Displays for Statistics 5303

Lecture 33

November 22, 2002

Christopher Bingham, Instructor

612-625-1024 (Minneapolis) 612-625-7023 (St. Paul)

Class Web Page

//www.stat.umn.edu/~kb/classes/5303

© 2002 by Christopher Bingham

Use of Hasse diagrams in Expected mean squares

November 22, 2002

bility as for selecting F denominators This uses the same definition of *eligi-*

are $\mbox{eligible}$ except those containing a fixed factor not in \mbox{X} Unrestricted: All random terms Restricted: All random terms below X below term X are **eligible**

does not apply The concept of leading eligible terms

Representative elements for term

- Fixed: Q = $\sum (\text{all effects})^2/\text{DF}$ Example $\sum_{i} \sum_{j} \propto \beta_{ij}^2/(a-1)(b-1))$
- Random: V = variance component $(\sigma_x^2 \text{ for pure random, } r_x \sigma_x^2 \text{ for mixed})$
- The contribution of a term is N/(number of effects) (e.g., N/(bc))
- $EMS_x = sum of contributions of all$ eligible random terms below X

Lecture 33

U = unrestricted, R = unrestricted

R EMS_A =
$$40Q_A$$

+ $8\sigma_{xx}^2 + \sigma^2$
U EMS_A = $40Q_A$
+ $8\sigma_{xx}^2 + \sigma_{xy}^2 + \sigma^2$
R EMS_B = $15Q_B$
+ $3\sigma_{\beta x}^2 + \sigma^2$
U EMS_B = $15Q_B$
+ $3\sigma_{\beta x}^2 + \sigma_{x\beta x}^2 + \sigma^2$

R EMS_c =
$$24\sigma_{\chi}^{2} + \sigma^{2}$$

U EMS_c = $24\sigma_{\chi}^{2} + 8\sigma_{\omega}^{2} + 3\sigma_{\beta\chi}^{2} + \sigma_{\omega\beta\chi}^{2} + \sigma^{2}$
RU EMS_{AB} = $5Q_{AB} + \sigma_{\omega\beta\chi}^{2} + \sigma^{2}$
R EMS_{AC} = $8\sigma_{\omega\chi}^{2} + \sigma^{2}$ U = $8\sigma_{\omega\chi}^{2} + \sigma_{\omega\beta\chi}^{2} + \sigma^{2}$
R EMS_{BC} = $3\sigma_{\beta\chi}^{2} + \sigma^{2}$ U = $3\sigma_{\beta\chi}^{2} + \sigma_{\omega\beta\chi}^{2} + \sigma^{2}$
RU EMS_{ABC} = $\sigma_{\omega\beta\chi}^{2} + \sigma^{2}$

- 2 $y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}$, T and B fixed, no interaction, $y_{ij} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ij}$, T and B fixed, BT interaction
- ယ $y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}$, T fixed, B random, no interaction
- $y_{ij} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ij}$, T fixed, B random, BT interaction

domized complete block (RCB) design with g = 5 treatments and r = 10 blocks. Each is a possible model for a **ran-**

T is the *treatment* factor, **fixed**. B is the blocking factor, fixed or random.

appears in each block. For this reason, a B and T are crossed, so every treatment block is often called a *replicate*

is to segregate a known source of variation so that it does not influence comparison of treatment effects. The purpose of a randomized block design

For example, since no β_j 's appear in

$$\overline{y_1}$$
 - $\overline{y_2}$ = α_1 - α_2 + $\overline{\epsilon_1}$ - $\overline{\epsilon_2}$

only $\sigma^2 = \sigma_{\epsilon}^2$ affects accuracy.

between treatments within a block. contrasts are estimated more accurately. The result is that treatment effects and variability should be among blocks, not In a successful RCB design, much of the

> CRB to compare g treatments: There are two essential elements of a

- g EU's. Division of N = rg experimental units into homogeneous groups or blocks of
- Random assignment of a complete of treatments to the EU's in each block.

The blocks represent a non-treatment

With non-random assignment, it's not RCB ment factor or factors. factor which is crossed with the treat-

Example of non-RCB: "Treatment" factor = type of family member, Mother, Father, son, daughter

structure in neighborhood. Sample r households with this family

a RCB; you can't randomly select a family member to be mother, say. A family might be a block, but it's not

Example of RCB:

effects of 5 cardioactive drugs on ether-An experiment studied the difference in ized cats.

The response was $y = x/(heart wt)^{-7}$ where x was dose required to get a specific response

Only 5 cats could be studied on a day, so it was natural to block on days.

randomly assigned to 5 cats and y was determined. On each of 10 days, treatments were

about the difference between blocks there is no interest in making inference Since blocks are a non-treatment factor

Among-block variability may be useful

- Checking to see that blocks did reduce variability
- plan for future experiments.

Should blocks be considered random of fixed in this experiment?

doesn't matter. Probably random is OK, but it really

Without interaction in the model

denominator for F for testing H_0 : $Q_T = 0$. With no interaction, $MS_E = MS_{BT}$ is the

Lecture 33

With interaction in the model

When there is interaction and blocks are random (case 4), the denominator is ${\rm MS_{BT}}$ which is the same as ${\rm MS_E}$ when no interaction is assumed.

So, with fixed or random blocks no interaction, or with random blocks with interaction, the F-statistic is always the same

$$F_{g-1,(g-1)(r-1)} = MS_T/MS_{BT} = MS_T/MS_{E}$$

Fixed blocks with interaction

This is the only problematic case: There really is no error term. If there really is interaction ($Q_{BT} > 0$), then MS_{BT} will tend to be too large, and your F = MS_T/MS_{BT} will be conservative.

The randomization test will work here in testing H_o : drugs have identical effects. This implies any interaction effects are identical in each block ($\alpha\beta_{ij}=...=\alpha\beta_{gj}$). The randomization distribution of F = MS_T/MS_{BT} will be close to $F_{t-1,(t-1)(b-1)}$

```
) Col. 2: Drug (1-5), drugs A, B, C, D, E
) Col. 3: Toxicity in mugram/g^.7
Read from file "TP1:DataFromStPaul:Bliss:Bliss.mat"
                                                                                                                                                                                                                                                                                                                                                                                     Cmd> data <- read("","bliss11_11")</pre>
                                                                                                                                                           Table 11.11 gives y = .6 + log10(toxicity). computed as round(10^(y-.6),3)
                                                                                                                                                                                                                       grugs in mugram/g^.7 of year.
                                                                                                                                                                                                                                                      Comparative toxicities in etherized cats of
                                                                                                                                                                                                                                                                                   by Chester I Bliss,
                                                                                                                                                                                                                                                                                                                       liss11_11 50 3 columns format
Data derived from Table 11.11 in Statistics in Biology
                                                                                                                                    <u>..</u>
                                                                                                                          Day number (1-10) corresponding to 6-9,13,14,16
                                                                                             21,24,27 Mar 1939
                                                                                                                                                                                                                                                              five cardioactive
                                                                                                                                                                                             These values were
```

Cmd> makecols(data, day,drug,toxicity,

Cmd> day <- factor(day); drug <- factor(drug)</pre>

Day = block, Drug = treatment Cmd> anova("toxicity=day + drug",fstat:T)

Model used is toxicity=day + drug CONSTANT 12.076 0.15642 0.74132 0.15536 MS 12.076 0.01738 0.18533 0.0043155

2798.23109 4.02726 42.94569

P-value 9.8404e-36 0.0012398 3.1431e-13

drug is highly significant.

ERROR1

Cmd> resvsyhat(title:"Toxicity residuals vs predicted")

Cmd> resvsrankits(title:"Toxicity residuals vs normal scores") 0.5 0 משרטמאט איש אלישט איש איש מי 1.5 -0.5 0.5 占 0 Toxicity residuals vs norma.

Plots show nothing obviously wrong.

0.5 0.6 0.7 Fitted Values (Yhat)

Let's check for non-additivity by 1 -dofna

Cmd> muhat <- coefs(1);z <- (toxicity - RESIDUALS</pre> muhat)^2/2

drug day CONSTANT WARNING: summaries are sequential Cmd> anova("toxicity=day + drug + z",pval:T)
Model used is toxicity=day + drug + z 뜀 $0.015865 \\ 0.13949$ 0.15642 0.74132 12.076 0.015865 12.076 0.01738 0.18533 0.00072045 1.5517e-13 1.3741e-35 P-value

ERROR1

0.0039855

should consider transforming. z is close to significant. You probably

Cmd> 1 - muhat*coefs(z) # suggested power (1) -0.28539

This is a lot closer to 0 (log) than to 1.

Cmd> y <- log10(toxicity)

Cmd> anova("y=day + drug",fstat:T)Model used is v=dav + drug

		0	0.11518	36	ERROR1
37.90326 1.9334e-12	37.90326	0.12126	0.48506	4	drug
0.00095014	4.17132	0.013345	0.12011	9	day
1.0405e-31	1658.20712	5.3051	5.3051	1	CONSTANT
P-value	Ή	SM	SS	DF	
			+ arug	is y=day	Moder used is y=day + drug

Cmd > muhat <- coefs(1);z <-(Y - RESIDUALS muhat)^2/2

Model used is y=day + drug + zCmd> anova("y=day + drug + z",pval:T)

drug day CONSTANT WARNING: summaries are sequential 0.12011 0.48506 9.7873e-10 0.11518 5.3051 9.7873e-10 0.0032907 5.3051 0.013345 0.12126 P-value 7.2376e-31 4.2991e-12 0.0012502

-dofna is effectively 0.

Redo anova() Without z

Model used is y=day + drug Cmd> anova("y=day + drug",fstat:T) CONSTANT 5.3051 0.12011 0.48506 0.11518 MS 5.3051 0.013345 0.12126 0.0031993 F 1658.20712 4.17132 37.90326 P-value 1.0405e-31 0.00095014 1.9334e-12

effects. Use pairwise() to compare treatment

Cmd> pairwise("drug",.05,hsd:T)

1 -0.104
2 -0.0721
3 -0.0171
4 0.0147
5 0.179

drugs 3, 4 and 5. Drug 1 is significantly different from

Drug 2 is significantly different from drugs 4 and 5.

Drug 3 us significantly different from drugs 1 and 5.

Drug 3 us significantly different from drugs 5 and drugs 1 and 2.

Drug 5 is significantly different from all. It would make no sense to compare block

> CRD (completely randomized design) experiment? Would the estimated error be smaller or larger? have happened if this had been done as a Was blocking worthwhile? What would

estimate the MS_E you would have gotten if it had been CRD You can't know for sure, but you can

 $\hat{\sigma}_{crd}^{2} = ((r-1)MS_{blocks} + r(g-1)MS_{E})/(r-1+r(g-1))$ This is a weighted average of MS_{blocks} and

 $r(g-1) = DF_{error}$ in CRD.

$$r-1+r(g-1) = r-1+g-1 + (g-1)(r-1)$$

= $DF_{block} + DF_{treat} + DF_{error}$ in RCB
You might think $\hat{\sigma}_{crd}^2$ should be
 $((r-1)MS_{blocks} + (g-1)(r-1)MS_E)/r(g-1) = SS_E/r(g-1)$ but that's not correct

Lecture 33

```
Cmd> g <- 5; r <- 10

Cmd> MS <- SS/DF; MS # MS from ANOVA

CMSTANT day drug ERROR1

5.3051 0.013345 0.12126 0.0031993

Cmd> sigmasq_crd <-\
(DF[2]*MS[2] + (DF[3]+DF[4])*MS[4])/(DF[2]+DF[3]+DF[4])

Cmd> sigmasq_crd

(1) 0.0050629
```

The **efficiency** of design 1 relative to design 2 is the ratio of the error variances $\mathrm{Eff}_{1:2} = \sigma_2^2/\sigma_1^2$. The smaller σ_1^2 is as compared to σ_2^2 the more efficient design 1 is.

```
A crude measure of estimated efficiency is \hat{\sigma}_{\rm crd}^{\ 2}/\hat{\sigma}_{\rm rcb}^{\ 2}.

Cmd> sigmasq_rcb <- MS[4]

Cmd> sigmasq_crd/sigmasq_rcb # Crude efficiency

(1)

1.5825
```

A more refined measure takes into account the fact that $DF_E = (g-1)(r-1)$ in RCB is smaller than $DF_E = g(r-1)$ in CRD Efficiency = correction× $(\hat{\sigma}_{crd}^2/\hat{\sigma}_{rcb}^2)$ correction = $(df_{err,rcd} + 3)/(df_{err,rcd} + 1)$ cmd> $(df_{err,rcb} + 3)/(df_{err,rcd} + 1)$ cmd> $(df_{err,rcb} - DF[4] \# (g-1)(r-1)$ cmd> (

The correction for degrees of freedom is so close to 1 that it doesn't make any appreciable effect.

Statistics 5303 Lecture 33 November 22, 2002

Here are the expected mean squares as computed by MacAnova for the 4 types of models

Case 1: Blocks fixed, no interaction

```
Cmd> ems("y=day+drug",NULL) # no random factors
EMS(CONSTANT) = V(ERROR1) + 50Q(CONSTANT)
EMS(day) = V(ERROR1) + 5Q(day)
EMS(drug) = V(ERROR1) + 10Q(drug)
EMS(ERROR1) = V(ERROR1)
```

ERROR1 is error term for drug

No error term for drug

```
Cmd> ems("y=day+drug",vector("day"))
EMS(CONSTANT) = V(ERROR1) + 5V(day) + 50Q(CONSTANT)
EMS(day) = V(ERROR1) + 5V(day)
EMS(drug) = V(ERROR1) + 10Q(drug)
EMS(ERROR1) = V(ERROR1)
```

ERROR1 is error term for drug

```
Cmd> ems("y=day*drug",vector("day"))
EMS(CONSTANT) = V(ERROR1) + 5V(day) + 50Q(CONSTANT)
EMS(day) = V(ERROR1) + 5V(day)
EMS(drug) = V(ERROR1) + 1V(day.drug) + 10Q(drug)
EMS(day.drug) = V(ERROR1) + 1V(day.drug)
EMS(ERROR1) = cannot be estimated
```

day.drug is error term for drug