Statistics 5401

Lecture 6

September 19, 2005

Displays for Statistics 5401/8401

Lecture 6

September 19, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall

Class Web Page

http://www.stat.umn.edu/~kb/classes/5401

© 2005 by Christopher Bingham

Multivariate population mean vector

Suppose  $\mathbf{X} = [X_1, X_2, ..., X_p]'$  is a random vector  $(X_1, ..., X_p]$  are p jointly distributed random variables).

The *population mean vector* (<u>true mean</u>, <u>expectation</u>) of X is

$$\mu_{x} = E[X] = [\mu_{1}, \mu_{2}, ..., \mu_{p}]',$$
  
 $\mu_{i} = E[X_{i}], j = 1,...,p$ 

 $\mu_{\mathsf{x}}$  has the same dimensions as **X** (p × 1).

#### Note:

 $\overline{\mathbf{x}}$  is the vector of <u>univariate</u> sample means

 $\mu_{x}$  is the vector of the <u>univariate</u> population means.

The population mean or expectation of a  $\frac{\text{random matrix}}{\text{random matrix}} Y = [y_{ij}]$  is the matrix

$$\mu_{Y} = [\mu_{y_{ij}}] = [E[y_{ij}]].$$

It can be useful to equate a n by p matrix, say  $\mathbf{X} = [\mathbf{X}_1, \mathbf{X}_2, ..., \mathbf{X}_p]$ , to the np by 1 vector

$$vec(X) \equiv \begin{bmatrix} X_1 \\ X_2 \\ ... \end{bmatrix}, np \times 1$$

Clearly

$$\mu_{\text{vec}(x)} = \text{vec}(\mu_x)$$

that is the matrix is "unravelled" or unrolled column by column. This is what vector(x) creates when x is a matrix.

# Population variance matrix Vocabulary

The **population covariance** between  $X_j$  and  $X_k$ ,  $j \neq k$ , is

Lecture 6

September 19, 2005

•  $\sigma_{jk} \equiv E[(X_j - \mu_j)(X_k - \mu_k)].$ 

#### **Properties**

- $\sigma_{ik} = \sigma_{ki}$  (symmetry)
- o<sub>ik</sub> > 0 ⇔ positive association
- o<sub>ik</sub> < 0 ⇔ negative association</li>

The *population variance* is

- $\sigma_{i}^{2} = \sigma_{ij} = E[(X_{i} \mu_{i})^{2}] \geq 0$
- $|\sigma_{jk}| \leq \sqrt{\{\sigma_{jj}\sigma_{kk}\}}, \sigma_{jk}^2 \leq \sigma_{jj}^2 \sigma_{kk}^2$
- $-1 \le \rho_{jk} \le 1$ ,  $\rho_{jk} = \sigma_{jk} / \sqrt{\{\sigma_{jj}\sigma_{kk}\}}$ =  $cov[X_j, X_k] / \{SD[X_j]SD[X_k]\}$ ,  $SD[X_j] = \sqrt{\sigma_{jj}}$

 $\rho_{jk}$  is the population (true) correlation between  $X_j$  and  $X_k$ .

Lecture 6 September 19, 2005

Statistics 5401

Lecture 6

September 19, 2005

The <u>population</u> covariance matrix or variance matrix of  $X = [X_1, ..., X_p]$  is the pxp matrix

$$V[x] = \sum_{x} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} & \dots & \sigma_{1p} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} & \dots & \sigma_{2p} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} & \dots & \sigma_{3p} \\ \dots & \dots & \dots & \dots & \dots \\ \sigma_{1p} & \sigma_{2p} & \sigma_{3p} & \dots & \sigma_{pp} \end{bmatrix}$$

- $\Sigma$  is symmetric ( $\Sigma' = \Sigma$ )
- The diagonal elements  $\sigma_{jj}$  of  $\Sigma$  are variances  $(\sigma_{j}^{2})$
- The off-diagonal o<sub>jk</sub>, j ≠ k are covariances.
- When  $\mathbf{a} = [\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_p]'$  is constant so  $\mathbf{a}'\mathbf{x}$  is a linear combination, with variance  $V[\mathbf{a}'\mathbf{x}] = \mathbf{a}'\mathbf{\Sigma}\mathbf{a} \geq 0$ . Hence  $\mathbf{\Sigma}$  is positive semi-definite

I hope I don't need to say this:

It is important to distinguish these **population** variances and covariances from the **sample** variances and covariances

- $s_{jj} = \sum_{1 \le i \le n} (X_{ij} \overline{X}_j)^2 / (n-1)$  is not the same as  $\sigma_{jj}$
- $s_{jk} = \sum_{1 \le i \le n} (X_{ij} \overline{X}_j)(X_{ik} \overline{X}_k)/(n-1)$  is not the same as  $\sigma_{ik}$

and to distinguish the *population* variance matrix  $\Sigma$  from the *sample* variance matrix S.

You never test a null hypothesis about the value of  $\overline{\mathbf{x}}$  or  $\mathbf{S}$ .

To state that a test statistic tests the null hypothesis  $H_0$ :  $\overline{x} = 0$  is nonsense. Probably what is meant is  $H_0$ :  $\mu = 0$ .

Statistics 5401 Lecture 6 September 19, 2005 Statistics 5401 Lecture 6 September 19, 2005

## Population correlation matrix

The population (Pearson) correlation between  $X_i$  and  $X_k$  is

$$\rho_{jk} \equiv \sigma_{jk} / \sqrt{(\sigma_{jj} \sigma_{kk})} = \rho_{kj} = \text{cov}[Z_j, Z_k].$$

Standardized  $X_j$  is  $Z_j = (X_j - \mu_j) / \sqrt{\sigma_{jj}}$ .

Note:  $\rho_{jk} = 0 \iff \sigma_{jk} = 0$ 

The symmetric p by p matrix

$$\mathbf{R} = \begin{bmatrix} 1 & \rho_{12} & \rho_{13} & \dots & \rho_{1p} \\ \rho_{12} & 1 & \rho_{23} & \dots & \rho_{2p} \\ \rho_{13} & \rho_{23} & 1 & \dots & \rho_{3p} \\ \dots & \dots & \dots & \dots & \dots \\ \rho_{1p} & \rho_{2p} & \rho_{3p} & \dots & 1 \end{bmatrix} = \mathbf{D}^{-1} \mathbf{\Sigma} \mathbf{D}^{-1}$$

is the population correlation matrix

- D = diag[ $\sqrt{\sigma_{11}}$ ,  $\sqrt{\sigma_{22}}$ ,...,  $\sqrt{\sigma_{DD}}$ ]
- $D^{-1} = diag[1/\sqrt{\sigma_{11}}, 1/\sqrt{\sigma_{22}}, ..., 1/\sqrt{\sigma_{pp}}].$

When  $\Sigma$  = diag[ $\sigma_{11}, \sigma_{22}, ..., \sigma_{pp}$ ] is diagonal,

- $\rho_{ij} = 0$ ,  $i \neq j$
- $R = I_p = diag[1, 1,..., 1].$

#### Univariate normal Distribution

X is  $N(\mu, \sigma^2)$  means X is normal with mean  $\mu$  and variance  $\sigma^2$ . Its density is

$$f(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left[\frac{(x-\mu)^2}{\sigma^2}\right]} = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$
 where  $z = (x-\mu)/\sigma$  (standardized x).

Facts:

- z is <u>standard normal</u> N(0,1<sup>2</sup>)
- $z^2 = \frac{(x-\mu)^2}{\sigma^2}$  is  $\chi_1^2$  (chi-squared, 1 DF) Densities of Z and  $\chi_1^2$



The total area under each curve is 1.

The area under the  $\chi_1^2$  curve to the left of 3.84 = 1.96<sup>2</sup> is

$$P(\chi_1^2 \le 3.84) = P(|z| \le 1.96) = .95$$

#### Multivariate normal distribution Notation

$$x = [x_1, x_2, ..., x_p]'$$
 is  $N_p(μ, Σ)$ ,

- μ p×1 vector
   Σ p×p positive definite symmetric matrix.

Density of  $N_{\scriptscriptstyle D}(\mu, \Sigma)$  random vector  $\mathbf{x}$ :

$$f(\mathbf{x}, \Sigma, \mu) = \frac{e^{-\frac{1}{2}\left[(\mathbf{x}-\mu)'\Sigma^{-1}(\mathbf{x}-\mu)\right]}}{(2\pi)^{p/2}\sqrt{\det(\Sigma)}} = \frac{e^{-\frac{1}{2}Q(\mathbf{x}-\mu,\Sigma)}}{(2\pi)^{p/2}\sqrt{\det(\Sigma)}}$$

#### Multivariate Normal Facts

- $E[x] = \mu$  p parameters
- $V[x] = \Sigma$  p(p+1)/2 parameters, p variances, (p-1)/2 covariances
- $Q(\mathbf{X} \boldsymbol{\mu}, \boldsymbol{\Sigma}) \equiv (\mathbf{X} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{X} \boldsymbol{\mu})$ = trace( $\Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})$ )  $\sim \chi_{D}^{2}$

When  $p = 1 (N(\mu, \sigma^2))$ 

- $\mu = \mu$ ,  $\Sigma = \sigma^2$
- $(\mathbf{X} \mathbf{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{X} \mathbf{\mu}) = ((\mathbf{X} \mathbf{\mu})/\sigma)^2 = \chi_1^2$

## Shape of bivariate density



 $||f(x_1, x_2)|| ||\mu| = [1, 1]' \\ \sqrt{\sigma_{11}} = .3$  $\sqrt{\sigma_{22}} = .3$ ,  $\rho_{12} = -0.5$ Centered at  $\mu$ 



 $\mu = [1,1]'$   $\sqrt{\sigma_{11}} = .3$  $\sqrt{\sigma_{22}} = .3$ ,  $\rho_{12} = +0.5$ Centered at  $\mu$ 

- The mode (maximum) is at μ
- Every <u>contour</u> (level curve) is an ellipse centered at  $\mu$

## All contours (level curves) are ellipses centered at $\mu = [1,1]$ ' like these:





#### Standard Multivariate Normal

When z is  $N_{D}(0, I_{D})$ , its density is

$$f(\mathbf{z}) = \frac{e^{-\frac{1}{2}\mathbf{z}'\mathbf{z}}}{(2\pi)^{p/2}} = \frac{e^{-\frac{1}{2}\sum_{i=1}^{p}z_{i}^{2}}}{(2\pi)^{p/2}} = \frac{e^{-\frac{z_{1}^{2}}{2}}}{\sqrt{2\pi}} \frac{e^{-\frac{z_{2}^{2}}{2}}}{\sqrt{2\pi}} ... \frac{e^{-\frac{z_{p}^{2}}{2}}}{\sqrt{2\pi}},$$

That is

• 
$$\mu_1 = \mu_2 = \dots = \mu_n = 0$$

• 
$$\sigma_{11} = \sigma_{22} = \dots = \sigma_{DD} = 1$$

• 
$$\sigma_{ii} = 0$$
,  $i \neq j \Rightarrow \rho_{ii} = 0$ 

 The z<sub>i</sub>'s are <u>independent</u> N<sub>1</sub>(0, 1<sup>2</sup>) because

$$f(\mathbf{Z}) = f(Z_1) \times f(Z_2) \times \dots \times f(Z_p)$$

•  $Q(z - \mu_z, \Sigma_z) = (z - 0)' I_p^{-1} (z - 0) = \sum_{1 \le i \le p} z_i^2$  is distributed as  $\chi_p^2$  by a standard univariate result.

Statistics 5401

## Properties of Multivariate Normal

The following properties are basically mathematical theorems. They are important in part because they provide a basis assessing or testing multivariate normality. If a sample of data appears not to satisfy one of these properties, it is evidence the sample is not from a multivariate normal population.

- 1. All marginal distributions are normal.
- Each x<sub>i</sub>, ignoring other x's, is N<sub>1</sub>(μ<sub>i</sub>,σ<sub>ii</sub>)
- Any subset of variables, ignoring other x's, is *multivariate* normal.

**Application**: If a univariate sample consisting of the values of x, does not appear to come from a normal population, then the multivariate data is probably not multivariate normal.

Specifically, when  $\mathbf{x}' = [\mathbf{x}_1', \mathbf{x}_2']$ , where  $\mathbf{x}_1$ is a p, by 1 vector, x, is a p, by 1 vector than you can partition  $\Sigma$  and  $\mu$ :

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ & & \\ \Sigma_{21} = \Sigma_{12} & \Sigma_{22} \end{bmatrix}, \quad \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad P_1$$

$$P_1 = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad P_2 = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad$$

where

- $\mu_1$  is  $p_1 \times 1$  and  $\mu_2$  is  $p_2 \times 1$
- $\Sigma_{11}$  is  $p_1 \times p_1$  and  $\Sigma_{22}$  is  $p_2 \times p_2$
- $\Sigma_{12}$  is  $p_1 \times p_2$  and  $\Sigma_{21} = \Sigma_{12}$  is  $p_2 \times p_1$

This property states

$$\mathbf{X}_{1}$$
 is  $N_{p_{1}}(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11})$ ,  $\mathbf{X}_{2}$  is  $N_{p_{2}}(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{22})$ 

\_ 1 \_

September 19, 2005

- 2. All *conditional* distributions are normal.
- Distribution of  $p_2 \times 1$   $\mathbf{X}_2$  given  $p_1 \times 1$   $\mathbf{X}_1$  is  $N_{p_2}(\boldsymbol{\mu}_2 + \boldsymbol{\beta}_{2\cdot 1}'(\mathbf{X}_1 \boldsymbol{\mu}_1), \boldsymbol{\Sigma}_{22\cdot 1}),$

That is,  $E[\mathbf{x}_{2} | \mathbf{x}_{1}] = \mu_{2} + \beta_{2} \cdot \mathbf{1} \cdot (\mathbf{x}_{1} - \mu_{1}), \quad p_{2} \text{ by } 1$  $V[\mathbf{x}_{2} | \mathbf{x}_{1}] = \Sigma_{22} \cdot \mathbf{1}, \quad p_{2} \text{ by } p_{2}$ 

- This is a linear regression of X<sub>2</sub> on X<sub>1</sub>
   Application: if the dependence of one variable, say X<sub>1</sub>, on another, say X<sub>k</sub>, is not linear, then X is probably not multivariate normal.
- $\beta_{2\cdot 1} = \Sigma_{11}^{-1}\Sigma_{12}$ ,  $p_1 \times p_2$  is a matrix of population regression coefficients.

•  $V[\mathbf{x}_{2} | \mathbf{x}_{1}] = \mathbf{\Sigma}_{22 \cdot 1}$  does not depend on  $\mathbf{x}_{1}$ .

Lecture 6

• 
$$\Sigma_{22\cdot 1} \equiv \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12} = \Sigma_{22} - \beta_{2\cdot 1}'\Sigma_{11}\beta_{2\cdot 1}$$
  
=  $V[\mathbf{x}_2 - E[\mathbf{x}_2 | \mathbf{x}_1]]$   
=  $V[\mathbf{x}_2 - \mathbf{\mu}_2 - \beta_{2\cdot 1}'(\mathbf{x}_1 - \mathbf{\mu}_1)]$ 

That is,

Statistics 5401

$$\Sigma_{22\cdot 1} = \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}$$
  
is the variance matrix of the residuals =  $\mathbf{X}_2 - \mathrm{E}[\mathbf{X}_2 \mid \mathbf{X}_1]$ .

**Application**: If regression diagnostics in a linear regression of one variable on the others indicate non-constant variance, that indicates the data do not come from a multivariate normal population.

#### Bivariate case

When p = 2 and  $p_1 = p_2 = 1$ , these are

- $\beta_{2.1} = \sigma_{12}/\sigma_{11}$  (simple linear regression)
- $\sigma_{22.1} = \sigma_{22} \sigma_{12}^2 / \sigma_{11} = \sigma_{22} \beta_{2.1}^2 \sigma_{11}$ =  $(1 - \rho_{12}^2) \sigma_{22}$

3. Linear combinations are normal

- $\mathbf{a}'\mathbf{x} = \sum_{1 < i < p} a_i x_i \text{ is } N_1(\mathbf{a}'\mu, \mathbf{a}'\Sigma\mathbf{a})$
- A'x = [a<sub>1</sub>'x,...,a<sub>q</sub>'x]' is N<sub>q</sub>(A'μ, A'ΣA)
   when A = [a<sub>1</sub>,...,a<sub>q</sub>] is p by q whose columns define linear combinations.

**Example:** If  $\{d_i\}$ ,  $d_i = x_{i2} - x_{i1}$ , i = 1,...,n does not appear to be normal, then **x** is probably not multivariate normal.

4. The distribution of  $Q(\mathbf{x} - \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (\mathbf{x} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})$  is  $\chi_{_{D}}^{^{2}}$ .

Except for a factor of 1/2,  $Q(x-\mu, \Sigma)$  is the exponent in the density.

5. Zero covariance or correlation implies independence

Lecture 6

When  $\Sigma = \begin{bmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} \end{bmatrix}$ ,

that is,  $\Sigma_{12} = \text{Cov}[\mathbf{x}_1, \mathbf{x}_2] = 0$ , then  $\mathbf{x}_1$  and  $\mathbf{x}_2$  are *independent*.

In particular, when  $\sigma_{ij} = 0$ ,  $x_i$  and  $x_j$  are independent

Since  $\rho_{ij} = 0 \iff \sigma_{ij} = 0$ , uncorrelated  $x_i$  and  $x_i$  are independent.

#### Standardization

When Y is a *univariate* random variable, an important re-expression of Y is as a *standardized random variable* (**z-score**)

$$Z = (Y - \mu_{y})/\sigma_{y}$$

Z has mean 0 and standard deviation 1:

$$\mu_{z} = 0$$
,  $\sigma_{z} = 1$ 

### Example:

When  $Y = \underline{\text{test statistic}}$  or  $\underline{\text{estimator}}$  (e.g.  $\overline{x}$ ) with *hypothesized* mean  $\mu_{Y} = \mu_{D}$ , often 0, and *standard error*  $\sigma_{Y}$ .

Then Z =  $(Y - \mu_0)/\sigma_Y$  is a Z-statistic for testing  $H_0$ :  $\mu_Y = \mu_0$ 

You can often replace an  $\underline{\text{unknown}}$   $\sigma_{_{_{\! Y}}}$  by an estimator  $\hat{\sigma}_{_{_{\! Y}}}$  and standardize to get the test statistic

$$t = (Y - \mu_0)/\hat{\sigma}_Y$$

- When Y is (approximately)  $N(\mu_Y, \sigma_Y^2)$ , Z is (approximately)  $N(0,1^2)$  and  $Z^2 = (Y \mu_Y)^2/\sigma_Y^2$  or  $t^2 = (Y \mu_Y)^2/\hat{\sigma}_Y^2$  is (approximately)  $\chi_1^2$  ( $\chi^2$  on 1 d.f.).
- When Y is exactly  $N(\mu_{Y}, \sigma_{Y}^{2})$  and  $\hat{\sigma}_{Y}^{2}$  is an <u>independent</u> estimate of  $\sigma_{Y}^{2}$  such that  $\hat{\sigma}_{Y}^{2}/\sigma_{Y}^{2} = \chi_{f_{e}}^{2}/f_{e}$ , then t is distributed as  $t_{f_{e}} =$  **Student's** t on  $f_{e}$  degrees of freedom and

 $t^2 = (Y - \mu_Y)^2 / \hat{\sigma}_Y^2$  is distributed as  $F_{1,f_e}$ .

**Note**:  $E[\chi_f^2] = f$ , so  $E[\chi_f^2/f] = 1$ 

Notation: I consistently use the notation

 $f_{\rm e}$  = error degrees of freedom

Later I will use the notation

f<sub>h</sub> = hypothesis degrees of freedom

These notations are not used in the text.

### Familiar example

 $Y = \overline{X}$  and you are testing  $H_0$ :  $\mu = \mu_0$ .

Then  $\sigma_y = \sigma_{\overline{x}} = \sigma_x/\sqrt{n}$  and  $\hat{\sigma}_y = \hat{\sigma}_{\overline{x}} = s/\sqrt{n}$  and

$$Z = (\overline{X} - \mu_0)/(\sigma/\sqrt{n})$$
  
$$t = (\overline{X} - \mu_0)/(s/\sqrt{n})$$

When  $\overline{x}$  is computed from a random sample:

- In large samples,  $Z \sim N(0, 1^2)$  and  $Z^2 \sim \chi_1^2$
- When X is normal  $t \sim t_{n-1}$  and  $t^2 \sim F_{1,n-1}^2$

#### Multivariate standardization

A multivariate vector  $\mathbf{Z}$  is standardized when

- $\mu_7 = 0$
- $V[Z] = I_D = diag[1,1,...,1].$

When Y is an multivariate random vector, then for any pxp matrix  $A = [\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_p],$  $E[A'(Y - \mu_Y)] = A'E[Y - \mu_Y] = A'0 = 0.$ 

So it's easy to transform  $\mathbf{Y}$  to a form with mean  $\mathbf{0}$ .

(2,1)

It's harder to find a matrix A such that

$$Z = A'(Y - \mu_{\downarrow})$$

has variance matrix  $I_{\scriptscriptstyle D}$ .

However, when you have such an A,

$$Z = A'(Y - \mu_{Y})$$

is a standardized version of Y.

Or, if 
$$C = A^{-1}$$
,

$$Z = (C')^{-1}(Y - \mu_{Y})$$

is a standardized version of Y.

## Matrix Square Roots

Lecture 6

## Vocabulary:

Let **B** be a *positive semi-definite* p×p symmetric matrix. Then, when the p×p matrix **C** satisfies **C'C** = **B**, we say **C** is a *matrix square root* of **B**.

• C is not unique; you can choose C to be

symmetric, triangular





or none of these.

12

(1,1) 16 12 (2,1) 12 10

Statistics 5401 Lecture 6 September 19, 2005

## You can get still other square roots by swapping the rows:

```
Cmd> asym <- sym[vector(2,1),]; asym #not symmetric, triangular
(1,1)     2.058     2.401
(2,1)     3.43     2.058

Cmd> asym' %*% asym
(1,1)     16     12
(2,1)     12     10
```

#### Vocabulary

When C is upper triangular, C'C = B is the Cholesky Decomposition of B.

#### MacAnova

When b is a symmetric matrix,

```
Cmd> c <- cholesky(b)</pre>
```

computes the upper triangular square root of b.