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Here is an ANOVA, including main effects
plus 2-way, 3-way and 4-way interac-
tions. This is an intrablock analysis.

COmd> anova("y=bl ock + (at+b+c+d+e+f +g)~4")

Model used is y=block + (a+b+c+d+e+f +g) "4
WARNING sunmaries are sequentia

DF SS VB
CONSTANT 30. 44 30. 44
bl ock 1 1.3384 0. 089225

0. 02645 0. 02645
0. 014028 0. 014028
0.0091125  0.0091125
0. 0162 0. 0162
1.9602 1. 9602
0.0038281  0.0038281
0.0011281  0.0011281
0. 005 0. 005
0.0022781  0.0022781
0. 029403 0. 029403
0.0034031  0.0034031
0.017112 0.017112
0. 01125 0. 01125
0. 021012 0. 021012
0. 0392 0. 0392
5e- 05 5e- 05
0.0057781  0.0057781
0.0038281  0.0038281
0.0063281  0.0063281
0. 00015312 0.00015312

0. 0032 0. 0032

0. 0072 0. 0072
0.0022781  0.0022781
0. 00045 0. 00045
0.02 0.02

0 0

0. 00845 0. 00845

0.00070312 0.00070312
0.0052531 0. 0052531
0.0034031  0.0034031
0.0011281  0.0011281

0. 00125 0. 00125
undef i ned
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Analysis of a confounded factorial

Here is a partial analysis of a 2"* design,
2’ = 128 factorial combinations arranged

in 2 =

16 blocks of size 2"° = 8.
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Ovd> data <- read("", "exnpl15 6")
128

exnpl 15. 6
A data set from Cehlert (2000) \enph{A First Course in Design
and Anal ysis of Experinents},

NSNS NSNS NN NN N NN

Tabl e 15. 6,
Data for a 277 in standard order.
shape of image
of image verti cal
of image
ABCD, ACEG BCE, BCFG ACF, CDEF, ABG BDEG ADE, ADFG BDF
EFG CDG ABEF, and ABCDEFG are confounded with bl ocks

Col ums are block A B C D

Read fromfile "TP1l: Stat5303: Dat a: CeChl5. dat "

3
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New York: W H Freenan.

Factors are size of inage

color of image, orientation of inage, duration

location of inage, and horizontal |ocation

E, F, G and response

There seven 3-way, seven 4-way and one

7-way interactions confounded,

2%-1

A design equivalent to this one is

in all.

found by choosedef2(7,4,all:T

There 1s r = 1 replicate.
QOrd> makecol s(dat a, bl ock, a, b, ¢, d, e, f
Col umn 1 saved as factor bl ock th
Colum 2 saved as factor a with 2 levels
Colum 3 saved as factor b with 2 levels
Colum 4 saved as factor ¢ with 2 levels
Colum 5 saved as factor d with 2 levels
Colum 6 saved as factor e with 2 levels
Colum 7 saved as factor f with 2 levels
Colum 8 saved as factor g with 2 levels
Col um 9 saved as vector y
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a.c.e 1 0. 0242 0. 0242
ac.f 0 0 undef i ned
a.c.g 1 0.0011281 0.0011281
a.d.e 0 0 undef i ned
a.d.f 1 3.125e-06 3.125e-06
a.d.g 1 0.0087781 0.0087781
a.e.f 1 0. 045753 0. 045753
a.e.g 1 0.0087781  0.0087781
a.f.g 1 0.0006125 0.0006125
b.c.d 1 0. 024753 0. 024753
b.c.e 0 0 undefined
b.c.f 1 0. 037812 0. 037812
b.c.g 1 0. 0098 0. 0098
b.d. e 1 0.0019531 0.0019531
b.d.f 0 0 undefined
b.d. g 1 0. 0338 0. 0338
b.e.f 1 0.0021125 0.0021125
b.e.g 1 0. 00045 0. 00045
b.f.g 1 0. 025878 0. 025878
c.d.e 1 0. 01445 0.01445
c.d.f 1 0.00070312 0.00070312
c.dg 0 0 undefined
c.e.f 1 0.00037812 0.00037812
c.e.g 1 0. 067528 0. 067528
c.f.g 1 0. 027612 0. 027612
d.e.f 1 0. 015753 0. 015753
d.eg 1 0.0034031 0.0034031
d.f.g 1 0. 0072 0. 0072
ef.qg 0 0 undefined
a.b.c.d 0 0 undefined
a.b.c.e 1 0. 0162 0.0162
a.b.c.f 1 0. 015753 0. 015753
a.b.c.g 1 0.00090313 0.00090313
a.b.d. e 1 0.0091125 0.0091125
a.b.d.f 1 0.0087781 0.0087781
a.b.d. g 1 0.0047531 0.0047531
ab.ef 0 0 undef i ned
a.b.e.g 1 0. 038503 0. 038503
a.b.f.g 1 0. 00845 0. 00845
a.c.d. e 1 0.0047531 0.0047531
a.c.d.f 1 0. 00045 0. 00045
a.c.d. g 1 0.0006125 0.0006125
a.c.e.f 1 0.0128 0.0128
a.c.e.g 0 0 undefined
a.c.f.g 1 0.0022781 0.0022781
a.d.e.f 1 0. 00605 0. 00605
a.d.e.g 1 0. 012012 0. 012012
a.d.f.g 0 0 undefined

g,y,factors:run(8))
16 level s
v
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a.ef.g 1 0.011628 0.011628
b.c.d. e 1 0.02 0.02
b.c.d.f 1 0.00052812 0.00052812
b.c.d. g 1 0. 014878 0. 014878
b.c.e.f 1 0.0094531  0.0094531
b.c.e.g 1 0.0052531 0.0052531
b.c.f.g 0 0 undefined
b.d.e.f 1 0.00025313 0.00025313
b.d.e.g 0 0 undefined
b.d.f.g 1 0.0055125 0.0055125
b.e.f.g 1 0. 032512 0. 032512
c.de.f 0 0 undef i ned
c.d.e.g 1 0.0003125 0.0003125
c.d.f.g 1 0.1164 0.1164
c.e.f.g 1 0. 023653 0. 023653
def.g 1 0.0019531 0.0019531
ERRCRL 28 0.59048 0. 021088

The error term consists of all the pooled
5-, 6- and 7-way interaction SS.

Note the following:
e By far the largest effect mean square
is for e.

e Terms a.b.g,a.c.f,a.d.e, b.c.e,

b.d.f,c.d.g,e.f.g,a.b.c.d, a.b.e.f,
a.c.e.g,a.d.f.g,b.c.f.g, b.d.e.g and
c.d.e.f (underlined) all have O degrees

of freedom. These are 14 of the 15
confounded effects. The 15", a. b. c. d.
e.f.g would have been there if the
model was y=(a+b+c+d+e+f +g) "7.

5
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[n binary notation these are

GFEDCBA Effect
16 = 0010000b E
105= 1101001b  ADFG
42 = 0101010b BDF
127=1111111b  ABCDEFG

When the right most digit is 1, A is in
the effect. When the 2nd from the right
is 1, B is in the effect and so on.

Note that 105, 42 and 127 correspond to
confounded contrast and represent differ-
ences between blocks, not treatment
effects.

Here I compute in a very arcane way the
indices of all the confounded effects.

Ovd> confounded <- vector("abg", "acf", "ade", "bce", "bdf",
"cdg", "efg", "abcd", "abef", "aceg", "adfg", "bcfg", "bdeg",
"cdef", "abcdefg"); conf <- rep(0,15)

COmd> for(i, 1, 15){

tnp <- match(vector("*a*","*pb*" "*c*" "*d*", "*xex" "xfr"
confounded[i], O, exact: F)

tmp[tnp !'=0] < 1

conf[i] <- sun(tnp*2*run(0,6));;}

Ovd> print(format:"3.0f",
conf:

(1) 67 37 25 22 42 76 112 15 51 85 105 102 90 60 127

They include 42, 105 and 127.

7

)

conf) # confounded terns
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Just as with non-confounded designs you
can look at Yates effects. However, 15
are confounded with blocks and may be
large because of large block differences,
not because of treatment differences.

o> yts <- yates(y)

Qvd> chpl ot(ranklts(yts) yts, xl ab: "Normal scores"”,\
title:"Normal score plot of Yates effects")

Cd> chpl ot(halfnorn(abs(yt s)) abs(yts),\
x| ab: " I—'alf normal scores”,\
title:"Normal score plot of Yates effects")

Normal score plot of Yates effects

Hal f nornal scores plot of |Yates effects|
0. 25| 0. 25}

0.2
0. 15
yo1

50.05 42105

127

-0.09
-0.1

-2 -1 1 2 0 = 0.5 1 1.5 2 2.5
Normal scores Hal f normal scores

Effects 16, 105, 42 and 127 appear to be
outliers. How do you identify the
effects?

[t's not hard to check that main effects

A,B,C,D, E, F, and G are effects 1, 2, 4,
8, 16, 32 and 64 (2°, 2', 2%, 2°, 2% 2% 29,
so the biggest effect (16) is clearly the

unconfounded E main effect.

6
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To be meaningful, a normal or half normal
plots of Yates effects must omit the
confounded ones. One way to do it is to
replace them by M SSI NG. These will be
ignored in the plot, except for warning
messages.

Ond> yts[terns] <- ? # set con

OTd> yts[grade(abs(yts), down: T)][run(10)]
m ssing values in argunent(s) to abs()
V\ARNI NG M SSING values in argunent to grade()
(1) 0. 2475 0. 060313 0. 054375 -0. 05125 0. 048125
(6) 0. 045937 0. 043438 0.042187  -0.037813 0. 035

Cnd> chpl ot (ranki ts(yts), yts, xl ab: "Normal scores",\
title:"Normal score plot of Yates effects")
WARNING M SSING values in argunent to rankits()

Cd> chpl ot(halfnorn(abs(yt s)) abs(yts),\

x| ab: " I-talf normal scores”,\

title:"Half normal score pI ot of Yates effects")
WARNING missing values in argunent(s) to abs()
WARNING M SSING val ues in argunent to hal f norn()
WARNING nissing values in argunent(s) to abs()
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Normal score plot of Yates effects Hal f nornal score plot of Yates effects

o |
. 1 ] .

0.2 E Main efflect o.zf E Main effect
0.15 1 !
! 0.15{!
so0.1 1 |
I 08| o.1fl
0.05 1 294&} I
0 = 0.05(1
49 ! !
2 -1 0 1 0 0

- 2 =
0. 05°2 - 0.5 1 15 2 2.5
Hal f normal scores

2
Normal scor es

Only the E main effect stands out.
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Split Plot designs

A split plot design can be thought of as a
type of incomplete block design, where at
least one main effects and sometimes
interactions are confounded with blocks.

e All inference about the confounded
effects effectively comes from an
interblock analysis.

e All inference about the unconfounded
effects comes from an intrablock
analysis

The basic treatment structure is usually
a complete factorial.

In the simplest case:
e You have just two factors, A and B
with a and b levels, respectively.

e You have nxa "blocks” of size b, N=nab
EU’s in all. These are whole plots.

The experimental units within a block are
called split plots or sometimes sub-
plots.

December 6, 2002
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A classic example is an experiment to
compare a = 3 levels of tillage (plowing)
and b = 4 fertilizers on the yield of a
crop in n = 3 replicates.

[t’s not practical to vary tillage between
too small pieces of a field. So the field
is divided into 9 homogeneous strips to
which tillage methods A, A, and A, are
assigned randomly. Then B, B,, B, and B,
are randomly assigned to the EU’s (split
or sub plots) in a block = whole plot.

1 2 34|56 78189
AB,|AB,|AB |AB,AB,|AB,AB,|AB,A.B,
AB.|A B |AB.|AB,|AB,|AB,|AB |AB,IA.B,
AB,|AB,|AB,|AB |AB |AB,AB,|AB,A,B,
A B, |AB,AB,|AB,IAB,|A B |AB,AB |AB,

Note there is one level of A and a com-
plete set of B levels in each of the nine
whole plots (blocks).

11
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One of the factors, say A, is the whole
plot factor.

Treatment assignment is in two steps.

e You randomly assign levels to the
whole plots and all the split plots in
the whole plot get the same level of A.

e Within each whole plot, you randomly
assign levels of B.

The result is a design that is balanced
for treatments.

10
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Another agricultural example:
The response is yields of oats.
The whole-plot and split-plot factors are

e A: 4 lots of oats, 1 infected with a
fungus, 1 not, and 2 resistant.

e B: 4 protectants

The information about the 4 lots of oats
might guide choosing contrasts. For
example you might want to compare
resistant and non resistant using cont-
rast weights (-1,-1,1,1).

Seed lots were assigned to 16 contiguous
areas in a field, the whole plots, 4 whole
plots per seed lot.

Each whole plot was subdivided into four
compact areas to which the four protec-
tant treatments were randomly assigned.

12
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[f you didn't have the protectant or it had
0 effect, you would have a model like

gijk = }‘l * di * nk(i) * 8jk(i)'

* o = seed type effect

e T,, = random block effect for the k™
block with seed type i. m,, is the
whole plot error with variance ¢’

e €,, = random split plot or subplot
error with variance o®. These errors
are different in each split plot and is
the split plot.

You could analyze it using block means:

Jije = Ko7 dL+ Moy * &

= }_1 + o(i + Eij
This is a standard one factor ANOVA
model with errors € . Because means are

derived from block totals, this is really
an interblock analysis.

13
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The denominator for testing A is again
the whole plot error (WPE) mean square
because that is the leading eligible
random term below A.

Similarly the denominator for testing B
and AB is the split plot error (SPE) mean
square. Again it is the leading eligible
random term below B and AB.

Example

Here is an example based on data from
Steele and Torrie for the experiment
studying protectants with oats seed
sources.

At the whole plot level, what | described
is a CRD, with blocks as EU's.

There is no reason you can’'t have a
fancier design. In fact, in this exper-
iment, as is very common, the whole
plots themselves were grouped in super
blocks of size a = 4, with the whole plot
factor levels assigned in a RCB.

15
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1\,41

A,
What would a Hasse ‘ .
diagram for this design (WPE) |
1 ? 64
look like™ (SPE)48

The denominator for testing A would be
the whole plot error (WPE) mean square.

But there is a second factor so the model
actually is
Yy = H S+ Ty * ‘Bj + O(ﬁq * €

1

P

What would a

Hasse diagram for /mA\{]%

this design look (WPE),  ABs

like? 64
(SPE)_

14
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Om> data <- read("","sandt")

sandt 64 4 format

Split plot data fromSteele & Torrie

Experinent to study effects of 4 protectants on

oats grown from4 seed sources.

Seed source was whol e plot factor, arranged in 4 randon zed
bl ocks (replicates). Protectant was split plot factor,

all 4 levels in each whol e pl ot

Col. 1: Block nunber (1 - 4)

Col. 2: Seed lot (1 - 4)

Col. 3: Protectant (1 - 4)

Col. 4: Yield (response)

Read fromfile "TP1l: Stat5303: D spl ays: sandt . dat "

Ovd> makecol s(dat a, bl ock, seed, prot ectant, y)

NN NN NN

Omd> bl ock <- factor (bl ock);seed <- factor(seed)
COmd> protectant <- factor(protectant)

Cmd> anova("y=bl ocks+seed + E(bl ocks. seed) + protectant +
seed. protectant”, fstat:T)

Model used is y=bl ocks+seed + E(bl ocks. seed) + protectant +
seed. prot ect ant

SS MB F P-val ue
CONSTANT 1 1.7849e+05 1.7849e+05 2598.06040 0
bl ocks 3 2842.9 947. 62 13.79378 0.0010287
seed 3 2848 949. 34 13. 81877 0. 001022
ERRCRL 9 618. 29 68. 699 3.38234  0.0042283
progect ant 3 170. 54 56. 846 2.79874 0. 053859
seed.
pr ot ect ant 9 586. 47 65. 163 3.20823  0.0059453
36 731.2 20. 311

The seed source main effect is highly
significant as is the interaction of seed
by protectant.

16
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Here is the first use of a very useful
feature of MacAnova.

[f you "wrap” a term in E(...) (here

E( bl ocks. seed) ), anova() treats the term
as an error term. It is named ERRORL and
is the whole plot error. The final error
term is named ERROR2 and is the split
plot error term. If you had more than one
E(...), terms would be ERROR1, ERROR2,
ERRCR3, ... .

The denominator for each F is the next
ERRORXx mean square.

Here is the same ANOVA without E() :

COmd> anova("y=bl ocks*seed + protectant + seed.protectant”,\

fstat:

Model used is y=bl ocks*seed + protectant + seed. protectant

DF SS (%] P-val ue
CONSTANT 1 1.7849e+05 1.7849e+05 8787.53084 1.2987e-44
bl ocks 3 2842.9 947. 62 46. 65531 1.7295e-12
seed 3 2848 949. 34 46.73981 1.6855e-12
bl ocks. seed 9 618. 29 68. 699 3.38234  0.0042283
prot ect ant 3 170.54 56. 846 2.79874 0. 053859
seed. protectant 9 586. 47 65. 163 3.20823  0.0059453
ERRCRL 36 731.2 20.311

The SS are the same. The F-statistics
for bl ocks and seed are different (and
incorrect), since they use what we know
to be the split plot error as denominator.
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