Statistics 5401

Lecture 6

September 19, 2005

Displays for Statistics 5401/8401

Lecture 6

September 19, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall

Class Web Page

http://www.stat.umn.edu/~kb/classes/5401

© 2005 by Christopher Bingham

Multivariate population mean vector

Suppose $\mathbf{X} = [X_1, X_2, ..., X_p]'$ is a random vector $(X_1, ..., X_p]$ are p jointly distributed random variables).

The *population mean vector* (<u>true mean</u>, <u>expectation</u>) of X is

$$\mu_{x} = E[X] = [\mu_{1}, \mu_{2}, ..., \mu_{p}]',$$

 $\mu_{i} = E[X_{i}], j = 1,...,p$

 μ_{x} has the same dimensions as **X** (p × 1).

Note:

 $\overline{\mathbf{x}}$ is the vector of <u>univariate</u> sample means

 μ_{x} is the vector of the <u>univariate</u> population means.

The population mean or expectation of a $\frac{\text{random matrix}}{\text{random matrix}} Y = [y_{ij}]$ is the matrix

$$\mu_{Y} = [\mu_{y_{ij}}] = [E[y_{ij}]].$$

It can be useful to equate a n by p matrix, say $\mathbf{X} = [\mathbf{X}_1, \mathbf{X}_2, ..., \mathbf{X}_p]$, to the np by 1 vector

$$vec(X) \equiv \begin{bmatrix} X_1 \\ X_2 \\ ... \end{bmatrix}, np \times 1$$

Clearly

$$\mu_{\text{vec}(x)} = \text{vec}(\mu_x)$$

that is the matrix is "unravelled" or unrolled column by column. This is what vector(x) creates when x is a matrix.

Population variance matrix Vocabulary

The **population covariance** between X_j and X_k , $j \neq k$, is

Lecture 6

September 19, 2005

• $\sigma_{jk} \equiv E[(X_j - \mu_j)(X_k - \mu_k)].$

Properties

- $\sigma_{ik} = \sigma_{ki}$ (symmetry)
- o_{ik} > 0 ⇔ positive association
- o_{ik} < 0 ⇔ negative association

The *population variance* is

- $\sigma_{i}^{2} = \sigma_{ij} = E[(X_{i} \mu_{i})^{2}] \geq 0$
- $|\sigma_{jk}| \leq \sqrt{\{\sigma_{jj}\sigma_{kk}\}}, \sigma_{jk}^2 \leq \sigma_{jj}^2 \sigma_{kk}^2$
- $-1 \le \rho_{jk} \le 1$, $\rho_{jk} = \sigma_{jk} / \sqrt{\{\sigma_{jj}\sigma_{kk}\}}$ = $cov[X_j, X_k] / \{SD[X_j]SD[X_k]\}$, $SD[X_j] = \sqrt{\sigma_{jj}}$

 ρ_{jk} is the population (true) correlation between X_j and X_k .

Lecture 6 September 19, 2005

Statistics 5401

Lecture 6

September 19, 2005

The <u>population</u> covariance matrix or variance matrix of $X = [X_1, ..., X_p]$ is the pxp matrix

$$V[x] = \sum_{x} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} & \dots & \sigma_{1p} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} & \dots & \sigma_{2p} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} & \dots & \sigma_{3p} \\ \dots & \dots & \dots & \dots & \dots \\ \sigma_{1p} & \sigma_{2p} & \sigma_{3p} & \dots & \sigma_{pp} \end{bmatrix}$$

- Σ is symmetric ($\Sigma' = \Sigma$)
- The diagonal elements σ_{jj} of Σ are variances (σ_{j}^{2})
- The off-diagonal o_{jk}, j ≠ k are covariances.
- When $\mathbf{a} = [\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_p]'$ is constant so $\mathbf{a}'\mathbf{x}$ is a linear combination, with variance $V[\mathbf{a}'\mathbf{x}] = \mathbf{a}'\mathbf{\Sigma}\mathbf{a} \geq 0$. Hence $\mathbf{\Sigma}$ is positive semi-definite

I hope I don't need to say this:

It is important to distinguish these **population** variances and covariances from the **sample** variances and covariances

- $s_{jj} = \sum_{1 \le i \le n} (X_{ij} \overline{X}_j)^2 / (n-1)$ is not the same as σ_{jj}
- $s_{jk} = \sum_{1 \le i \le n} (X_{ij} \overline{X}_j)(X_{ik} \overline{X}_k)/(n-1)$ is not the same as σ_{ik}

and to distinguish the *population* variance matrix Σ from the *sample* variance matrix S.

You never test a null hypothesis about the value of $\overline{\mathbf{x}}$ or \mathbf{S} .

To state that a test statistic tests the null hypothesis H_0 : $\overline{x} = 0$ is nonsense. Probably what is meant is H_0 : $\mu = 0$.

Statistics 5401 Lecture 6 September 19, 2005 Statistics 5401 Lecture 6 September 19, 2005

Population correlation matrix

The population (Pearson) correlation between X_i and X_k is

$$\rho_{jk} \equiv \sigma_{jk} / \sqrt{(\sigma_{jj} \sigma_{kk})} = \rho_{kj} = \text{cov}[Z_j, Z_k].$$

Standardized X_j is $Z_j = (X_j - \mu_j) / \sqrt{\sigma_{jj}}$.

Note: $\rho_{jk} = 0 \iff \sigma_{jk} = 0$

The symmetric p by p matrix

$$\mathbf{R} = \begin{bmatrix} 1 & \rho_{12} & \rho_{13} & \dots & \rho_{1p} \\ \rho_{12} & 1 & \rho_{23} & \dots & \rho_{2p} \\ \rho_{13} & \rho_{23} & 1 & \dots & \rho_{3p} \\ \dots & \dots & \dots & \dots & \dots \\ \rho_{1p} & \rho_{2p} & \rho_{3p} & \dots & 1 \end{bmatrix} = \mathbf{D}^{-1} \mathbf{\Sigma} \mathbf{D}^{-1}$$

is the population correlation matrix

- D = diag[$\sqrt{\sigma_{11}}$, $\sqrt{\sigma_{22}}$,..., $\sqrt{\sigma_{DD}}$]
- $D^{-1} = diag[1/\sqrt{\sigma_{11}}, 1/\sqrt{\sigma_{22}}, ..., 1/\sqrt{\sigma_{pp}}].$

When Σ = diag[$\sigma_{11}, \sigma_{22}, ..., \sigma_{pp}$] is diagonal,

- $\rho_{ij} = 0$, $i \neq j$
- $R = I_p = diag[1, 1,..., 1].$

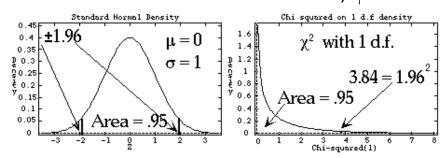
Univariate normal Distribution

X is $N(\mu, \sigma^2)$ means X is normal with mean μ and variance σ^2 . Its density is

$$f(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left[\frac{(x-\mu)^2}{\sigma^2}\right]} = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$
 where $z = (x-\mu)/\sigma$ (standardized x).

Facts:

- z is <u>standard normal</u> N(0,1²)
- $z^2 = \frac{(x-\mu)^2}{\sigma^2}$ is χ_1^2 (chi-squared, 1 DF) Densities of Z and χ_1^2



The total area under each curve is 1.

The area under the χ_1^2 curve to the left of 3.84 = 1.96² is

$$P(\chi_1^2 \le 3.84) = P(|z| \le 1.96) = .95$$

Multivariate normal distribution Notation

$$x = [x_1, x_2, ..., x_p]'$$
 is $N_p(μ, Σ)$,

- μ p×1 vector
 Σ p×p positive definite symmetric matrix.

Density of $N_{\scriptscriptstyle D}(\mu, \Sigma)$ random vector \mathbf{x} :

$$f(\mathbf{x}, \Sigma, \mu) = \frac{e^{-\frac{1}{2}\left[(\mathbf{x}-\mu)'\Sigma^{-1}(\mathbf{x}-\mu)\right]}}{(2\pi)^{p/2}\sqrt{\det(\Sigma)}} = \frac{e^{-\frac{1}{2}Q(\mathbf{x}-\mu,\Sigma)}}{(2\pi)^{p/2}\sqrt{\det(\Sigma)}}$$

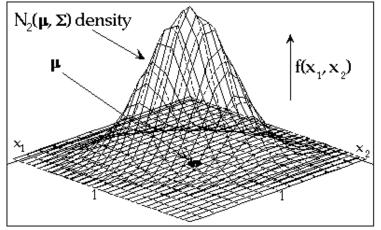
Multivariate Normal Facts

- $E[x] = \mu$ p parameters
- $V[x] = \Sigma$ p(p+1)/2 parameters, p variances, (p-1)/2 covariances
- $Q(\mathbf{X} \boldsymbol{\mu}, \boldsymbol{\Sigma}) \equiv (\mathbf{X} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{X} \boldsymbol{\mu})$ = trace($\Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})$) $\sim \chi_{D}^{2}$

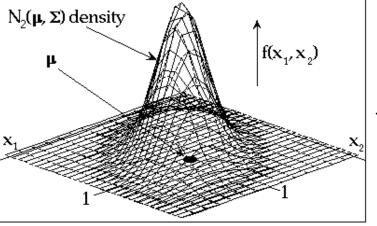
When $p = 1 (N(\mu, \sigma^2))$

- $\mu = \mu$, $\Sigma = \sigma^2$
- $(\mathbf{X} \mathbf{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{X} \mathbf{\mu}) = ((\mathbf{X} \mathbf{\mu})/\sigma)^2 = \chi_1^2$

Shape of bivariate density



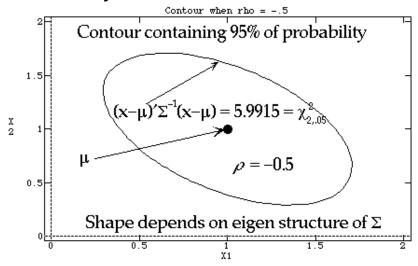
 $||f(x_1, x_2)|| ||\mu| = [1, 1]' \\ \sqrt{\sigma_{11}} = .3$ $\sqrt{\sigma_{22}} = .3$, $\rho_{12} = -0.5$ Centered at μ

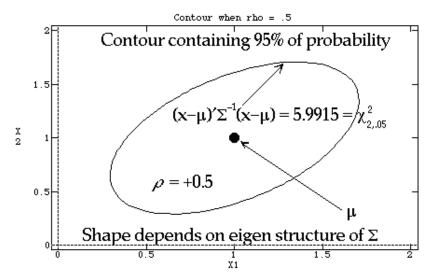


 $\mu = [1,1]'$ $\sqrt{\sigma_{11}} = .3$ $\sqrt{\sigma_{22}} = .3$, $\rho_{12} = +0.5$ Centered at μ

- The mode (maximum) is at μ
- Every <u>contour</u> (level curve) is an ellipse centered at μ

All contours (level curves) are ellipses centered at $\mu = [1,1]$ ' like these:





Standard Multivariate Normal

When z is $N_{D}(0, I_{D})$, its density is

$$f(\mathbf{z}) = \frac{e^{-\frac{1}{2}\mathbf{z}'\mathbf{z}}}{(2\pi)^{p/2}} = \frac{e^{-\frac{1}{2}\sum_{i=1}^{p}z_{i}^{2}}}{(2\pi)^{p/2}} = \frac{e^{-\frac{z_{1}^{2}}{2}}}{\sqrt{2\pi}} \frac{e^{-\frac{z_{2}^{2}}{2}}}{\sqrt{2\pi}} ... \frac{e^{-\frac{z_{p}^{2}}{2}}}{\sqrt{2\pi}},$$

That is

•
$$\mu_1 = \mu_2 = \dots = \mu_n = 0$$

•
$$\sigma_{11} = \sigma_{22} = \dots = \sigma_{DD} = 1$$

•
$$\sigma_{ii} = 0$$
, $i \neq j \Rightarrow \rho_{ii} = 0$

 The z_i's are <u>independent</u> N₁(0, 1²) because

$$f(\mathbf{Z}) = f(Z_1) \times f(Z_2) \times \dots \times f(Z_p)$$

• $Q(z - \mu_z, \Sigma_z) = (z - 0)' I_p^{-1} (z - 0) = \sum_{1 \le i \le p} z_i^2$ is distributed as χ_p^2 by a standard univariate result.

Statistics 5401

Properties of Multivariate Normal

The following properties are basically mathematical theorems. They are important in part because they provide a basis assessing or testing multivariate normality. If a sample of data appears not to satisfy one of these properties, it is evidence the sample is not from a multivariate normal population.

- 1. All marginal distributions are normal.
- Each x_i, ignoring other x's, is N₁(μ_i,σ_{ii})
- Any subset of variables, ignoring other x's, is *multivariate* normal.

Application: If a univariate sample consisting of the values of x, does not appear to come from a normal population, then the multivariate data is probably not multivariate normal.

Specifically, when $\mathbf{x}' = [\mathbf{x}_1', \mathbf{x}_2']$, where \mathbf{x}_1 is a p, by 1 vector, x, is a p, by 1 vector than you can partition Σ and μ :

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ & & \\ \Sigma_{21} = \Sigma_{12} & \Sigma_{22} \end{bmatrix}, \quad \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad P_1$$

$$P_1 = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad P_2 = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad$$

where

- μ_1 is $p_1 \times 1$ and μ_2 is $p_2 \times 1$
- Σ_{11} is $p_1 \times p_1$ and Σ_{22} is $p_2 \times p_2$
- Σ_{12} is $p_1 \times p_2$ and $\Sigma_{21} = \Sigma_{12}$ is $p_2 \times p_1$

This property states

$$\mathbf{X}_{1}$$
 is $N_{p_{1}}(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11})$, \mathbf{X}_{2} is $N_{p_{2}}(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{22})$

_ 1 _

September 19, 2005

- 2. All *conditional* distributions are normal.
- Distribution of $p_2 \times 1$ \mathbf{X}_2 given $p_1 \times 1$ \mathbf{X}_1 is $N_{p_2}(\boldsymbol{\mu}_2 + \boldsymbol{\beta}_{2\cdot 1}'(\mathbf{X}_1 \boldsymbol{\mu}_1), \boldsymbol{\Sigma}_{22\cdot 1}),$

That is, $E[\mathbf{x}_{2} | \mathbf{x}_{1}] = \mu_{2} + \beta_{2} \cdot \mathbf{1} \cdot (\mathbf{x}_{1} - \mu_{1}), \quad p_{2} \text{ by } 1$ $V[\mathbf{x}_{2} | \mathbf{x}_{1}] = \Sigma_{22} \cdot \mathbf{1}, \quad p_{2} \text{ by } p_{2}$

- This is a linear regression of X₂ on X₁
 Application: if the dependence of one variable, say X₁, on another, say X_k, is not linear, then X is probably not multivariate normal.
- $\beta_{2\cdot 1} = \Sigma_{11}^{-1}\Sigma_{12}$, $p_1 \times p_2$ is a matrix of population regression coefficients.

• $V[\mathbf{x}_{2} | \mathbf{x}_{1}] = \mathbf{\Sigma}_{22 \cdot 1}$ does not depend on \mathbf{x}_{1} .

Lecture 6

•
$$\Sigma_{22\cdot 1} \equiv \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12} = \Sigma_{22} - \beta_{2\cdot 1}'\Sigma_{11}\beta_{2\cdot 1}$$

= $V[\mathbf{x}_2 - E[\mathbf{x}_2 | \mathbf{x}_1]]$
= $V[\mathbf{x}_2 - \mathbf{\mu}_2 - \beta_{2\cdot 1}'(\mathbf{x}_1 - \mathbf{\mu}_1)]$

That is,

Statistics 5401

$$\Sigma_{22\cdot 1} = \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}$$

is the variance matrix of the residuals = $\mathbf{X}_2 - \mathrm{E}[\mathbf{X}_2 \mid \mathbf{X}_1]$.

Application: If regression diagnostics in a linear regression of one variable on the others indicate non-constant variance, that indicates the data do not come from a multivariate normal population.

Bivariate case

When p = 2 and $p_1 = p_2 = 1$, these are

- $\beta_{2.1} = \sigma_{12}/\sigma_{11}$ (simple linear regression)
- $\sigma_{22.1} = \sigma_{22} \sigma_{12}^2 / \sigma_{11} = \sigma_{22} \beta_{2.1}^2 \sigma_{11}$ = $(1 - \rho_{12}^2) \sigma_{22}$

3. Linear combinations are normal

- $\mathbf{a}'\mathbf{x} = \sum_{1 < i < p} a_i x_i \text{ is } N_1(\mathbf{a}'\mu, \mathbf{a}'\Sigma\mathbf{a})$
- A'x = [a₁'x,...,a_q'x]' is N_q(A'μ, A'ΣA)
 when A = [a₁,...,a_q] is p by q whose columns define linear combinations.

Example: If $\{d_i\}$, $d_i = x_{i2} - x_{i1}$, i = 1,...,n does not appear to be normal, then **x** is probably not multivariate normal.

4. The distribution of $Q(\mathbf{x} - \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (\mathbf{x} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})$ is $\chi_{_{D}}^{^{2}}$.

Except for a factor of 1/2, $Q(x-\mu, \Sigma)$ is the exponent in the density.

5. Zero covariance or correlation implies independence

Lecture 6

When $\Sigma = \begin{bmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} \end{bmatrix}$,

that is, $\Sigma_{12} = \text{Cov}[\mathbf{x}_1, \mathbf{x}_2] = 0$, then \mathbf{x}_1 and \mathbf{x}_2 are *independent*.

In particular, when $\sigma_{ij} = 0$, x_i and x_j are independent

Since $\rho_{ij} = 0 \iff \sigma_{ij} = 0$, uncorrelated x_i and x_i are independent.

Standardization

When Y is a *univariate* random variable, an important re-expression of Y is as a *standardized random variable* (**z-score**)

$$Z = (Y - \mu_{y})/\sigma_{y}$$

Z has mean 0 and standard deviation 1:

$$\mu_{z} = 0$$
, $\sigma_{z} = 1$

Example:

When $Y = \underline{\text{test statistic}}$ or $\underline{\text{estimator}}$ (e.g. \overline{x}) with *hypothesized* mean $\mu_{Y} = \mu_{D}$, often 0, and *standard error* σ_{Y} .

Then Z = $(Y - \mu_0)/\sigma_Y$ is a Z-statistic for testing H_0 : $\mu_Y = \mu_0$

You can often replace an $\underline{\text{unknown}}$ $\sigma_{_{_{\! Y}}}$ by an estimator $\hat{\sigma}_{_{_{\! Y}}}$ and standardize to get the test statistic

$$t = (Y - \mu_0)/\hat{\sigma}_Y$$

- When Y is (approximately) $N(\mu_Y, \sigma_Y^2)$, Z is (approximately) $N(0,1^2)$ and $Z^2 = (Y \mu_Y)^2/\sigma_Y^2$ or $t^2 = (Y \mu_Y)^2/\hat{\sigma}_Y^2$ is (approximately) χ_1^2 (χ^2 on 1 d.f.).
- When Y is exactly $N(\mu_{Y}, \sigma_{Y}^{2})$ and $\hat{\sigma}_{Y}^{2}$ is an <u>independent</u> estimate of σ_{Y}^{2} such that $\hat{\sigma}_{Y}^{2}/\sigma_{Y}^{2} = \chi_{f_{e}}^{2}/f_{e}$, then t is distributed as $t_{f_{e}} =$ **Student's** t on f_{e} degrees of freedom and

 $t^2 = (Y - \mu_Y)^2 / \hat{\sigma}_Y^2$ is distributed as F_{1,f_e} .

Note: $E[\chi_f^2] = f$, so $E[\chi_f^2/f] = 1$

Notation: I consistently use the notation

 $f_{\rm e}$ = error degrees of freedom

Later I will use the notation

f_h = hypothesis degrees of freedom

These notations are not used in the text.

Familiar example

 $Y = \overline{X}$ and you are testing H_0 : $\mu = \mu_0$.

Then $\sigma_y = \sigma_{\overline{x}} = \sigma_x/\sqrt{n}$ and $\hat{\sigma}_y = \hat{\sigma}_{\overline{x}} = s/\sqrt{n}$ and

$$Z = (\overline{X} - \mu_0)/(\sigma/\sqrt{n})$$

$$t = (\overline{X} - \mu_0)/(s/\sqrt{n})$$

When \overline{x} is computed from a random sample:

- In large samples, $Z \sim N(0, 1^2)$ and $Z^2 \sim \chi_1^2$
- When X is normal $t \sim t_{n-1}$ and $t^2 \sim F_{1,n-1}^2$

Multivariate standardization

A multivariate vector \mathbf{Z} is standardized when

- $\mu_7 = 0$
- $V[Z] = I_D = diag[1,1,...,1].$

When Y is an multivariate random vector, then for any pxp matrix $A = [\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_p],$ $E[A'(Y - \mu_Y)] = A'E[Y - \mu_Y] = A'0 = 0.$

So it's easy to transform \mathbf{Y} to a form with mean $\mathbf{0}$.

(2,1)

It's harder to find a matrix A such that

$$Z = A'(Y - \mu_{\downarrow})$$

has variance matrix $I_{\scriptscriptstyle D}$.

However, when you have such an A,

$$Z = A'(Y - \mu_{Y})$$

is a standardized version of Y.

Or, if
$$C = A^{-1}$$
,

$$Z = (C')^{-1}(Y - \mu_{Y})$$

is a standardized version of Y.

Matrix Square Roots

Lecture 6

Vocabulary:

Let **B** be a *positive semi-definite* p×p symmetric matrix. Then, when the p×p matrix **C** satisfies **C'C** = **B**, we say **C** is a *matrix square root* of **B**.

• C is not unique; you can choose C to be

symmetric, triangular

or none of these.

12

(1,1) 16 12 (2,1) 12 10

Statistics 5401 Lecture 6 September 19, 2005

You can get still other square roots by swapping the rows:

```
Cmd> asym <- sym[vector(2,1),]; asym #not symmetric, triangular
(1,1)     2.058     2.401
(2,1)     3.43     2.058

Cmd> asym' %*% asym
(1,1)     16     12
(2,1)     12     10
```

Vocabulary

When C is upper triangular, C'C = B is the Cholesky Decomposition of B.

MacAnova

When b is a symmetric matrix,

```
Cmd> c <- cholesky(b)</pre>
```

computes the upper triangular square root of b.