values to
the desired significance level «. The
text tables don’'t allow for P-values at
all.

How can you get Bonferronized P-values
and/or critical values?

Often the easiest answer is simulation,
generating many random samples for
which H_ is true and computing the test
statistic from each of them.

15
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Simulation approach
 Generate a large number M of N(O,1)
samples for which you know H  is true.

e Compute W for each sample thus
obtaining a random sample of size M
from the null distribution of W

e From these M values, estimate P-
values or critical values

Cmd> M <- 5000 # number of repetitions
Cmd> n <- nrows(setosa) # number of cases
Cmd> W <- rep(0,M) # room for the statistics

Cmd> for(i,1,M¥{
WIi] <- cor(nscores,sort(rnorm(n)))[1,2] # 1,2 element of 2x2

September 21, 2005

Each time through the loop, you

e Draw a standard normal random sample
using rnorm(n) and order it by sort()

e Compute the correlation of the sorted
values with the scores in nscores

e Stash the result in W[i] .

When it 1s done, Wcontains S000 values
of W computed when H_ is true.

16
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Here is what the sampling distribution
looks like.

Cmd> hist(W,run(.92,1,.001), \
title:"Distribution of W with n = 50")
Distribution of W with n = 50

2ok .
Bar boundaries are

r 92,921, 922, .., 998,
- 999, 1.000

-1
[=]

sof  Distribution is very
.ol skewed to the left

il H,A1JHTTH{H{(
0F o .

05z .95 094  0.595 0.9 0.97 098 0.9 1
™

Estimate P-values as sample proportions.

Cmd> sum(W < w'") # counts of values in lower tail <w'

Lo SR L= B O = ]
on
[=]

1,1) 2685 613 164 0
Cmd> pvals <- sum(R < w')/M; pvals # approximate P-values
(1,1) 0537 01226 0.0328 0

Since the W values follow the null
distribution, the values in pvals are
estimates of the actual P-values
P(W < W ).

observed

17
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You estimate Bonferronized P-values by
multiplying pvals by K = 4.
Cmd> K <- length(w) # number of tests

Cmd> K*pvals # 4*pvals = Bonferronized P-values
(1,1) 2148 0.4904 0.1312 0

Only variable 4 as a really small P-value.

You can also estimate critical values and
Bonferronized critical values as sample
quantiles of the {W}.

i
Cmd> W <- sort(W) # 5000 ordered values
Cmd> J <- vector(.1,.05,.01)*(M+1)

Cmd> J # approximate indices of 10%, 5% and 1% quantiles
(@) 500.1  250.05 50.01

Cmd> floor(J) # round down (towards -00)
(@) 500 250 50

Cmd> ceiling(J) # round up (towards +00)
(@) 501 251 51

Cmd> . 5*(W[floor(J)] + W]ceiling(J)]) # estimated quantiles
(1) 0.98066 0.97639 0.96635

These are non-Bonferronized critical
values, quite close to the values ,9809,
9768, and .9671 in Table 4.2 in the text.

18
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Cmd> J <- (vector(.1,.05,.01)/K)*(M+1) #K =4

Cmd> .5*(W[floor(J)] + W]ceiling(J)]) # Bonferronized quantiles
(1) 0.97197 0.967 0.95316

These are Bonferronized critical values,
that is critical values for « = .1/4, .05/4
and .01/4.

From either the P-values or critical value
we see that only for X, is there strong
evidence against normality.

Since at least one X, appears to be non-
normal, you can reject multivariate
normality of X.

Cmd> hist(setosa,vector(.05,.1),\
title:"Distribution of Setosa Petal width",xlab:"Petal width")

Distribution of Setosa Petal width

Distribution is

St somewhat skewed to the
right.
D i
=]
hui
= 3
: There are only 6 distinct values,
¥ ol A2 b bars are centered
over them.

7.1 0.2 7.3 7.4 7.5 0.6
Fetal width

19
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Conclusions:
e There is strong evidence that x, is not

univariate normal. Hence the Setosa
data isn't Multivariate normal.

e There is no significant evidence X, X,
or x, are not univariate normal.

MacAnova note

floor(x) finds largest integer < x
(rounds up toward +oo)

ceiling(x) finds smallest integer > X
(rounds down toward -oo)

round(x) finds integer nearest to x
Cmd> floor(vector(-3.2,4.25,8))
) -4 4 8
Cmd> ceiling(vector(-3.2,4.25,8))
1) -3 5 8
Cmd> round(vector(-3.2,4.25,8))
1) -3 4 8

20
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A multivariate version

September 21, 2005

Let
2 _ -1 Fo_
d®= (X, - WE(X - p),j=1,.n,
be the squared Mahalanobis distances of
the data points from p.

Then {d? d7 ..., d*} constitute a random
sample because they are
e independent

e have the same distribution.

When X is N (J,2)

e d° d° ..., d*arearandom sample
from X °.

If {d*} don't look like such a sample, H,

may not be true.

21
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In practice, since you don’'t know M and Z,
you estimate them by X and S, and
calculate estimated values of d*:

d? = (X - X)'s™(X - X)
At least in large samples you can treat @’
as if it were d°.

This is not exact since
e {d? d? .., d? is not a random sample
(they are not independent)

e the distribution is not exactly X * even
when X is N but 1t's close enough.

MacAnova: Compute distances by
Cmd> d <- distcomp(x)

22
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A Q-Q plot is a way to use a random
sample to assess whether a random
variable has a given distribution.

General case
Suppose Y., ..., Y_1s a univariate random
sample from a random variable Y.

Let F(y) = P(Y <y) be a supposed cumu-
lative distribution function (CDF) for Y,

Let Q(p) = F'(p), 0 < p < 1, be the

supposed p™ probability point of Y, that
Q(p) satisfies P(Y < Q(p)) = p.

Chi-sgquared_4 density with Q.&63)

0.2F

Area= 63

! (.63)
0-0ar Area= 37

23
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In MacAnova, you compute values of Q(p)
for various distributions using invnor()
invchi) , invF() , etc.

A Q-Q plot is a scatter plot of

e order statistics y,, <Y, <...2Y,
against
e probability points Q(p.), ..., Q(p,),

n

where p, < p,6 < .. <p_are equally

spaced probabilities usually of the

form p. = (j+872-.5)/(n+B), some B.
The most common choices for § are

8 P, Spacing

0 (j - .5)/n 1/n
25| (j-3/8)/(n+1/4) | 1/(n+1/4)

1 j/(n+1) 1/(n+1)

B = .25 is specifically recommended for
the normal distribution and is what
function rankits() uses for normal
scores.

24
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When F(y) actually is the CDF of Y, the
plot should be approximately linear with
slope 1 and intercept O.

[f 1t's sufficiently curved, that is
evidence that F(y) is not the CDF of Y.

More generally, when the distribution of
(Y - a)/c is F for some constants a and c,
the Q-Q plot should be approximately
linear with slope ¢ and intercept a.

A normal scores plot 1s a Q-Q plot
where F(x) = &(x) is the standard normal
distribution.

Note that by definition, in a QQ plot, the
points are always increasing (more
precisely, never decreasing). This means
the rank correlation will be 1 and the
ordinary correlation will be high.

25
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A X* Q-Q plot is a useful way informally

to assess whether d* is distributed as

X,>. As with a normal Q-Q plot, syste-

matic curvature of the plotted points

suggests the X* distribution may not be

appropriate.

A X* Q-Q plot consists of two steps:

1. Order the calculated d*'s in increasing
order (get order statistics)

2 T2 T2
< < <
d,<d,<...<d

(n)
MacAnova
If the d*'s are in vector d, you order

them by sort(d)

26
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2. Plot the dA(jf‘s against chi-squared A Q-Q plot always increases to the
probability points computed using right.
invehi(a) . If d® is in fact X ? the plot should be
X (), j=1,2,.., n, approximately a straight line through
where q = (j-.5)/n, j = 1,2,..., . the origin (0,0) with slope 1.

That is, q = (1/2)/n, q, = (3/2)/n, q, = [t 1s usually easier to assess a plot of

_ 2 . 2

(5/2)/n, ..., q = (n-1/2)/n, are equally | Aoy = */{dm} against /{XD (qj)}

spaced probabilities. These satisfy This should also be a straight line

P(X 2 < X (q)) - through the origin (0,0) when the data are

o = A WG =G normal

MacAnova Note: Always include the origin (0, Q) in
Compute the g, by the plot. You do this in MacAnova by

Cmd> q <- invchi((run(n)-.5)/n,p) including xmin:0,ymin:0 as arguments to
where p is the dimension (number of the plotting command.
variables).

Do that with the Iris setosa data:

Cmd> n <- nrows(setosa)
Cmd> d12 <- distcomp(setosa[,run(2)])
Cmd> g2 <- invchi((run(n)-.5)/n,2) # d.f. =2

27 28
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Cmd> plot(g2, sort(d12),symbols:" \ 1", xmin:0,ymin:0, \
title:"Setosa Petals QQ-plot", ylab:"D12", \

xlab:"Chi square 2 Probability points™# q = 2

10F

#* Q-Q plot computed from (X, X,)

@9

z Chi %quare % Prn:\]:sﬁ:-ilit}rE'}'u:hird:,s':I| 5

Cmd> plot(sqrt(g2),sqrt(sort(d12)),symbols:"
ymin:0,xlab:"Sqrt(Chi square 2 Probability points)”,
ylab:"Sqrt D12 " title:"Setosa petals square root QQ-plot”)

Setnsalpetals Squate root qu—plnt

\ 1",xmin:0,

3

\
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\

2
3 -
d V2 Q-Q plot computed from (X, X, )
3 Lo <
I ozt ¢¢<><> ¢e
t &
o 1.5p
1 o
; i
1
s
P
0.5 Roe
G
] : : . : .
[1] 0.5 1 1.5 2 2.5 3

Sgrt(Chi square 2 ?rnhahility points)

29

Statistics 5401 /8401 Lecture 7 September 21, 2005

MacAnova Plotting Codes

There are several types and size of
plotting codes you can use in graphs. You

can get information on them by typing
Cmd> help(chplot:"drawn_plotting_symbols")

plot(x,y,symbols:"\1") uses large
diamonds

plot(x,y,symbols:"\14") uses medium
sized x's.

plot(x,y,symbols:"\22") uses small
squares.

plot(x,y,symbols:"\7") uses dots visible

by addlines()
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