Displays for Statistics 5303
Lecture 29

November 11, 2002

Christopher Bingham, Instructor

612-625-7023 (St. Paul)
612-625-1024 (Minneapolis)

Class Web Page

http://www.stat.umn.edu/~kb/classes/5303

© 2002 by Christopher Bingham

Statistics 5303 Lecture 29 November 11, 2002

The more usual way to write these limits
is
dfxMS/X_.? < EMS < dfxMS/X, _*

1-€/2

but I prefer to put X?/df in the denomi-
nator.

In particular, you can use these limits
for o® = EMS

error

df__xMS_/%

error

<o’ <dfxMS_/X,
where the X* degrees of freedom = df___.
[t's sometimes helpful to know the mean

and variance of X, X,’/df and F

€/2

dfy.dfy”
Mean Variance
Xo df 1
X, 2/df 2df 2/df
it o, df,/(df ,-2)  (more com-
plicated)
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Inference on variance components

All the methods methods for variance
component inverence depend strongly on
normality of

e theerrors g,

 the random effects o, B, o8,

The following “facts” assume all the
random variables involved are normal and
independent and o is constant

In the balanced case each MS is distri-
buted as
EMSxxdf/df

This is the basis for the standard
confidence interval for EMS:

Conf(MS/{X_>/df} < EMS < MS/{X
-1-¢

Note: An upper X* probability point is in

the denominator of the lower limit

while a lower X? probability point is in
the denominator of the upper limit.

?/df})

1-e/2

2
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['m using Oehlert’s Carton Experiment 3
data as an example:

Cmd> carton3 <- read(™,"carton3")
carton3 400 4

) Artificial data used Example 11.2, Oehlert p. 263

) There are two replicates of 10"2x2 factorial data from

) an imagined experiment studying the variability in carton

) strength due to variability among machines, operators and
) glue batch

) Col. 1: Machine (1 - 10)

) Col. 2: Operator (1 - 10)

) Col. 3: Glue batch (1 - 2)

) Col. 4: Strength of carton

Read from file "TP1:Stat5303:Data:carton.dat"

Cmd> makecols(carton3,mach,oper,gluebat,y)
Cmd> mach <- factor(mach);oper <- factor(oper)
Cmd> gluebat <- factor(gluebat)
Cmd>a<-b<-10;c<-2;n<-2

Cmd> anova("y=mach*oper*gluebat",silent.T)
Cmd> MS <- SS/DF

Cmd> MS # The ANOVA mean squares
CONSTANT mach oper mach.oper gluebat
mach.gluebatoper.gluebatmach.oper.gluebat ERROR1
8.6671e+06 300.64 987.42 20.772 23758
46.72 16149 20.368 23.229

Cmd> DF# The ANOVA degrees of freedom
CONSTANT mach oper mach.oper gluebat
mach.gluebatoper.gluebatmach.oper.gluebat ERROR1
1 9 9 81 1

9 9 81 200

With real data, before proceeding you
should look at residual plots, see if you
need a transformation, and so on.
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Since EMS___ = o the "exact” X’ applies.
Cmd> sigmasghat <- reverse(MS)[1]; sigmasghat
(1) 23229 ' .

reverse(MS)[1] 1S a "trick” to get the

last MS, the error MS. In this case it’'s

the same as MS[9] .

Cmd> eps <- .10 # for 90% confidence

Cmd> sigmasghat/(invchi(vector(1-eps/2,eps/2),200)/200)
(1) 19.854 27.608

You can use this same method when you
want limits for EMS, = ¢® + no _,, or any
other EMS.
[t's also fairly easy to get "exact” limits
for EMS /EMS, (say EMS, /EMS_ =
1+nc_,,°/c%) because

F = MS /MS, = (EMS /EMS )F

dfy.df,

Lower limit

(MS,/MS )/F

£/2,df;.df,

observed €/2.,dfy,df,

Upper limit

observed 1-e/2,df,,df,
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Exact vs approximate inference

So far the inference methods for variance
components have been "exact”.

That is, when all the conditions are
satisfied, confidence intervals have
exactly the intended confidence level 1 -
€ and tests have exactly the intended
type | error probability €.

But many confidence intervals for var-
lance components are only approximate in
the sense that the actual confidence level
is not exactly the intended level 1 - €.
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Example
Cmd> f_abc <- MS[8)/MS[9] # MS_ABC/MS_error
Cmd> limits <- f_abc/invF(vector(1-eps/2,eps/2),DF[8],DF[9])

Cmd> limits

(1) 065203 1.2068

These are limits for
(6%+nc ,,°)/0* = 1 + no_,°/C°

From these you can get exact limits for
the ratio ¢ ,,*/c0” = ((6’+no ,°)/G” - 1)/n.

Cmd> (limits - 1)/n
(1) -0.17398 ' 0.1034

6
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There are at least two approaches to
approximate inference for variance
components.

Chi-squared approximation
Even when it is not exactly correct, treat

an estimated variance component 6 ? as
if it were distributed as o *X */df,
where X is any label such as «, 8, «7, ...

Then, if you can provide a value for df,
approximate confidence limits are

S/ (K 0 7df) <07 < G 2/(X ., /dT)

1-g/2,df
Degrees of freedom
~,
When ¢,” = > gMS,,
df = 5,'/(3,gMs//df)
This is based on a formula for V[G,’]

which is correct only when data are
normal.
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Example:
Estimate of ¢ ?

effects ANOVA.

The estimate is
(MS, - MA,, - MS,. + MA, )/(bcn)
for which g, = -g,, = -g,. = G,,c = 1/bcn

Cmd> sig_Asq_hat <- (MS[2] - MS[4] - MS[6] + MS[8])/(b*c*n)
Cmd> sig_Asq_hat #estimated variance component
6.338

@
Cmd> g <- vector(1,-1,-1,1)/(b*c*n) # g-coefficients
Cmd> J <- vector(2,4,6,8)

Cmd> sum(g*MS[J]) # another way
1) 63 sig_Asq_hat computed another way

Cmd> df_Asq_hat <- sig_Asq_hat"2/sum(g"2*MS[J]"2/DF[J])
Cmd> df_Asq_hat

in 3-factor random

(1) 6.2425 df for sig_Asq_hat
Use these to get a confidence interval for
G 2

.-

Cmd> sig_Asq_hat\
(|nvch|(vector(1 eps/2 eps/2),df_Asq_hat)/df_Asqg_hat)
(1) 3.0545
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varcomp(EMS) gives the same output as
varcomp("'y=mach*oper*gluebat”,\

mn Inn )

vector(mach","oper","gluebat"))
Cmd> varcomp(EMS)
WARNING: searching for unrecognized macro varcomp near
varcomp(

Estimate SE DF
mach 6.338  3.5875
oper 24272 11.639 8.6976
mach.oper 0.10114 1.1428 0.015664
gluebat 11.666 16.8 0.9644
mach.gluebat 13176 11128 2.8042
oper.gluebat -0.21093 0.41291 0.52191
mach.oper.gluebat -1.4307 19773 1.0471
ERROR1 23229 2.3229 200

6.2425

Note the estimate and DF for machines
match the white box values. You can use
the values directly from the table to get

2 2
aCl.foro, =0 "
oper
Cmd> 24, 272/(|nvch|(vector(l eps/2,eps/2),8.6976)/8.6976)
(1) 12798

11
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This is the "white box” way. MacAnova
macro varcomp() provides a "black box”
way.

One way to use varcomp() is to first
compute and save the information on
EMSs using keyword phrase keep:T on
ems() .

Cmd> EMS <- ems("y=mach*oper*gluebat”,\

vector("mach”,"oper","gluebat"),keep:T)
Compacting memory, please stand by in macro ems

The result, EMS is a structure that

varcomp() knows how to use.
Cmd> compnames(EMS)
(1) "df* Usual ANOVA DF
(2) "ss" Usual ANOVA SS
(3) "termnames” Usual ANOVA term names
(4) "coefs" Multipliers in EMS formulas

(5) "rterms" Vector of T's and F's; T => random term
Cmd> print(format:"3.0f", EMS$coefs)
SCRATCH:

(1,1) 400 40 40 4200 20 20 2 1
(21) 040 040200 2 1

(31) 0 040 4 0 020 2 1
41) 000400021
(51) 0 0 0 02002020 2 1
(61) 00000200 2 1
(7) 00000020 2 1
(81) 000000021
(91) 00000000 1

10

Statistics 5303 Lecture 29 November 11, 2002

Normal approximation
For large degrees of freedom,
c,’X,2/df = N(c 2,20 //df)
This suggests a confidence interval based
on the normal distribution
6’ =067 {26 //df }
{2Z g, 2MS /df}

I+

I
Q»
N

I+

X o(/2

because

df, = 6,"/(¥ g Ms/df)
The values in the SE column of the
varcomp() output are \/{2ZJQJQMSj2/dfj}

Cmd> se_comp <- sqrt(2*sum(g"2*MS[J]"2/DF[J])); se_comp
(1) 35875 Same as in output

Cmd> sum(g*MS[J]) + 1.96*vector(-1,1)*se_comp
(1) -0.69346 13.369

This last would be an approximate 95%
interval for ¢’ if the degrees of freedom

were quite large, which they are not.

12
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You can do better by finding limits for o,

based on a normal approximation to /{x?}
whose distribution is much less skewed
than the distribution of X°.

The approximate variance of 5X s
Var(s,?) = ¢2/(2xdf).

Here are approximate limits for o
Cmd> sqrt(sig_Asq_hat) +\

invnor(1-eps/2)*vector(-1,1)*sqrt(sig_Asqg_hat)/df_Asq_hat
(1) 1.8542 3.1809

Square these to get approximate limits
for o_*

Cmd> (sqrt(sig_Asg_hat) + \
invnor(1-eps/2)*vector(-1,1)*sqrt(sig_Asq_hat)/df_Asq_hat)"2
(1) 3438 10.118

Compare these with the values computed
directly from X*:

Cmd> sig_Asq_hat/ \
(invchi(vector(1-eps/2,eps/2),df_Asq_hat)/df_Asqg_hat)
(1) 3.0545 22.469

The lower limit is not bad, but the upper
limit is far off.

13
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Cmd> ems("tensile=batno","batno")

EMS(CONSTANT) = V(ERROR1) + 5V(batno) + 25Q(CONSTANT)
EMS(batno) = V(ERRORL) + 5V(batno)

EMS(ERROR1) = V(ERROR1)

Cmd> vcomp <- varcomp("“tensile=batno","batno"); vcomp
Estimate SE F

batno  192.38 147.28 3.4125

ERROR1 7892 24.957 20

Cmd> MS <- SS/DF

Cmd> MS

CONSTANT  batno ERROR1
3.7706e+06  1040.8  78.92

Cmd> (MS[2] - MS[3])/n # estimate of sigma_alpha’2
(1) 192.38

This is an estimate of ¢’

Now find a 90% confidence interval.
Cmd>eps <-.10# (1-.9)
Cmd> estimate <- vcompl[1,1]; estimate # from varcomp() output
Estimate
batno  192.38
Cmd> df <- vcomp[1,3]; df # from varcomp() output
DF
batno  3.4125

Cmd> vector(df*estimate/invchi(vector(1-eps/2,eps/2),df))
(1) 77.069 13429 90% confidence interval
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Here is an analysis of the data in Oehlert

Problem 11.3, a one-factor problem:
Cmd> data <- read(","pr11.3")
pri1.3 25 2
) A data set from Oehlert (2000) \emph{A First Course in Design
) and Analysis of Experiments}, New York: W. H. Freeman.

) Data originally from Vangel, M.~G. (1992). “"New methods for
) one-sidedtolerance limits for a one-way balanced random-

) effects {ANOVA} model."{\em TechnometricsV}~{\em 34},

) 176--185.

)

) Problem 11.3, p. 278

) Columns are batch number and (coded) tensile strength.
Read from file "TP1:Stat5303:Data:OeCh11.dat"

Cmd> makecols(data,batno,tensile)
Cmd> batno <- factor(batno)

Cmd> anova("tensile=batno")
Model used is tensile=batno

DF SS MS
CONSTANT 1 3.7706e+06 3.7706e+06
batno 4 41634 1040.8
ERROR1 20 15784 78.92

Cmd> tabs(tensile,batno,count:T) # it's balanced
@) 5 5 5 5

Cmd>n<-5;a<-5

Cmd> resvsyhat(title:"Problem 11.3 residuals”)
Problem 11.3 residuals

T
Sisf
K .
§os . .
o * £ £
o5 1
v
41 No problems
2
370 375 380 385 390 395 400
Fitted Values (Yhat)
14
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Now get limits for ¢ /o’
Cmd> f <- MS[2)/MS][3] # F-statistic
Cmd> limits <- f/invF(vector(1-eps/2,eps/2),DF[2],DF[3])

Cmd> limits
(1) 46016

These are 90% limits for

76.527

(c*+ nc ?)/c*=1+nc ?/c?

Cmd> (limits - 1)/n
(1) 0.72032  15.105

These are limits for ¢ _*/c*

16
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Power of F-testsof H: 6. = 0

In balanced case, ratios of mean squares
in the ANOVA tables have the distribution
of a multiple of F:

F = MS,/MS, = (EMS,/EMS )F

df.df,

The power of a test of

H,;: EMS = EMS,, that is H: EMS /EMS, = 1,

against the specific alternative
H:EMS,/EMS, = p =z 1

is

Power = P(MS /MS, > F

P(defw,dfz >

P(F

e,df1,df2)

)

e,df],df2)

€.df.df,

> (1/p)F

df.df,

17
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Cmd> lineplot(n,ptitle:"Power of 5% test vs n", \
ylab:"Power",ymin:0)

Power of 5% test vs n

1F

08

06

~eso0oT

%41 Power of F-test for random effect when 6 = 80, 02 =200 1

02
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E["IS1 = EMS2 + K><C5><2

For example, when EMS, = c*
EMS, = c®*sop =1 + no /o’

+ no_? and

In this example, suppose ¢” = 80 and & ?

= 200 (close to estimates).

the power of a 5% test of H|

a range of values of n.
Cmd> sigmasq <- 80; sigma_Asq <- 200
Cmd> n <- run(2,30)
Cmd> critvals <- invF(1-.05,a-1,a*(n-1)); critvals

3.0556 2.8

; a<-5

(1) 51922 3478 . 2.7587
(6) 26896 26415 2.606 2.5787 2.5572
(11) 25397 25252 2513 25027 24937
(16) 2.4859 2479 24729 24675 24626
(21) 2.4582 24542 24506 24472 2.4442

(26) 24414 24387 24363 2434

Cmd> ems2 <- sigmasq; ems1 <- sigmasq + n*sigma_Asq

Cmd> rho <- emsl/ems2
Cmd> p <- 1 - cumF((1/rho)*critvals,a-1,a*(n-1)); p

(1) 054293 0.79823 0.88776 0.92853 0.95047

(6) 096364 0.97216 0.978 0.98218 0.98526

Let’'s find

: 07 =0 for

(11) 0.98761 0.98944 0.99089 0.99206 0.99302
(16) 0.99382 0.99448 0.99505 0.99553 0.99594

(21) 0.9963 0.99662 0.99689 0.99714 0.99735

(26) 0.99754 0.99772 0.99787 0.99801
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