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MacAnova:
o> x
(1,1) 2.4 22.9 44
(2,1) 12.3 15.7 32.7
(3,1) 10.6 15.7 35.2
(4,1 15.1 17.2 33.5
(5,1) 1.3 22.5 26.7

QOrd> n <- nrows(x)

Ond> xbar <- sum(x)/n # row vector, 1 by 3

Ond> xtilde <- x - xbar # deviations from mean, 5 by 3
Ond> # or xtilde <- x - rep(1/n,n)" %*% X

Cmd> df <-n-1# "degrees of freedom"

Ond> s <- (xtilde' %*% xtilde)/df; s # sample variance matrix

(1,1) 48. 337 -22.53 1. 562

(2,1) -22.53 13. 07 3.775

(3,1) 1.562 3.775 38. 947
Black box computation of S and X using
tabs():

Cmd> tabs(x,covar:T)

(1,1) 48.337 -22.53 1. 562

(2,1) -22.53 13. 07 3.775 S

(3,1) 1.562 3.775 38. 947

Ond> tabs(x,mean:T) # returns plain vector

(1) 7.82 18.8 34. 42 Not row vector

Cmd> stats <- covar(x)
conmponent: n

;  stats # use pre-defined macro
sanpl e size

(1) 5

conponent : nean

(1,1) 7.82 18.8 34.42 xbar, row vec.
conponent : covari ance

(1,1) 48. 337 -22.53 1.562

(2,1) -22.53 13. 07 3.775 S
(3,1) 1.562 3.775 38. 947

Ond> stats$covariance # extract S from structure stats

(1,1) 48. 337 -22.53 1.562

(2,1) -22.53 13. 07 3. 775

(3,1) 1. 562 3.775 38. 947
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More on sample variance matrix
$=85 =I[s,]=(n-1)'XX
=(n-1)" 2 XX/’

where X = [X,.X,....X ], X = X, - X is the
matrix of deviations from the sample
meam X.

e Diagonal elements:

Sjj = (n—])*Z (Xij
the usual sample variance.

/s, = sample standard deviation

-2 2
—xj) =s/,

1<i<n

e Off-diagonal elements:
S, = (N=-1)7"% (x, = X)x, - X), ] zKk
= sample covariance of x and X,

o S is symmetric (S' = S,) since

Sjk = Z15i§n(xij - Xj)(xik - ﬁ)

Z]jiin(xik - Xk)(x” - X)) = Sjk

1] J

1<i<n

2

A matrix of Linear Combinations
Suppose X 1s a n by p data matrix and
A=-la.,..alisapbygmatrix of
constants, a = [a , a ,a l'. For

2)7 "t T

example, you might have

Lecture 5 September 16, 2005

1 1 1
A= |1 -1 1
1 o -2

Q. What is the n x @ matrix
Y =[Y, Y, ... Y]=XA=I[Xa, Xa,.. Xa]?

A. Each column Y, = Xa, is a linear com-
bination ., ,_a, X, of the columns of

1<@<p "]
X (e.g. Y, = X+X+X,, Y,=X-X,, ...)
Each element y, = a'x = 2 . a, X, Is a

linear combinations of the x-values for
case 1.

Y is a new data matrix derived from the
original data matrix X.
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Sample mean and variance matrix of Y
e The sample meany = 3 y/nof Y is

y=AX (@ x 1) column vector
or, as a row vector,

y = XA (1 x q)

y, = a'x (univariate mean)

e The variance matrix S, of Y is

S,=ASA-=-[a'Sal.. .. (qxq).
Diagonal elements are

_ 2 _ ) _ 2 _ ,
Sy =8, =8/'S,a, ....5,=5"=2a'Sa

q

This applies when the columns of A
define the linear combinations.

Comment: You will find it useful to be

able to recognize an expression like a'S,a

as representing the sample variance of a
linear combination a'X.
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Eigenvalues and Eigenvectors
Let A = [a”] be a p by p square matrix.

Vocabulary Suppose u z 0 is a p by 1
vector that satisfies

Au = \u for some constant .

Then u is an eigenvector of A with
corresponding eigenvalue X\ (also called
proper or characteristic value and
vector).

Ond> a# note ais symmetric 2 by 2
(1,1) 2.9412 0. 23529
(2,1) 0. 23529 2.0588

Enter vectors u, and u,
Ond> ul <- vector(4, 1); u2 <- vector(-1, 4)
Cmd> a %*% ul # a %*% ul = 3*ul

(1,1) 12 Ei genvalue = 3
(2,1) 3

Omd> a %*% u2 # a %*% u2 = 2*u2

(1,1) -2 Ei genvalue = 2
(2,1) 8

Au = 3xu, and Au, = 2xu,
SO
e U is an eigenvector with eigenvalue 3

1

e U, is an eigenvector with eigenvalue 2

September 16, 2005

September 16, 2005
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MacAnova Example

September 16, 2005

Ond> x # previously entered data matrix
, 2.4

>
(1,1) 22.9 44
(2,1) 12.3 15.7 32.7
(3.1) 10. 6 15.7 35.2
(4, 1) 15.1 17.2 33.5
(5, 1) -1.3 22.5 26.7

Ond> a <- matrix(vector(1,1,1,1,-1,0,1,1,-2),3)
Ond> a # matrix of linear combination coefficients
1 1

(1, 1
(2,1) 1 -1 1
(3,1) 1 0 -2
Ond> y <- X %*% a; y # data matrix of linear combinations
(1,1) 69. -20.5 -62.7
(2,1) 60. 7 -3.4 -37.4
(3,1) 61.5 5.1 -44.1
(4,1) 65.8 2.1 -34.7
(5,1) 47.9 23.8 -32.2

Ond> s_x <-tabs(x1, covar:T) # S_x
Ond> s_y <-tabs(y, covar:T); s_y#S_y

(1,1) 65. 968 33. 054 - 66. 884
(2 1) 33. 054 106. 47 39. 693
(3,1) - 66.884 39. 693 150. 79
Q> a' %*% s_x %*% a
(1,1) 65. 968 33. 054 - 66.884
(2,1) 33. 054 106. 47 39. 693
(3,1) 66. 884 39. 693 150. 79
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When u is an eigenvector with eigenvalue
X, SO is u/c where c is a constant

Proof: A(u/c) = Au/c = xu/c = X(u/c).

In particular u = u/1ull is an eigenvector

such that nun = 1.
Ond> u<- hconcat(ul u2); sum(u”2) # uis 2 by 2

(1,1) 17 squared norms of ul and u2
This shows ltu Il = nuil = /17

Ond> u/sqrt(17) # columns are eigenvectors

(1,1) 0. 97014 -0.24254

(2,1) 0. 24254 0.97014
MacAnova:

e eigenval s() finds eigenvalues
e eigen() finds both eigenvalues and
eigenvectors

Cmd> eigenvals(a) # just eigenvalues

(1) 3 2 In decreasing order
Ond> eigs <- eigen(a); eigs

conponent : val ues

(1) 3 2

conponent: vectors

(1,1) -0.97014 0.24254 Normelized colums
(2,1) -0. 24254 -0.97014 nornms of colums are 1
Ond> eigs$vectors # or eigs[2] #extract just vectors

(1,1) -0.97014 0. 24254

(2,1) -0. 24254 -0.97014

Note that signs are reversed from
u/ sqrt(17). This doesn’'t matter.
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Facts concerning eigenthings
When A is pxp symmetric, there are
e Exactly p linearly independent eigen-

vectors u, u,,..., u with real elements

e with corresponding real eigenvalues
A >N, > X, >...> . The decreasing
ordering is conventional.

When A is non-symmetric, eigenvectors
and/or eigenvalues may be complex,
requiring imaginary numbers

For example, you can check

O 1 T +1 T+ 1
MR
-1 0 T -1 T -1

T+
SO U=

T -1
0O 1

] s an eigenvector of

A -

}eigenvalue X = -i=-/(-1)
-1 0
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Vocabulary: x'Ax is an example of a
quadratic form.

Expanded in full a quadratic form is
X'Ax = xX'(Ax) =3 . x (2, ,a,X)
Z1<J<Pallxlxl

+ 22, A XX,
2ZZKJaUx1xJ
The last step is OK because A is

symmetric so a; = a,,.

<p
X
i
X ?
111

When p = 2,
) _ 2 2
X AX - a11x1 * a22x2 * a12x1x2+ a21X2X1
_ 2 2
= E]HX1 + a22x + a X X + a12x2x1
_ 2
- a11x1 * a22x * 2a12x1x2
When p = 3,
X'AX = a x>+ a, X’ +a.xX’
za12X1X2+ 2813X1X3 + 2823X2X3
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Fact: If X =z O, for all elgenvalues A, of
A, then A is non- singular, i.e., A™ exists.

Vocabulary

A symmetric matrix A is
positive definite if
X'Ax > 0O for every x z 0
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A symmetric matrix A is
positive semi-definite if
X'Ax > 0O for every x z 0

e Fact: A symmetric matrix is positive
definite if and only if X\, >0, 1=1,...,p

e Fact: A positive definite symmetric
matrix is always invertible since all
eigenvalues z O.

e A symmetric matrix is positive semi-
definite if and only if X\, >0, 1=1,...,p

Let A = diagla,,, a,,. ...,

Then
e \.'s are the a's in decreasing order

a,,] be diagonal.

10
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Suppose S, is a pxp sample variance
matrix and suppose y = a’'x is an arbitrary
linear combination with a =z O.

Recall that a'Sa = s> 0. This shows
that

S, is positive semi-definite

Now suppose S is not positive definite.

Then there is at least one a z 0, with
a'S.a = 0. In other words,

=0, where y =

a'x =2 ax

Y
Also, when S is not positive definite

there is at least one O eigenvalue and any
a with a'Sa = 0 is an eigenvector with O
eigenvalue.

12
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Q. When can sj = 0 can happen?

A. Only when
y, =y, =..=Yy =constant c

Now gi - Z1siipajxij'
This means that for any j with a, z 0, the
value for the j™ x variable is determined
by the other variables:
x,=c-(ara), - (a,/a)x, - ..

- (a_7a)x, ., -(a, /73)x .- (a,7a)x,
SO X, is not really needed.
Vocabulary: In such a case, X, X,, ... X,
are collinear, there is an exact linear

relationship between them.

el p

When the the smallest eigenvalue X of §
is small relative to the largest X\ , that
is, X)/X, = 0, X, X,, ..., X are nearly
collinear.
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Similarly, when you want to minimize
v'Av over all choices for v such that 1vi?
= 1, the solution is v = u, the last

eigenvector with the smallest eigenvalue.

The minimized value is
A, = U’'Au = minimum eigenvalue.
Thus

min

nvi=1

V'AV = U 'Au = X
p P P

Now, for any w, W AW/IIWII® = V'Av,
where v = W/IIWIl has vl = 1.

These two results imply that
X, > WAW/IWI® > X, for all w z 0.

Or, multiplying by nwi?,

X JIWIE > WAW > X Iwi, for all w.
This are bounds on the values of the
quadratic form (recall X, = X X\ =X ).

min

15
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Properties of eigenvectors and
eigenvalues

Let A be pxp symmetric.

Suppose we want to maximize (find the
largest possible value of) the quadratic
form

VAV = Ziaiivi2 * 2ZZi<jaiJViVJ

over all choices for px1 vector v such
that

v = > v? =1 ("unit” vector)
Solution: v = u, the normalized first
eigenvector.
The maximized value is u 'Au, = u '(\u,)
= \,U,'u, = Ay li’= X\, the largest
eigenvalue.
Thus

max

nvi=1

V'AV = uAu, = X

14
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For p = 2, every unit vectors has the form
Ccos 8
u-= for some 0 < 8 < 2Tt
+sin 6
Here I computed and graphed u'Au for

equally spaced values of 6
Ond> theta <- 2*PI*run(0,250)/250 #equally spaced radian angles

Ond> gformvals <- 0 * theta # create empty vector

Ond> for(j,1,length(theta)){
@u <- vector(cos(thetali]), sin(thetali]))
gformvals[i] <- @u' %*% a %*% @u
11} # compute quadratic form for each angle
Cmd> lineplot(theta,gformvals,xlab: " Theta",\
title:"Value of quadratic form vs theta of normalized vector",\
ylab:"Quadratic form",ymin:0,ymax:3.5,show:F)
Cmd> addlines(vector(0,2*P1,?,0,2*PI),\
vector(2,2,?,3,3),linetype:2)#add lines aty =2 and 3

Talue of gquadratic form vs theta of normalized vector
T T

%51 Maxirum value of u' An \

S -

5zt

: L e

© 150

i

o s

H All values of the quadratic form
0= are between ;=3 and1,=2

1 z ] E? 5 £
Theta
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I gave an example of a nonsymmetric
matrix whose eigenvectors and eigen-
values were composed of complex
numbers rather than real.

There is one important nonsymmetric
case where eigenvalues and eigenvectors
are real:

Fact: Suppose B and C are symmetric
pxp matrices. Then A = BC is (usually)
nonsymmetric but its eigenvectors and
eigenvalues are real .

You can always assume that the
eigenvectors of a symmetric matrix A
are normalized, that is

hun = /(8. u?) = 1.

MacAnova always produces normalized
eigenvectors.

17
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Suppose u is an eigenvector of A = A’
with eigenvalue X. Then, by definition,
Au = \u.

This is the same as
Au - \u = (A - Mp)u = 0.

Because u z O, property 4 tells us
P(X\) = det(A - Mp) = 0.

Cmd> write(a) # has eigenvalue 3 and 2
a:

(1,1) 2.94117647 0.235294118
(2,1) 0. 235294118 2. 05882353

Ond> det(a - 3*dmat(2,1))# 3 is eigenvalue of a
(1) 2.5969e-16

Note: wite(a) is the simplest way to
print a vector or matrix with more
significant digits (9) than the default (5).

When A = diagla,,, a,,, ..., a ] is diagonal,

its eigenvalues are a , a,, ..., a_ and the

eigen vectors aree’=[0..010..07,
1 -1 p

the columns of lp.
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More Facts About Matrices
When A is a pxp square matrix, these five
statements are either all true or all
false.

1. A is non-singular (has an inverse)
2 rank(A) = p (A has "full rank”)
3. Ab z O for allb =z 0O

4. det(A) z O

S All eigenvalues A z O

Here are some ways you might use this
equivalence:

e [f you have ab =z O but Ab = 0, then A
is singular, det(A) = 0 and A has at
least one eigenvalue = 0 with
eigenvector b.

e When det(A) = O there is a vector b =
O such that Ab = 0 and A has at least
one zero eigenvalue

18
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P(X) = det(A - X1 ) is actually a
polynomial of degree p in A\:

POV = (1PN + d X"+ v d X+ d

Therefore the eigenvalues X satisfy
P(X) =0,1=1,..,p.

If you can find the zeros of polynomial,
you can compute eigenvalues.

If you like to do such things, for the
matrix a in the example which has X\, = 3,
X\, = 2, you can check that

P(X) =X\ - 5X\ + 6
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For which

d = -5=-(X +2X),d =6=Xxx\,
In general,
o d = (-1 X = (-1)"trace(A)

1<j<p” ]
e d = AN\ = det(A)
Ond> polyroot(-vector(-trace(a), det(a)))

(1, 1) 2 0
(2.1) 3 0

Real and i maginary
parts of zeros
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