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The population mean or expectation of a
random matrix Y = [y ] is the matrix

o=l 1= LEY ]
It can be useful to equate anby p

matrix, say X = [X,, X,, ..., X ], to the
np by 1 vector

x1

vec(X) = | X , np x 1

2

p

Clearly
}lvec(X) = VeC(}lx)
that is the matrix is "unravelled” or

unrolled column by column. This is what
vect or (x) creates when x is a matrix.
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Multivariate population mean vector
Suppose X = [X,, X,, ... XI" is a random
vector (X, ..., X are p jointly distributed
random variables).

The population mean vector (true mean,
expectation) of X is

W, = EIXT = [ 0. 11,
B,= EIX L j=1...p

M, has the same dimensions as X (p x 1).

Note:
X is the vector of univariate sample
means
M, is the vector of the univariate
population means.
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Population variance matrix
Vocabulary
The population covariance between X,
and X, j z k, is

e 0, = EI(X-p)(X -p)l
Properties
* 0,=0, (symmetry)
 0,> 0 < positive association
e 0, <0 < negative association
The population variance is
2 _ _ 2

* 6,/ =0" E[(XJ'“J) ] 22 0 o
+ Jo,| <vio 0.} 07 <00,
e« -1<p,<1,p,=0,//{o o}

= cov[X ,X,J/{SDIX ISDIX I}, SDIX ] = /o
p, is the population (true) correlation
between X, and X,.
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The population covariance matrix or

variance matrix of X = [X,,...,X 1" is the
pxp matrix
[ 011 <512 013 * O]p -‘
G,0, Oy...0,
VIx]=2=2,=|0,,0,,0,,...0,
| 6,0, 0,...0, |

¥ is symmetric (&' = Z)

e The diagonal elements o of Z are
variances (612)

e The off-diagonal ¢, J =z k are
covariances.

e Whena =[a,a,..a]l is constant so a'x
s a linear combination, with variance
V[a'x] = a’£a > 0. Hence £ is positive
semi-definite
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Population correlation matrix
The population (Pearson) correlation

between X, and X, is
p,=0,/+/(c,0,)=p, =covlZ.Z]

Standardized X, is Z, = (X - )/y/o .

Note: p, =0 & o, =0

The symmetric p by p matrix

01 pp Ps - Py, 0O
by, 1 py . p,H

R = %’13 P 1 : p3pg: D'zD™
W‘lp pr pSp 1 D

is the population correlation matrix

e D =diagly/c,,./0,,...//0,]
« D' =diagll/\/o,.,1//0,,...1//c ]

When £ = diaglo,.0,,,....0 1 is diagonal,
¢« p,=0iz]
« R=1 =diagll, 1,.., 11.
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I hope | don't need to say this:

[t is important to distinguish these

population variances and covariances

from the sample variances and

covariances

¢ 5, =2 ,..(X, - X)¥/(n-1) is not the
same as o

o s, =5, - X)X, - X)/(n-1) is not

1] ]
the same as o
and to distinguish the population
variance matrix £ from the sample
variance matrix S.

You never test a null hypothesis about
the value of x or S.

To state that a test statistic tests the
null hypothesis H_: X = O is nonsense.

Probably what is meant is H: g = O.
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Univariate normal Distribution

X is N(d,0%) means X is normal with
mean W and variance o Its density is

RIS/ 2
f(x U U):;e 20 0 [ 1 6_?
2o o2m

where z = (x;p)/c (standardized x).
Facts:
e 7z is standard normal N(0,17)

(x—p)° . -
is X,* (chi-squared, 1 DF)

0.2
Densities of Z and X,

Standard Hexmal Density
T T T T

B
o

022:

Chi squared on 1 d.£ density

¥* with1df.

0
1

18,5 384=196"]

”Ei&w

Q 1 2 3 4 3 & 7 g
2 Chi-squared(1)

The total area under each curve is 1.

The area under the X.* curve to the left
of 3.84 = 1.96° is
P(X?< 3.84) = P(|z| < 1.96) = .95
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Multivariate normal distribution
Notation

X =[x, %, .., x ] is N(p, Z),

e J px1 vector

e ¥ pxp positive definite symmetric
matrix.

Density of N (u, £) random vector x:

oz o) e—%Q(x—ﬂ,Z)

— e =
f(x,2,u)= (27_[)p/2 \m - (27-[)17/2 \F(Z)

Multivariate Normal Facts
e E[x] = g p parameters
e V[x] =% p(p+1)/2 parameters, p var-
iances, (p-1)/2 covariances

e QX - W,E) =(x - u)E(x - W

= trace(Z'(x - p)(x - p)’) ~ X
When p = 1 (N(u, c?))
e U=, T - o°
o (x - p)E(x - W)= (x - /o) = X2

2
P
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All contours (level curves) are ellipses
centered at p = [1,1]" like these:

Contow when rho = -5

=

Contour -::ontainingI 95% of proI:IJability

(x—u{x—p; 5.9915= 3,

(=R
]

0.5H

Shape depends on eigen structure of =

1 1 I
0.3 1 1.5 2
i1

Contonr when rho = .5

Contour containirllg 95% of prlobability

(=X

0.5H

Shape depends on eigen structure of =

1 I
0.3 1 1.5 2
i1
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Shape of bivariate density
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p=[ar
\/OH = 3
Jo,, =3,
p,,=-0.5
Centered
at p

Centered
at p

e The mode (maximum) is at M
e Every contour (level curve) is an
ellipse centered at M
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Standard Multivariate Normal

When z is N (0, 1), its density is

_%Z'z -%ézl? ‘é ‘% ‘?
f(Z) = € = € = ¢ ¢ ___e ,
@Qm?  @m?  am2mom
That is
) p1:“2:___:}1p:0
© 0,=0,=..20_ =1

. Oij:O,izj:)pij:O
e The z's are independent N (0, 17)
because
f(z) = 1(z)=xf(z,)x ... Xf(Zp)
« Qz-p,Z)=(z-0)1"(z-0):=
2.2 1s distributed as X’ by a
standard univariate result.
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Properties of Multivariate Normal

The following properties are basically
mathematical theorems. They are
important in part because they provide a
basis assessing or testing multivariate
normality. If a sample of data appears
not to satisfy one of these properties, it
s evidence the sample is not from a
multivariate normal population.

1. All marginal distributions are normal.
e Each x, ignoring other x's, is N (j,0,)

e Any subset of variables, ignoring

other x's, is multivariate normal.
Application: If a univariate sample
consisting of the values of x, does not
appear to come from a normal population,
then the multivariate data is probably not
multivariate normal.
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2. All conditional distributions are
normal.

e Distribution of p,x1 x, given p x1 X, is
Np2(j12 * 52_1'(X1 - }11)’ Z:22-1)’

That is,
E[X2 | X1:| = }12+52_1'(X1—}11), P, bg 1
VX, |x1=g,., P, by p,

e This is a linear regression of X, on X,

Application: if the dependence of one
variable, say X, on another, say x,, is
not linear, then X is probably not
multivariate normal.

e B, =% %, P, xp,isamatrix of
population regression coefficients.
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Specifically, when x' =[x ', X '], where x,

is a p, by 1 vector, x, is a p, by 1 vector
than you can partition £ and M:

|- ZH Z12 -| |_ JJ'1-| p1
a [
Z21:212 Z22 JJ'2 p2
P, P,

where
e M ispx1 and W, is px1
e X ispxp,and X is p,xp,
,ispxp,and ¥ =X ' 1is pxp,
This property states
X, is N, (B, 20, X, is N_(p,, )
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,,., does not depend on X..
= Z:22 B Z:21211_1212 = Z:22 B ﬁ2-1‘2:1132-1
= VI, - Elx, | x,1]
= V[X2 - H, - ﬁ2-1'()(1_“1)]
That is,

2 = Z:22 - Z:21211_1212

22°1
is the variance matrix of the
residuals = x, - E[Xx, | X, 1.

Application: If regression diagnostics in
a linear regression of one variable on the
others indicate non-constant variance,
that indicates the data do not come from
a multivariate normal population.

Bivariate case
When p = 2 and p, = p, = 1, these are
B, =0,/0, (simple linear regression)
e 5, =0_,-07/c.=0_-8 °C,
=(1-p.,0,
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3. Linear combinations are normal
e ax=j ax isN(a'y, aza)

i 1
e A'x =[a’x,...a'x]"is N(A'u, A'ZA)
when A = [a,,....a]is p by g whose
columns define linear combinations.
Example: If {d}, d =x, - x,,,
does not appear to be normal, then X is
probably not multivariate normal.

4. The distribution of
Q(x-M, &) = (x - u)'Z(x-M)
is X"
Except for a factor of 1/2, Q(x-p, Z) is
the exponent in the density.
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Standardization

When Y is a univariate random variable,

an important re-expression of Y is as a

standardized random variable (z-score)
z=(Y-p)/o,

Z has mean O and standard deviation 1:
H, =0,0, =1

Example:

When_Y = test statistic or estimator

(e.g. x) with hypothesized mean J, =
M,, often O, and standard error ..

Then Z = (Y - p)/o, is a Z-statistic
for testing H: J, = M,

You can often replace an unknown o,
by an estimator G, and standardize to
get the test statistic

t= (Y- p)/o,
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S. Zero covariance or correlation implies
independence

z 0
When P .
22

0 Z
that is, £, = Covix,, x,] = 0, then x, and
X, are independent.

In particular, when o, = 0, X, and x, are
independent

Since p, = 0 & o, = 0, uncorrelated x,
and X; are independent.
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e When Y is (approximately) N(p,, ¢ %),
Z is (approximately) N(0,1%) and
22 = (Y - p)/clort?=(Y - p /35’
is (approximately) X,* (X* on 1 d.f.).

e When Y is exactly N(y,,0.%) and 6.2 is
an independent estimate of ¢ * such
that 6,*/c ? = X,*/1,, then t is distri-
buted as t, = Student’s t on f  deg-
rees of freedom and

t* = (Y - p)*707 is distributed as F .

Note: E[X.] = f, so E[X/f] = 1
Notation: | consistently use the notation
f_ = error degrees of freedom

Later 1 will use the notation
f = hypothesis degrees of freedom

These notations are not used in the text.
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Famﬂiar example
Y = X and you are testing H: g = H..
Then ¢, = .= ¢ /y/nand G, = G = s/4/n
and .

Z = (X - p)/(c/y/n)

t= (X - p,)/(s/y/n)
When x is computed from a random
sample:

e In large samples, Z ~ N(O, 1%) and Z° ~
X,

e When X is normal t ~t_and t* ~ F

2
1.n-1
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It's harder to find a matrix A such that
Z =AY -p)

has variance matrix lp.

However, when you have such an A,
Z =AY -p)

1s a standardized version of Y.

or,if C = A",

Z = (€)Y - p)
1s a standardized version of Y.
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Multivariate standardization
A multivariate vector Z is standardized
when
° le =
o V[Z] = I = diag[1,1,...,1].

o

When Y i1s an multivariate random vector,

then for any pxp matrix A = [a ,a,, ....a],

E[A’(Y - p)] = A'ELY - u 1= A0=0.

So it's easy to transform Y to a form
with mean O.
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Matrix Square Roots

Vocabulary:
Let B be a positive semi-definite pxp
symmetric matrix. Then, when the
pxp matrix C satisfies C'C = B, we say
C is a matrix square root of B.

e C is not unique; you can choose C to be

X X X X X X X
symmetric, triangular |:xx:, | Or
or none of these.

Cmd> b # previously entered matrix
(1,1) 16 12
(2,1) 12 10
Ond> upper <- cholesky(b); upper # Upper triangular
(1,1) 4 3
(2,1) 0 1
Ond> upper' %*% upper # Check: upper' upper =b
(1,1) 16 12
(2,1) 12 10
Ond> matsqrt(b) # does same as cholesky()
1,1 4 3
(2,1) 0 1
Ond> lower <- matsqrt(b,lower:T); lower # lower triangular sqrt
(1,1 1. 2649 4/ sqrt (10) 0
(2,1) 3. 7947 3.1623 12/sqrt (10) 10/ sqrt (10)

Cnd> lower' %*% lower # Check: lower' lower =b
(1,1) 16 12
(2,1) 12 10

24



Statistics 5401 Lecture 6 September 19, 2005

Ond> sym <- matsqrt(b,symmetric:T); sym #symmetric sqrt
3.43 2.058

(1,1)

(2,1) 2.058 2.401

Qmd> sym' %*% sym # or sym %*% sym because sym is symmetric
(1,1) 16

(2,1) 12 10

You can get still other square roots by
swapping the rows:

Omd> asym <- sym[vector(2,1),]; asym #not symmetric, triangular
(1,1) 2.058 2.401

(2,1) 3.43 2.058

Ord> asym’ %*% asym

(1,1) 16 12

(2,1) 12 10
Vocabulary

When C is upper triangular, C'C =
B is the Cholesky Decomposition of B.

MacAnova
When b is a symmetric matrix,

Ord> c <- cholesky(b)

computes the upper triangular square root
of b.
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