Displays for Statistics 5303

Lecture 31

November 15, 2002

Christopher Bingham, Instructor

612-625-7023 (St. Paul) 612-625-1024 (Minneapolis)

Class Web Page

http://www.stat.umn.edu/~kb/classes/5303

© 2002 by Christopher Bingham

Mixed effects (continued)

A model with two or more factors may have both fixed and random factors.

Any interaction involving a random factor will be a random effect, too, even if some or all of the other factors in the interaction are fixed.

Thus, when A is a fixed factor and B is a random factor, in the two-factor model

$$y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \epsilon_{ijk}$$

all β_j , j = 1,...,b and $\alpha \beta_{ij}$. i = 1,...,a, j = 1,...,b are random variables.

The mean or expectation of any random effect is 0, so $E(\alpha \beta_{ij}) = 0$, even when A is fixed.

There are three variance components here σ_{β}^2 , $\sigma_{\alpha\beta}^2$ and $\sigma^2 = \sigma_{\epsilon}^2$.

2

Statistics 5303

Lecture 31

November 15, 2002

Statistics 5303

Lecture 31

November 15, 2002

Restrictions on mixed effects
For a purely fixed effect, the usual restrictions are that the effects sum to 0 over each subscript.

That means, when A, B and C are fixed

- $\sum_{i} \alpha_{i} = 0$ (main effect).
- $\sum_{i} \alpha \beta_{ij} = 0$ (sum over levels of A) $\sum_{i} \alpha \beta_{ij} = 0$ (sum over levels of B)
- $\sum_{i} \alpha \beta \delta_{ijk} = 0$ (sum over levels of A) $\sum_{j} \alpha \beta \delta_{ijk} = 0$ (sum over levels of B) $\sum_{k} \alpha \beta \delta_{ijk} = 0$ (sum over levels of C)

For mixed interactions, the situation is somewhat more complicated.

There are two different approaches which depend on what you think a random interaction is.

Let's return to the experiment in which 10 operators made cartons on each of 10 machines. Previously the machines were assumed selected randomly from a large population of machines.

Let A refer to machines with 10 levels and B to operators with 10 levels.

Suppose now that the 10 machines are of different specific types (brands, say), so that A is a fixed factor. If the operators are still selected from a population, then B is a random factor.

3

4

 Statistics 5303
 Lecture 31
 November 15, 2002
 Statistics 5303
 Lecture 31
 November 15, 2002

Notation: At least for the present I will use an upper case I, J, or K instead of i, j and k as the subscript on a random factor.

Thus, for example, when you see $\alpha\beta_{i,j}$ you know it is an interaction effect between a fixed factor A and random factor B.

You have at least two choices for how you view the machinexoperation interaction .

Restricted model

For each type i machine, operator J in the population has a random mean

$$\mu_{i,j} = \mu + \alpha_i + \beta_j + \alpha \beta_{i,j}$$

- β_J is an effect of the characteristics of the operator, including skill, as they affect the production on any machine
- $\alpha \beta_{i,j}$ is an effect of the characteristics of the operator's production specific to working on a on type i machine.

For operator J, the actual machine effect (difference of $\mu_{i,j}$ from $\mu + \beta_{j}$) is $\alpha_{i} + \alpha \beta_{i,j}$. This applies whenever operator J makes boxes on a machine of this type

5

 Statistics 5303
 Lecture 31
 November 15, 2002
 Statistics 5303
 Lecture 31
 November 15, 2002

In this context, since $\alpha_i + \alpha \beta_{i,j}$ is a machine effect it makes sense to apply the same restriction to $\alpha_i + \alpha \beta_{i,j}$. as to machine main effect α_i :

$$\sum_{i} (\alpha_{i} + \alpha \beta_{i,j}) = 0$$

But since $\sum_{i} \alpha_{i} = 0$, this means $\sum_{i} \alpha \beta_{i,i} = 0$.

This is characteristic of the **restricted** model:

Sums of a mixed effect over a subscript associated with a fixed effect are 0.

You should use the restricted model when you think of an interaction such as $\alpha\beta_{i,j}$ as "attached" to level J of factor B in the sense that every time level J is randomly selected, you would get the same interaction effects $\alpha\beta_{1,i}$, $\alpha\beta_{2,i}$,..., $\alpha\beta_{3,i}$.

Unrestricted model

Another way you might view the interaction $\alpha\beta_{i,j}$ is that it is not "attached" to operator J, that is it does not come from specific characteristics of operator J.

Instead $\alpha\beta_{i,j}$ reflects the random circumstances of the particular session of making boxes on machine i. These might be such things as temperature and humidity, how tired the worker is, whether he/she has a hangover, etc.

The same operator J at another time would have a different $\alpha\beta_{i,j}$ on the same type machine.

In this case, a restriction such as $\sum_i \alpha \beta_{i,j} = 0$ doesn't make much sense.

This is the unrestricted model.

7

8

Statistics 5303 Lecture 31 November 15, 2002 Statistics 5303 Lecture 31 November 15, 2002

These ideas can clearly be extended to experiments with higher order interactions.

In the **restricted** model, you assume the sums over the subscripts corresponding to the fixed effects are 0.

In the **unrestricted** model there is no assumption that any sums over subscripts on a random effect are 0.

In the restricted model, the variance, say $\sigma_{\alpha\beta}^{2} = V(\alpha\beta_{ij})$ is not the proper way to summarize the contribution to an EMS. $\sigma_{\alpha\beta}^{2}$ overstates the contribution because it ignores the loss of variability coming from the restrictions.

Because $\sum_{i} \alpha \beta_{i,j} = 0$, the effects for the same J and different i are negatively correlated.

In tables of expected mean squares, you need to interpret each symbol σ_x^2 as meaning $r_x Var(X)$ where $r_x < 1$ depends on the number of levels in the fixed factors in the effect X.

This reinterpretation of the symbol σ_x^2 doesn't change how you decide on what mean squares appear in F-tests.

Lecture 31 November 15, 2002

The factor "shrinking" a variance component is $r_{\downarrow} = r_{\downarrow}/r_{\uparrow}$ where

- r₁ = product of all the levels of the fixed factors in a term (ac for ABC interaction with A and C fixed)
- r₂ = product of these levels 1
 ((a-1)(c-1) for ABC interaction with A and C fixed)

In a three factor experiment with A and C fixed and B random, for the ABC variance component

• r₁ = ac

Statistics 5303

• $r_a = (a-1)(c-1)$

$$r_{ac} = (a-1)(c-1)/(ac) = (1 - 1/a)(1 - 1/c)$$

11

By default, ems(), mixed() and varcomp() assume the restricted model. If you believe the unrestricted model is more appropriate you should use restrict: F as an argument to these macros.

10

Lecture 31

November 15, 2002

We return to a modified form of the experiment in which b = 2 analysts in each of a = 10 labs made two determinations on each of two samples.

Originally I viewed the analysts as a nested random effect.

Now suppose that one analyst in each lab is experienced and the other is newly hired so you have a fixed crossed factor **experience** with two levels.

For this reason I use a renamed copy of factor analyst.

Cmd> exper <- analyst

12

Statistics 5303

 Statistics 5303
 Lecture 31
 November 15, 2002
 Statistics 5303
 Lecture 31
 November 15, 2002

Restricted model EMS and var components

```
EMS(CONSTANT) = V(ERRORI) + 2V(lab.exper.sample) + 8V(lab) + 48Q(CONSTANT)

EMS(lab) = V(ERRORI) + 2V(lab.exper.sample) + 8V(lab)

EMS(exper) = V(ERRORI) + 2V(lab.exper.sample) + 4V(lab.exper) + 24Q(exper)

EMS(lab.exper) = V(ERRORI) + 2V(lab.exper.sample) + 4V(lab.exper)
EMS(lab.exper.sample) = V(ERROR1) + 2V(lab.exper.sample) EMS(ERROR1) = V(ERROR1)
Estimate
                                          SE
0.0070378
                                                              DF
3.5755
                            0.00941
lab
lab.exper
                          0.0088221
                                          0.0078058
                                                               2.5547
lab.exper.sample ERROR1
                          0.0030646
                                          0.0029115
                                                               2.2158
                          0.0071958
```

Unrestricted model EMS and components

The <u>underlined</u> terms are not present in the restricted model EMS.

Cmd> varcomp("y =	lab + exper	+ lab.exper +	lab.exper.sample",
vector("la	ab","sample")	restrict:F)	
	Estimate	SE	DF
lab	0.004999	0.0079899	0.7829
lab.exper	0.0088221	0.0078058	2.5547
lab.exper.sample	0.0030646	0.0029115	2.2158
ERROR1	0.0071958	0.0020773	24

13

So deciding on a model and doing an analysis require a number of things

- Determine the sources of variation (factors).
- Decide which are crossed and which are nested. A factor is crossed if a particular subscript value has the same meaning for all levels of other factors
- Decide which factors are fixed and which are random.
- Decide which interactions are in the model.
- Decide whether the model should be restricted or unrestricted.

14

Statistics 5303

Lecture 31

November 15, 2002

Statistics 5303

Lecture 31

November 15, 2002

Hasse Diagrams

You have seen how important it is to

- find expected mean squares
- select denominators for tests

<u>For balanced data</u> there is an important tool -- the **Hasse Diagram**

This represents ANOVA model in semigraphical form giving information on:

- Which factors are fixed and random
- The number of effects for each term
- The degrees of freedom for each term

Two way factorial with A fixed (a=5) and B random (b=4). There are 5 nodes, one for each term.
(...) means random term.
Subscript = DF
Superscript = number of effects.

 M_1^{1} is above everything. A_4^{5} and $(B)_3^{4}$ are above $(AB)_{12}^{20}$ which is above $(E)_{20}^{40}$

3-way factorial with A and B random (a=5, b=4), C fixed (c=2).

Fully nested with A and B random (a = 5, b = 4) and C fixed (c = 2). C is in (...) because it is nested in a random factor. This makes the actual levels of C present random, even though they are fixed once the levels of B are selected.

15

16