Displays for Statistics 5401/8401

Lecture 5

September 16, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall Class Web Page

http://www.stat.umn.edu/~kb/classes/5401

© 2005 by Christopher Bingham

Statistics 5401 Lecture 5 September 16, 2005

1

MacAnova:

Cma> x						
(1,1)	2.4	22.9	44			
(2,1)	12.3	15.7	32.7			
(3,1)	10.6	15.7	35.2			
(4,1)	15.1	17.2	33.5			
(5,1)	-1.3	22.5	26.7			
Cmd> $n \leftarrow nrows(x)$						
Cmd> $xbar <- sum(x)/n \# row vector, 1 by 3$						
Cmd> xtilde <- x - xbar # deviations from mean, 5 by 3						
Cmd> # or xtilde <- x - rep $(1/n,n)$ ' %*% x						
Cmd> $df <- n - 1 \# "degrees of freedom"$						
Cmd> s <	- (xtilde' %*	% xtilde)/df	; s # sample	variance matrix		
(1,1)	48.337	-22.53	1.562			
(2,1)	-22.53	13.07	3.775			
(3,1)	1.562	3.775	38.947			

Black box computation of S and \overline{x} using tabs():

(1,1) (2,1)	x,covar:T) 48.337 -22.53 1.562	13.07	3.775	s
	x,mean:T) # 7.82			Not row vector
component:	n 5); stats #	use pre-defin	ed macro sample size
component:	7.82 covariance			xbar, row vec.
(2,1)	48.337 -22.53 1.562	13.07	3.775	s
(1,1) (2,1)	\$covariance 48.337 -22.53 1.562	-22.53 13.07	3.775	ure stats

More on sample variance matrix

$$\mathbf{S} = \mathbf{S}_{x} = [\mathbf{S}_{jk}] = (\mathbf{n} - 1)^{-1} \widetilde{\mathbf{X}}' \widetilde{\mathbf{X}}$$
$$= (\mathbf{n} - 1)^{-1} \sum_{1 < j < n} \widetilde{\mathbf{x}}_{i} \widetilde{\mathbf{x}}_{i}',$$

where $\widetilde{\mathbf{X}} = [\widetilde{\mathbf{x}}_1, \widetilde{\mathbf{x}}_2, ..., \widetilde{\mathbf{x}}_n]'$, $\widetilde{\mathbf{x}}_i = \mathbf{x}_i - \overline{\mathbf{x}}$ is the matrix of deviations from the sample meam $\overline{\mathbf{x}}$.

- <u>Diagonal</u> elements: $s_{jj} = (n-1)^{-1} \sum_{1 \le i \le n} (x_{ij} - \overline{x_j})^2 = s_j^2$, the usual **sample variance**. $\sqrt{s_{ij}} =$ **sample standard deviation**
- Off-diagonal elements: $s_{jk} = (n-1)^{-1} \sum_{1 \le i \le n} (x_{ij} - \overline{x_j}) (x_{ik} - \overline{x_k}), j \ne k$ = sample covariance of x_j and x_k
- S_x is symmetric $(S_x' = S_x)$ since

$$S_{jk} = \sum_{1 \le i \le n} (X_{ij} - \overline{X_j})(X_{ik} - \overline{X_k})$$
$$= \sum_{1 \le i \le n} (X_{ik} - \overline{X_k})(X_{ij} - \overline{X_j}) = S_{jk}$$

Statistics 5401

Lecture 5

September 16, 2005

A matrix of Linear Combinations Suppose X is a n by p data matrix and $A = [\mathbf{a}_1,...,\mathbf{a}_q]$ is a p by q matrix of constants, $\mathbf{a}_j = [\mathbf{a}_{1j}, \mathbf{a}_{2j}, ..., \mathbf{a}_{pj}]$. For example, you might have

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2 \end{bmatrix}$$

 ${f Q}$. What is the n \times q matrix

$$Y = [Y_1, Y_2, ..., Y_n] = XA = [Xa_1, Xa_2... Xa_n]?$$

A. Each <u>column</u> $\mathbf{Y}_{j} = \mathbf{X}\mathbf{a}_{j}$ is a *linear combination* $\sum_{1 \leq \ell \leq p} \mathbf{a}_{\ell,j} \mathbf{X}_{\ell}$ of the columns of \mathbf{X} (e.g. $\mathbf{Y}_{1} = \mathbf{X}_{1} + \mathbf{X}_{2} + \mathbf{X}_{3}$, $\mathbf{Y}_{2} = \mathbf{X}_{1} - \mathbf{X}_{2}$, ...)

Each <u>element</u> $\mathbf{y}_{ij} = \mathbf{a}_{j} \mathbf{x}_{i} = \sum_{1 \leq \ell \leq p} \mathbf{a}_{\ell,j} \mathbf{x}_{i\ell}$ is a linear combinations of the x-values for case i.

 \mathbf{Y} is a new data matrix derived from the original data matrix \mathbf{X} .

Statistics 5401 Lecture 5 September 16, 2005 Statistics 5401 Lecture 5 September 16, 2005

Sample mean and variance matrix of Y

• The sample mean $\overline{\mathbf{y}} = \sum_{i} \mathbf{y}_{i} / n$ of \mathbf{Y} is

$$\overline{y} = A'\overline{x}$$
 (q × 1) column vector

or, as a row vector,

$$\frac{\overline{\mathbf{y}'}}{\overline{\mathbf{y}_i}} = \overline{\mathbf{x}'} \mathbf{A}$$
 (1 × q) (univariate mean)

The variance matrix S_y of Y is

$$S_{y} = A'S_{x}A = [a_{j}'S_{x}a_{k}]_{1 \le j \le q, 1 \le k \le q} (q \times q).$$

Diagonal elements are

$$S_{y11} = S_{y_1}^2 = a_1'S_x a_1, \dots, S_{yqq} = S_{y_q}^2 = a_q'S_x a_q$$

This applies when the columns of **A** define the linear combinations.

Comment: You will find it useful to be able to recognize an expression like $\mathbf{a}'\mathbf{S}_{\mathbf{x}}\mathbf{a}$ as representing the sample variance of a linear combination $\mathbf{a}'\mathbf{x}$.

MacAnova Example

Cmd> x # pro (1,1) (2,1) (3,1) (4,1) (5,1)	2.4 12.3 10.6 15.1	22.9 15.7	44 32.7 35.2 33.5				
<pre>Cmd> a <- matrix(vector(1,1,1,1,-1,0,1,1,-2),3)</pre>							
Cmd> a # ma (1,1) (2,1) (3,1)	trix of lin 1 1 1	ear combina 1 -1 0	tion coeffic 1 1 -2	cients			
Cmd> y <- x (1,1) (2,1) (3,1) (4,1) (5,1)	69.3 60.7 61.5 65.8	-20.5 -3.4 -5.1 -2.1	-62.7 -37.4 -44.1 -34.7	combinations			
$\label{eq:cmd} \mbox{Cmd> s_x <- tabs(x1, covar:T) $\#$ S_x$}$							
Cmd> s_y <- (1,1) (2,1) (3,1) -	65.968 33.054	33.054 106.47	-66.884 39.693				
Cmd> a' %*% (1,1) (2,1) (3,1) -	65.968 33.054	106.47	39.693				

5

September 16, 2005

Eigenvalues and Eigenvectors

Statistics 5401

Let $A = [a_{ij}]$ be a p by p square matrix.

Lecture 5

Vocabulary Suppose **u** ≠ **0** is a p by 1 vector that satisfies

 $Au = \lambda u$ for some constant λ .

Then ${\bf u}$ is an **eigenvector** of ${\bf A}$ with corresponding **eigenvalue** λ (also called **proper** or **characteristic** value and vector).

Cmd> a # note a is symmetric 2 by 2 (1,1) 2.9412 0.23529 (2,1) 0.23529 2.0588

Enter vectors \mathbf{u}_1 and \mathbf{u}_2

 $\mathbf{A}\mathbf{u}_1 = 3 \times \mathbf{u}_1 \text{ and } \mathbf{A}\mathbf{u}_2 = 2 \times \mathbf{u}_2$

SO

- \mathbf{u}_1 is an eigenvector with eigenvalue 3
- **u**₂ is an eigenvector with eigenvalue 2

When ${\bf u}$ is an eigenvector with eigenvalue λ , so is ${\bf u}/c$ where c is a constant

September 16, 2005

Proof: $\mathbf{A}(\mathbf{u}/c) = \mathbf{A}\mathbf{u}/c = \lambda \mathbf{u}/c = \lambda(\mathbf{u}/c)$.

In particular $\widetilde{\mathbf{u}} = \mathbf{u}/\|\mathbf{u}\|$ is an eigenvector

In particular $\widetilde{\mathbf{u}} = \mathbf{u}/\|\mathbf{u}\|$ is an eigenvector such that $\|\widetilde{\mathbf{u}}\| = 1$.

Cmd> $u \leftarrow hconcat(u1,u2)$; $sum(u^2)$ # u is 2 by 2 (1,1) 17 17 squared norms of u1 and u2 This shows $\|\mathbf{U}_1\| = \|\mathbf{U}_2\| = \sqrt{17}$ Cmd> u / sqrt(17) # columns are eigenvectors (1,1) 0.97014 -0.24254 (2,1) 0.24254 0.97014

MacAnova:

Statistics 5401

- eigenvals() finds eigenvalues
- eigen() finds both eigenvalues and eigenvectors

Cmd> eigenvals(a) # just eigenvalues
(1) 3 2 In decreasing order

Cmd> eigs <- eigen(a); eigs
component: values
(1) 3 2
component: vectors
(1,1) -0.97014 0.24254 Normalized columns
(2,1) -0.24254 -0.97014 norms of columns are 1

Cmd> eigs\$vectors # or eigs[2] #extract just vectors
(1,1) -0.97014 0.24254
(2,1) -0.24254 -0.97014

Note that signs are reversed from u / sqrt(17). This doesn't matter.

September 16, 2005

Facts concerning eigenthings

Lecture 5

When A is pxp symmetric, there are

- Exactly p *linearly independent* eigenvectors \mathbf{u}_1 , \mathbf{u}_2 ,..., \mathbf{u}_m with real elements
- with corresponding real eigenvalues $\lambda_{_{1}} \geq \lambda_{_{2}} \geq \lambda_{_{3}} \geq \ldots \geq \lambda_{_{p}}.$ The decreasing ordering is conventional.

When A is non-symmetric, eigenvectors and/or eigenvalues may be *complex*, requiring *imaginary* numbers

For example, you can check

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1+i \\ 1-i \end{bmatrix} = -i \times \begin{bmatrix} 1+i \\ 1-i \end{bmatrix}, i = \sqrt{-1}$$

so
$$\mathbf{u} = \begin{bmatrix} 1 + i \\ 1 - i \end{bmatrix}$$
 is an eigenvector of

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ & & \\ -1 & 0 \end{bmatrix}, \text{eigenvalue } \lambda = -i = -\sqrt{(-1)}$$

Statistics 5401 Lecture 5 September 16, 2005

Vocabulary: **x'Ax** is an example of a **quadratic form**.

Expanded in full a quadratic form is

$$\mathbf{x}'\mathbf{A}\mathbf{x} = \mathbf{x}'(\mathbf{A}\mathbf{x}) = \sum_{1 \le i \le p} X_i \left(\sum_{1 \le j \le p} a_{ij} X_j \right)$$

$$= \sum_{1 \le i \le p} \sum_{1 \le j \le p} a_{ij} X_i X_j$$

$$= \sum_{i} a_{ii} X_i^2 + \sum_{i \ne j} a_{ij} X_i X_j$$

$$= \sum_{i} a_{ij} X_i^2 + 2 \sum_{i \le j} a_{ij} X_i X_j$$

The last step is OK because A is symmetric so $a_{ii} = a_{ij}$.

When p = 2,

$$\mathbf{X'AX} = \mathbf{a}_{11}\mathbf{X}_{1}^{2} + \mathbf{a}_{22}\mathbf{X}_{2}^{2} + \mathbf{a}_{12}\mathbf{X}_{1}\mathbf{X}_{2} + \mathbf{a}_{21}\mathbf{X}_{2}\mathbf{X}_{1}$$
$$= \mathbf{a}_{11}\mathbf{X}_{1}^{2} + \mathbf{a}_{22}\mathbf{X}_{2}^{2} + \mathbf{a}_{12}\mathbf{X}_{1}\mathbf{X}_{2} + \mathbf{a}_{12}\mathbf{X}_{2}\mathbf{X}_{1}$$
$$= \mathbf{a}_{11}\mathbf{X}_{1}^{2} + \mathbf{a}_{22}\mathbf{X}_{2}^{2} + 2\mathbf{a}_{12}\mathbf{X}_{1}\mathbf{X}_{2}$$

When p = 3,

$$\mathbf{X}'\mathbf{A}\mathbf{X} = \mathbf{a}_{11}\mathbf{X}_{1}^{2} + \mathbf{a}_{22}\mathbf{X}_{2}^{2} + \mathbf{a}_{33}\mathbf{X}_{3}^{2} + 2\mathbf{a}_{12}\mathbf{X}_{1}\mathbf{X}_{2} + 2\mathbf{a}_{13}\mathbf{X}_{1}\mathbf{X}_{3} + 2\mathbf{a}_{23}\mathbf{X}_{2}\mathbf{X}_{3}$$

Fact: If $\lambda_i \neq 0$, for all eigenvalues λ_i of **A**, then **A** is non-singular, i.e., \mathbf{A}^{-1} exists. **Vocabulary**

Lecture 5

A symmetric matrix A is positive definite if x'Ax > 0 for every x ≠ 0

A symmetric matrix A is positive semi-definite if x'Ax ≥ 0 for every x ≠ 0

- Fact: A symmetric matrix is positive definite if and only if $\lambda_i > 0$, i = 1,...,p
- Fact: A positive definite symmetric matrix is always invertible since all eigenvalues ≠ 0.
- A symmetric matrix is positive semidefinite if and only if $\lambda_i \ge 0$, i = 1,...,p

Let \mathbf{A} = diag[\mathbf{a}_{11} , \mathbf{a}_{22} , ..., \mathbf{a}_{pp}] be diagonal. Then

 \bullet λ_i 's are the a_i 's in decreasing order

1

Statistics 5401 Lecture 5

Suppose S_x is a pxp <u>sample</u> variance matrix and suppose y = a'x is an arbitrary linear combination with $a \neq 0$.

Recall that $\mathbf{a}'\mathbf{S}_{x}\mathbf{a} = \mathbf{s}_{y}^{2} \ge 0$. This shows that

$$S_x$$
 is positive semi-definite

Now suppose S_x is not *positive* definite.

Then there is at least one $\mathbf{a} \neq \mathbf{0}$, with $\mathbf{a}'\mathbf{S}_{\mathbf{a}} = \mathbf{0}$. In other words,

$$s_y^2 = 0$$
, where $y = \mathbf{a}'\mathbf{x} = \sum_j a_j x_j$

Also, when S_x is not positive definite there is at least one 0 eigenvalue and any **a** with $a'S_xa = 0$ is an eigenvector with 0 eigenvalue. **Q**. When can $s_{\parallel}^2 = 0$ can happen?

A. Only when

$$y_1 = y_2 = \dots = y_n = constant c$$

Now
$$y_i = \sum_{1 \le i \le p} a_j x_{ij}$$
.

This means that for any j with a, ≠ 0, the value for the jth x variable is determined by the other variables:

$$x_{ij} = c - (a_1/a_j)x_{i1} - (a_2/a_j)x_{i2} - ...$$

- $(a_{j-1}/a_j)x_{i,j-1} - (a_{j+1}/a_j)x_{i,j+1} - ... - (a_p/a_j)x_{i,p}$
so x_i is not really needed.

Vocabulary: In such a case, X_1 , X_2 , ..., X_n are collinear, there is an exact linear relationship between them.

When the the smallest eigenvalue $\lambda_{\scriptscriptstyle D}$ of **S** is small relative to the largest λ_1 , that is, $\lambda_{D}/\lambda_{1} \approx 0$, x_{1} , x_{2} , ..., x_{D} are nearly collinear.

13

Statistics 5401

September 16, 2005

Similarly, when you want to *minimize* v'Av over all choices for v such that ||v||² = 1, the **solution** is $\mathbf{v} = \mathbf{u}_{n}$, the *last* eigenvector with the smallest eigenvalue.

The minimized value is

$$\lambda_p = \mathbf{u}_p' \mathbf{A} \mathbf{u}_p = minimum$$
 eigenvalue.

Thus

$$min_{\|\mathbf{v}\|=1}\mathbf{v}'\mathbf{A}\mathbf{v} = \mathbf{u}_{p}'\mathbf{A}\mathbf{u}_{p} = \lambda_{p}$$

Now, for any \mathbf{W} , $\mathbf{W}'\mathbf{A}\mathbf{W}/\|\mathbf{W}\|^2 = \mathbf{V}'\mathbf{A}\mathbf{V}$, where $\mathbf{v} \equiv \mathbf{w}/\|\mathbf{w}\|$ has $\|\mathbf{v}\| = 1$.

These two results imply that

$$\lambda_1 \geq \mathbf{W}' \mathbf{A} \mathbf{W} / \| \mathbf{W} \|^2 \geq \lambda_p$$
, for all $\mathbf{W} \neq \mathbf{0}$.

Or, multiplying by $\|\mathbf{w}\|^2$,

$$\lambda_1 \| \mathbf{W} \|^2 \ge \mathbf{W}' \mathbf{A} \mathbf{W} \ge \lambda_2 \| \mathbf{W} \|^2$$
, for all \mathbf{W} .

This are bounds on the values of the quadratic form (recall $\lambda_1 = \lambda_{max}, \lambda_D = \lambda_{min}$).

Properties of eigenvectors and eigenvalues

Lecture 5

Let A be pxp symmetric.

Suppose we want to maximize (find the largest possible value of) the quadratic form

$$\mathbf{v}'\mathbf{A}\mathbf{v} = \sum_{i} a_{ii} V_i^2 + 2 \sum_{i < j} a_{ij} V_i V_j$$

over all choices for p×1 vector **v** such that

$$\|\mathbf{v}\|^2 = \sum_i v_i^2 = 1$$
 ("unit" vector)

Solution: $v = u_1$, the normalized *first* eigenvector.

The maximized value is $\mathbf{u}_1' \mathbf{A} \mathbf{u}_1 = \mathbf{u}_1' (\lambda_1 \mathbf{u}_1)$ = $\lambda_1 \mathbf{u}_1' \mathbf{u}_1 = \lambda_1 \| \mathbf{u}_1 \|^2 = \lambda_1$, the largest eigenvalue.

Thus

Statistics 5401

$$\max_{\|\mathbf{v}\|=1} \mathbf{v}' \mathbf{A} \mathbf{v} = \mathbf{u}_1' \mathbf{A} \mathbf{u}_1 = \lambda_1$$

Statistics 5401 Lecture 5 September 16, 2005

September 16, 2005

For p = 2, every unit vectors has the form

$$\mathbf{u} = \begin{bmatrix} \cos \theta \\ \\ \pm \sin \theta \end{bmatrix}$$
 for some $0 \le \theta \le 2\pi$

Here I computed and graphed u'Au for equally spaced values of θ

Cmd> theta <- 2*PI*run(0,250)/250 #equally spaced radian angles

Cmd> qformvals <- 0 * theta # create empty vector

Cmd> for(i,1,length(theta)){

@u <- vector(cos(theta[i]), sin(theta[i]))
qformvals[i] <- @u' **% a **% @u

;;} # compute quadratic form for each angle

Cmd> lineplot(theta,qformvals,xlab:"Theta",\
title:"Value of quadratic form vs theta of normalized vector",\
ylab:"Quadratic form",ymin:0,ymax:3.5,show:F)

Cmd> addlines(vector(0,2*PI,?,0,2*PI),\

vector(2,2,?,3,3), linetype:2)#add lines at y = 2 and 3

I gave an example of a *nonsymmetric* matrix whose eigenvectors and eigenvalues were composed of complex numbers rather than real.

There is one important nonsymmetric case where eigenvalues and eigenvectors are real:

Fact: Suppose B and C are symmetric $p \times p$ matrices. Then A = BC is (usually) nonsymmetric but its eigenvectors and eigenvalues are *real* .

You can always assume that the eigenvectors of a symmetric matrix A are normalized, that is

$$\|\mathbf{u}\| = \sqrt{(\sum_{1 \le i \le p} u_i^2)} = 1.$$

MacAnova always produces normalized eigenvectors.

17

Statistics 5401

September 16, 2005

Suppose **u** is an eigenvector of A = A'with eigenvalue λ . Then, by definition, $Au = \lambda u$.

This is the same as

$$\mathbf{A}\mathbf{u} - \lambda \mathbf{u} = (\mathbf{A} - \lambda \mathbf{I}_{p})\mathbf{u} = \mathbf{0}.$$

Because u ≠ 0, property 4 tells us $P(\lambda) \equiv \det(\mathbf{A} - \lambda \mathbf{I}_{n}) = 0.$

Cmd> write(a) # has eigenvalue 3 and 2

(1,1) 2.94117647

0.235294118

0.235294118 2.05882353

Cmd> det(a - 3*dmat(2,1))# 3 is eigenvalue of a

Note: write(a) is the simplest way to print a vector or matrix with more significant digits (9) than the default (5).

When $A = \text{diag}[a_{11}, a_{22}, ..., a_{nn}]$ is <u>diagonal</u>, its eigenvalues are a_{11} , a_{22} , ..., a_{pp} and the eigen vectors are \mathbf{e}_{i}^{P} = [0 ... 0 1 0 ... 0]', j-1 j j+1

the columns of I_{α} .

More Facts About Matrices

When A is a pxp square matrix, these five statements are either all true or all false.

- A is non-singular (has an inverse)
- rank(A) = p(A has "full rank")
- 3. $Ab \neq 0$ for all $b \neq 0$
- 4. $det(A) \neq 0$
- 5. All eigenvalues $\lambda_i \neq 0$

Here are some ways you might use this equivalence:

- If you have a b ≠ 0 but Ab = 0, then A is singular, det(A) = 0 and A has at least one eigenvalue = 0 with eigenvector **b**.
- When det(A) = 0 there is a vector b ≠ O such that Ab = O and A has at least one zero eigenvalue

Statistics 5401

Lecture 5

September 16, 2005

 $P(\lambda) = det(A - \lambda I)$ is actually a polynomial of degree p in λ :

$$P(\lambda) = (-1)^{p} \lambda^{p} + d_{1} \lambda^{p-1} + ... + d_{p-1} \lambda + d_{p}$$

Therefore the eigenvalues λ_i satisfy

$$P(\lambda_i) = 0, i = 1,...,p.$$

If you can find the zeros of polynomial, you can compute eigenvalues.

If you like to do such things, for the matrix a in the example which has $\lambda_1 = 3$, λ_{2} = 2, you can check that

$$P(\lambda) = \lambda^2 - 5\lambda + 6$$

For which

$$d_1 = -5 = -(\lambda_1 + \lambda_2), d_2 = 6 = \lambda_1 \times \lambda_2$$

In general,

- $d_1 = (-1)^{p-1} \sum_{1 \le j \le p} \lambda_j = (-1)^{p-1} \text{trace}(\mathbf{A})$
- $d_p = \lambda_1 \lambda_2 ... \lambda_p = det(A)$

Cmd> polyroot(-vector(-trace(a), det(a))) (1,1) 2 0 Real a (2,1) 3 0 parts Real and imaginary parts of zeros