Statistics 5303

vember 15, 2002

Displays for Statistics 5303

Lecture 31

November 15, 2002

Christopher Bingham, Instructor

612-625-7023 (St. Paul) 612-625-1024 (Minneapolis)

Class Web Page

http://www.stat.umn.edu/~kb/classes/5303

© 2002 by Christopher Bingham

Mixed effects (continued)

A model with two or more factors may have both fixed and random factors.

Any interaction involving a random factor will be a random effect, too, even if some or all of the other factors in the interaction are fixed.

Thus, when A is a fixed factor and B is a random factor, in the two-factor model

$$y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \epsilon_{ijk}$$

all β_j , j = 1,...,b and $\propto \beta_{ij}$. i = 1,..., a, j = 1,...,b are random variables.

The mean or expectation of any random effect is 0, so $E(\alpha\beta_{ij}) = 0$, even when A is fixed.

There are three variance components here σ_{β}^{2} , $\sigma_{\omega\beta}^{2}$ and $\sigma^{2} = \sigma_{\epsilon}^{2}$.

O over each subscript. restrictions are that the effects sum to For a purely fixed effect, the usual Restrictions on mixed effects

That means, when A, B and C are fixed

- Σ_iα_i = 0 (main effect).
 Σ_iαβ_{ij} = 0 (sum over levels of A)
 Σ_jαβ_{ij} = 0 (sum over levels of B)
 Σ_iαβδ_{ijk} = 0 (sum over levels of A)
- $\sum_{j} \alpha \beta \delta_{ijk} = 0$ (sum over levels of B) $\sum_{k} \alpha \beta \delta_{ijk} = 0$ (sum over levels of C)

somewhat more complicated. For mixed interactions, the situation is

> depend on what you think a random interaction is. There are two different approaches which

population of machines. assumed selected randomly from a large machines. Previously the machines were Let's return to the experiment in which 10 operators made cartons on each of 10

and B to operators with 10 levels Let A refer to machines with 10 levels

B is a random factor. different specific types (brands, say), so are still selected from a population, then that A is a fixed factor. If the operators Suppose now that the 10 machines are of

Notation: At least for the present I will use an upper case I, J, or K instead of i, j and k as the subscript on a random factor.

Thus, for example, when you see $\alpha\beta_{i,j}$ you know it is an interaction effect between a fixed factor A and random factor B.

You have at least two choices for how you view the machinexoperation interaction .

Restricted model

For each type i machine, operator ${\sf J}$ in the population has a random mean

$$\mu_{ij} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij}$$

- $\beta_{\rm J}$ is an effect of the characteristics of the operator, including skill, as they affect the production on any machine
- «β_{ij} is an effect of the characteristics
 of the operator's production specific to
 working on a on type i machine.

For operator J, the actual machine effect (difference of $\mu_{i,j}$ from $\mu + \beta_{j}$) is $\alpha_{i,j} + \alpha_{j,j}$. This applies whenever operator J makes boxes on a machine of this type

Lecture 31

In this context, since $\alpha_i + \alpha \beta_{i,j}$ is a machine effect it makes sense to apply the same restriction to $\alpha_i + \alpha \beta_{i,j}$. as to machine main effect α_i :

$$\sum_{i} (\alpha_{i} + \alpha \beta_{i,j}) = 0$$

But since $\sum_{i} \alpha_{i} = 0$, this means $\sum_{i} \alpha \beta_{i,j} = 0$.

This is characteristic of the restricted model:

Sums of a mixed effect over a subscript associated with a fixed effect are 0.

You should use the restricted model when you think of an interaction such as $\alpha\beta_{i,j}$ as "attached" to level J of factor B in the sense that every time level J is randomly selected, you would get the same interaction effects $\alpha\beta_{i,j}$, $\alpha\beta_{2,j}$,..., $\alpha\beta_{a,j}$.

Unrestricted model

Another way you might view the interaction $\alpha\beta_{i,j}$ is that it is not "attached" to operator J, that is it does not come from specific characteristics of operator J.

Instead $\[\omega \beta_{i,j} \]$ reflects the random circumstances of the particular session of making boxes on machine i. These might be such things as temperature and humidity, how tired the worker is, whether he/she has a hangover, etc.

The same operator J at another time would have a different $\alpha\beta_{i,j}$ on the same type machine.

In this case, a restriction such as $\sum_{i} \alpha \beta_{i,j} = 0$ doesn't make much sense.

This is the unrestricted model.

These ideas can clearly be extended to experiments with higher order interactions.

In the **restricted** model, you assume the sums over the subscripts corresponding to the fixed effects are 0.

In the **unrestricted** model there is no assumption that any sums over subscripts on a random effect are 0.

In the restricted model, the variance, say $\sigma_{\alpha\beta}^2 = V(\alpha\beta_{ij})$ is not the proper way to summarize the contribution to an EMS. $\sigma_{\alpha\beta}^2$ overstates the contribution because it ignores the loss of variability coming from the restrictions.

Because $\sum_i \propto \beta_i = 0$, the effects for the same J and different i are negatively correlated.

In tables of expected mean squares, you need to interpret each symbol $\sigma_{\rm x}^{\ 2}$ as meaning r_xVar(X) where r_x < 1 depends on the number of levels in the fixed factors in the effect X.

This reinterpretation of the symbol $\sigma_{\rm x}^{\ 2}$ doesn't change how you decide on what mean squares appear in F-tests.

9

component is $r_x = r_2/r_1$ where The factor "shrinking" a variance

- r, = product of all the levels of the interaction with A and C fixed) fixed factors in a term (ac for ABC
- r_2 = product of these levels 1 and C fixed) ((a-1)(c-1) for ABC interaction with A

component fixed and B random, for the ABC variance In a three factor experiment with A and C

- $\Gamma_1 = ac$

• $\Gamma_2 = (a-1)(c-1)$ $\Gamma_\infty = (a-1)(c-1)/(ac) = (1 - 1/a)(1 - 1/c)$

appropriate you should use restrict: F as believe the unrestricted model is more assume the restricted model. If you By default, ems(), mixed() and varcomp() an argument to these macros

each of a = 10 labs made two determexperiment in which b = 2 analysts in nested random effect. Originally I viewed the analysts as inations on each of two samples We return to a modified form of the മ

experience with two levels hired so you have a fixed crossed factor is experienced and the other is newly Now suppose that one analyst in each lab

For this reason I use a renamed copy of factor analyst

Cmd> exper <- analyst

Restricted model EMS and var components

```
Cmd> ems("y = lab + exper + lab.exper + lab.exper.sample",\
    vector("lab", "sample")) # restricted

EMS(CONSTANT) = V(ERROR1) + 2V(lab.exper.sample) + 8V(lab)
+ 48Q(CONSTANT)

EMS(lab) = V(ERROR1) + 2V(lab.exper.sample) + 8V(lab)

EMS(exper) = V(ERROR1) + 2V(lab.exper.sample) + 4V(lab.exper)
+ 24Q(exper)

EMS(lab.exper) = V(ERROR1) + 2V(lab.exper.sample)
+ 4V(lab.exper)

EMS(lab.exper) = V(ERROR1) + 2V(lab.exper.sample)

EMS(lab.exper)

EMS(lab.exper) = V(ERROR1) + 2V(lab.exper.sample)

EMS(lab.exper.sample) = V(ERROR1) + 2V(lab.exper.sample)
```

Unrestricted model EMS and components

The <u>underlined</u> terms are not present in the restricted model EMS.

So deciding on a model and doing an analysis require a number of things

- Determine the sources of variation (factors).
- Decide which are crossed and which are nested. A factor is crossed if a particular subscript value has the same meaning for all levels of other factors
- Decide which factors are fixed and which are random.
- Decide which interactions are in the model.
- Decide whether the model should be restricted or unrestricted.

Statistics 5303

Hasse Diagrams

You have seen how important it is to

- find expected mean squares
- select denominators for tests

For balanced data there is an important tool -- the **Hasse Diagram**

graphical form giving information on: This represents ANOVA model in semi-

- Which factors are fixed and random
- The number of effects for each term
- The degrees of freedom for each term

effects. Superscript = number of one for each term. Subscript = DF (...) means random term. ixed (a=5) and B random b=4). There are 5 nodes, wo way factorial with A

above (AB) $_{12}^{20}$ which is above (E) $_{20}^{40}$ M_1^{1} is above everything. A_4^{5} and $(B)_3^{4}$ are

> (c=2).3-way factorial with A and B b=4), C fixed random (a=5,

random (a = 5, b = 4) and C fixed (c = 2). C is in (...) because it is nested in a Fully nested with A and B they are fixed once the the actual levels of C andom factor. This makes evels of B are selected present random, even though

 $\left(\underbrace{A}_{4}\right)_{4}^{5}$

