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Statistics 5401 Lecture 6 September 19, 2005

Multivariate population mean vector
Suppose X = [X,, X,, ... X]" is a random
vector (X, ..., X are p jointly distributed
random variables).

The population mean vector (true mean,
expectation) of X is

W= EIXT = [, 1],
po=EIXL j=1,...p

M, has the same dimensions as X (p x 1).

Note:

X 1s the vector of univariate sample
means

M, 1s the vector of the univariate
population means.
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The population mean or expectation of a
random matrix Y = [y ] is the matrix

p,o=lp 1= [EQY T

[t can be useful to equate a n by p
matrix, say X = [X,, X,, ..., X ], to the
np by 1 vector

vec(X) = | X , Np x 1

Clearly
J'lvec(X) - VeC(J'lx)
that is the matrix is “unravelled” or

unrolled column by column. This is what
vect or (x) creates when x is a matrix.
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Population variance matrix
Vocabulary
The population covariance between X

and X, ] z Kk, is

¢ o, = EIX-p)(X,-p)].
Properties

e 6, =0, (symmetry)

e 0, >0 < positive association
* 0, <0 < negative association

The population variance is

© 0/ =0, = El(X-p)I>0
* |6jk| < \/{OjjOkk}’ S, < Ojj26kk2

ko=

¢« -1<p,<1,p,=0,/+/{c o}
= cov[X X J/{SDIX ISDI[X,}}, SDIX ] = /o,

) )
p, is the population (true) correlation
between X, and X,.
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The population covariance matrix or
variance matrix of X = [X,,....X I is the
pxp matrix

OH 012 013 p

012 022 023 ° T O2p
VIXI=>»=>» =|0,0,0, ... c,,

OH’ <j2D <j3D ODD -

> is symmetric (£’ = ¥)

e The diagonal elements ¢, of £ are
variances (G )

e The off-diagonal ¢, ] =z k are
covariances.

e When a = [a a,...,a] is constant so a’'x
1s a linear combination, with variance
V[a’'x] = a'£a > 0. Hence £ is positive
semi-definite
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[ hope I don’'t need to say this:

[t 1s important to distinguish these
population variances and covariances
from the sample variances and
covariances

e s =3, (X -X)/(n-1) is not the

j] i
Same as Ojj

e s, =¥ (X, - X)X, - X)/(n-1) is not

1 ]
the same as G,

and to distinguish the population
variance matrix £ from the sample
variance matrix S.

You never test a null hypothesis about
the value of x or S.

To state that a test_statistic tests the
null hypothesis H: x = 0 is nonsense.

Probably what is meant is H: 4 = 0.
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Population correlation matrix
The population (Pearson) correlation

between X, and X, Is
p,=0,/y/(c o) =0p, =covZ,z].

Standardized X is Z = (X -p)//o .

Note: p, =0 =, =0

The symmetric p by p matrix

01 P P - P, 0
b, 1 py ... p,U

R = %13 Py 1 : p3pg: D":D™
Py Py Py - 10

1s the population correlation matrix

e D diagly/c,,./0,,.....a/ 0, ]
« D' =diagll/\/o,.1//0,,...1//c ]

When £ = diaglo,,.0,,.....,0, ] is diagonal,
o pij = O, 1 z J
e R=1 =diagll, 1,..., 1],
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Univariate normal Distribution

X is N(u,0?%) means X is normal with
mean W and variance o®. Its density is

_lgx—u)ZE ;2
foou,0)=——e B = 1
" N 2TIO o~21

where z = (x-u)/c (standardized x).
Facts:
e 7 is standard normal N(O,17)

N2
(xazﬂ) is X.” (chi-squared, 1 DF)

Densities of Z and X/°

Standard Hormml Density
T T T T T

022:

Chi squared on 1 4.f density
T T T T T T T

+ with 1 df.
384=196]

: Ama=T;//

3 4 g ] 7 [
Chi-squaredi 1]

The total area under each curve is 1.

0. 45T
0.4+

0351
En.s-
Dozl
tozf
*oasl
0.1l
a.os|
0

0 1 2

The area under the
of 3.84 = 1.96° is
P(X.? < 3.84) = P(|z]|

8

X.,? curve to the left

< 1.96) = .95
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Multivariate normal distribution
Notation

X =[x, %,, ..., xI"is N ({, ),

e U px] vector

e ¥ pxp positive definite symmetric
matrix.

Density of N (M, £) random vector x:
- loeny = x-p) e—;@x—u,a

_— e =
f(X,Z,IJ)— (27_[);7/2\/@(2) _(27'[);7/2{?(2)

Multivariate Normal Facts
P parameters
p(p+1)/2 parameters, p var-
iances, (p-1)/2 covariances
e QX - WZ)=(x - W)E(x - M)

= trace(Z7'(x - p)(x - W)') ~ X7

When p = 1 (N(, ¢?))
° J_l = }J, > = 62
o (X - W)E(Xx - M) =
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Shape of bivariate density

Centered

at M

e The mode (maximum) is at M
e Every contour (level curve) is an
ellipse centered at

10
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All contours (level curves) are ellipses
centered at p = [1,1]" like these:

Contour when rho = -5

' Contour CDl’ltail’lil’lgl 95% of prol:ltability i
1.5H / -
- (x—Y = (x-p) = 5.9915 =
2 B . —
P
0.5H —
Shape depends on eigen structure of =
" 0's ! s 2
i1
Contour when rho = .3
il Contour containing 95% of probability
1.5H —
IS -
0.5 -
. Shape depends on eigen structure of =

1 I
[1] 0.5 1 1.5 2
i1

11
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Standard Multivariate Normal

When z is N (O, 1)), its density is

f(Z) _ e . _ e . _ e e ...e 1
emf?  enf? an2n \2m
That 1s
0}11:“2:,,_:}1p:0
© 0,=0,=..=0_=1

e 0, =0,12z]2p, =0
e The z's are independent N (O, 17)
because
f(z) = f(z)xf(z,)x ... xf(z))
e Q(z-p.2)=(z-0)1"(z-0)=
2 a2 Is distributed as X ° by a
standard univariate result.

12
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Properties of Multivariate Normal

The following properties are basically
mathematical theorems. They are
important in part because they provide a
basis assessing or testing multivariate
normality. If a sample of data appears
not to satisfy one of these properties, it
s evidence the sample is not from a
multivariate normal population.

1. All marginal distributions are normal.
e fach x, ignoring other x's, is N (j.,0 )

e Any subset of variables, ignoring

other x's, 1s multivariate normal.
Application: If a univariate sample
consisting of the values of x, does not
appear to come from a normal population,
then the multivariate data is probably not
multivariate normal.

13
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Specifically, when X' =[x, X,'], where X

1s ap, by 1 vector, x, is a p, by 1 vector
than you can partition £ and U:

|— ZH Z:12 -| |— }11-| p1
“Loa s 7L
z:21:212‘ Z:22 JJ'2 I:)2
p] p2
where

e M ispx1and W, is p,xT
e X Ispxp and & is p,xp,
e ¥ Ispxp,and £ =X ' 1S p,xp,
This property states
X, is N (p, ), %, is N (J,, Z,)

14
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2. All conditional distributions are
normal.

e Distribution of p,x1 x, given p.x1 X, 1s

1

Np2(JJ2 * 52-1,()(1 B }11)’ Z:22-1)’
That 1s,
E[X2 | X1] - }12+B2_]'(X]—j.11), P, by 1
V[X2 | X1] - z:22-1' P, by P,

e This is a linear regression of X, on X

Application: if the dependence of one
variable, say x, on another, say Xx,, 1s
not linear, then X is probably not
multivariate normal.

e B, =X 7%, p, xp,isamatrix of
population regression coefficients.

15
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e VIx,|x]1=g . does not depend on X..
* Z = Z22 - 221211_1212 - 222 - 32'1'21152'1

221
= VIx, - Elx, |x,]]
- V[x2 - JJ‘2 - 52-1'()(1_}'11)]
That is,
Z22'1 = Z22 - Z21211_1212
1s the variance matrix of the
residuals = x, - Ex,|x.].
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Application: [f regression diagnostics in
a linear regression of one variable on the
others indicate non-constant variance,
that indicates the data do not come from
a multivariate normal population.

Bivariate case
When p = 2 and p, = p, = 1, these are
e B, =0_/0 (simple linear regression)
e 5, =0,-07°0.=0,_-8 °C.
= (1 -p,0,

16
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3. Linear combinations are normal
e a'x =) _ax isN(a'y, a'za)

11 1
e A'x = [a/’x,....a’'x]"is N(A'"H, A'ZA)
when A =[a ,....a ] is p by g whose
columns define linear combinations.
Example: If {d}, d =x,-x,,1=71,..n
does not appear to be normal, then X 1s
probably not multivariate normal.

4. The distribution of
Q(X-M, E) = (x - P)'E(X-M)
is X"
Except for a factor of 1/2, Q(x-M, £) is
the exponent in the density.

17
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S. Zero covariance or correlation implies
Independence

x 0
when 2 = ,
22

0 z
that is, £ = Covlx,, x,] = O, then x, and
X, are independent.

In particular, when ¢, = O, X, and X, are
Independent

Since p, = 0 & o, = 0, uncorrelated x,
and x, are independent.

18
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Standardization

when Y 1s a univariate random variable,

an important re-expression of Y i1s as a

standardized random variable (z-score)
z=(Y-pJl/o,

Z has mean O and standard deviation 1:
M, =0,0, =1

Example:

When Y = test statistic or estimator

(e.g. x) with hypothesized mean J, =
M,. often O, and standard error o..

Then Z = (Y - ju)/c, is a Z-statistic
for testing H: u, = J,

You can often replace an unknown <,

by an estimator G, and standardize to

get the test statistic
t = (Y- p)o,

19
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When Y is (approximately) N(u,, c.?),
Z is (approximately) N(0,1%) and

22 = (Y - p /o 2or t?= (Y - pu)/o/’
is (approximately) X2 (X* on 1 d.f.).
When Y is exactly N(u,,5.%) and G is
an independent estimate of ¢ * such
that 6,7/c,” = X, */1,, then t is distri-
buted as t, = Student’s t on f_ deg-
rees of freedom and

t* = (Y - p)?/c, is distributed as F .

Note: E[X ] = f, so E[X/f] = 1
Notation: | consistently use the notation

f = error degrees of freedom

Later I will use the notation

f = hypothesis degrees of freedom

These notations are not used in the text.

20
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Familiar example
Y = X and you are testing H: g = U..

Then ¢, = 6. = ¢,/y/nand G, = G, = s/4/n
and

Z = (X - p)/(c//n)

t = X—po (s/+4/n)

When x is computed from a random
sample:

e In large samples, Z ~ N(0, 1%) and Z° ~
X,

e When X isnormal t ~t and t* ~F °

1.n-1

21
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Multivariate standardization
A multivariate vector Z is standardized
when
) JJZ = O

o VI[Z] = T 1L

When Y 1s an multivariate random vector,
then for any pxp matrix A = [a .a,, ....a],

ELA(Y - p)] = AELY - p]= A0 = 0.

So it's easy to transform Y to a form
with mean O.

| = diag[1

22



Statistics 5401 Lecture 6 September 19, 2005 Statistics 5401 Lecture 6 September 19, 2005

[t’'s harder to find a matrix A such that Matrix Square Roots
Z = A(Y - ) Vocabulary:

Y Let B be a positive semi-definite pxp
symmetric matrix. Then, when the
pxp matrix C satisfies C'C = B, we say
C is a matrix square root of B.

has variance matrix lp.

However, when you have such an A,

Z = A(Y - }lY) . .
is a standardized version of Y e C 1s not unique; you can choose C to be
Oor if C = A" symmetric, triangular |iii:, | Or
Z =(C)(Y - p) or none of these.
. . . Ord> b # previously entered matrix
1s a standardized version of Y. (1,1) 16 12
(2,1) 12 10
Ond> upper <- cholesky(b); upper # Upper triangular
(1,1) 4 3
(2,1) 0 1
Ord> upper' %*% upper # Check: upper' upper = b
(1,1) 16 12
(2,1) 12 10

Qrd> matsqrt(b) # does same as cholesky()
1,1 4 3

(2,1) 0 1

Qrd> lower <- matsqrt(b,lower:T); lower # lower triangular sqrt

(1,1 1. 2649 0 4/ sqrt (10) 0
(2,1) 3.7947 3.1623 12/ sqrt (10) 10/ sqrt (10)
Qrd> lower' %*% lower # Check: lower' lower = b

(1,1) 16 12

(2,1) 12 10

23 24
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Qrd> sym <- matsqrt(b,symmetric:T); sym #symmetric sqrt
2.058

(1,1) 3.43

(2,1) 2. 058 2.401

Qrd> sym' %*% sym # or sym %*% sym because sym is symmetric
(1,1) 16 12

(2,1) 12 10

You can get still other square roots by
swapping the rows:

COrd> asym <- sym[vector(2,1),]; asym #not symmetric, triangular

(1,1) 2. 058 2.401

(2,1) 3.43 2. 058

Ord> asym' %*% asym

(1,1) 16 12

(2,1) 12 10
Vocabulary

When C is upper triangular, C'C =
B is the Cholesky Decomposition of B.

MacAnova
When b 1s a symmetric matrix,

Ond> ¢ <- cholesky(b)

computes the upper triangular square root
of b.

25



