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This model is appropriate when you can
think of your data as coming from a two
step process:

1 Random selection of "treatments” or
"groups” from some population of
treatments or groups

2 Random sampling of y's from each
populations of responses associated
with the treatment selected in step 1.

[f for some reason you are interested in

individual p's or «'s for the specific

treatments you selected randomly, you
would treat the effects as fixed.

The {p} and {«} are not really para-

meters in the usual sense. They are
unobserved random variables.
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Random and fixed effects

The single factor random effect model is
Y, = H+o+g, 1= T8 ] =1,.n
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The o's are random variables with mean
0 and variance ¢_’. The ¢ 's are random
variables with variance ¢* = ¢°.

For inference purposes, the «'s are
usually assumed to be N(0,c ) and the

e,’s to be N(0,57).

The property p_ = E(¢) = O replaces the
fixed ot restriction ) ot = 0.

An alternative form is
Y, = M+ 1= Ta )= 1.

where the means J = U + o are random
variables with mean E(J) = p and var-
iance 6 ° = 0’
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The actual parameters are
e j=E(W) = E(Y from randomly selected
treatment)

e 0= V(x) = between treatments or

o

groups variance component

e 6° = V(g,) = within groups or error
variance component

The variance of a single y from a
randomly selected treatment is

_ 2 _ 2 2
Viy)=0’=0'+0

This is a partition of ¢ * into two var-

iance components, ¢_* and o”.

When ¢ * > ¢® (6 ?/c® > 1), most of the
variability comes from differences among
treatments. When ¢’ < ¢® (¢ /c* > 1),

within treatment variation is more
important.
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M, o’ and o® are the focus of statistical
inference for random effect models.

Problems:

e Estimate p with a confidence interval
(Rarely: test H: g = j.)

e TestH:07?=0.

e Estimate ¢’ and ¢” or ¢ /c” with
confidence intervals.

In more complicated designs there can be

many more variances but the same

problems are usually of interest for all

the variances.

Note When ¢ ? = 0, all « = 0 and all y, =

M. This suggests you can use the same

ANOVA F-test as in the fixed effects

case and that is in fact the case.

When there is more than one random

effect, the random effects F-test may
differ from the fixed effect F-test.
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You can summarize this structure with
the correlation table or matrix for all N
gij'S:

R, 0 0...07n,
0 R, 0...0|n,
Corly,;, ...y, 1=10 0 R,...0|n,
|0 0 O0...Rn
n n n n

This is an example of the intra-class
correlation structure.
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The variance of an individual y,, is
V(y,) = V(et) + V(g ) = 0+ O

The correlation of two y’'s from different
machines is O, but that is not so for two
y's from the same machine.

Specifically

e Different treatment groups
Cor(y, .y, ;) =0.1 =i,

e Same treatment groups
p=Corly,.y,) =0//(c]+ 0%,
= (0 70%)/(1 + c ?/0?)
The larger ¢ _’/c? is, the higher is p.
p = 0only when o= 0.
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Continuation of Oehlert’'s example, which
consisted of randomly selecting 10
machines and then measuring the
strengths y, of 40 boxes made by each.

Another possible source of variation in
the y, is differences in the skill or
health of the person operating the
machine.

Suppose the manufacturer also wants
information on this source of variation.
A modification of the original experiment
would be to select 10 machine operators
at random, each to produce 4 cartons on
each machine, 40 per operator in all.

Of the 40 boxes produced on each

machine, 4 would be made by each of the
10 operators.
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The experiment now has the form of a
factorial experiment with two factors,
both of which are random. Since all 100
combinations of sampled machines and
sampled operators this is a complete
factorial design.

The two factor random effects model is
gijk = Mo ‘Bj * dBij * Eijk

where o, 8, and «§, are all random

variables with E(e) = E(B)) = E(xB,) = 0.

Each effect has its own variance and they

are assumed independent:

e 67z V(a)
° Oﬁ2 = \/(BJ)
e o 2= V(dﬁij)
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One difference from fixed effects.
The model when ¢.” = 0

gijk = “ * di * dﬁij + Eijk’ Sag’
makes some sense.
In the box machine example, it corresonds
to the situation in which there is no
variation among operators averaged over
the population of machines, but an oper-

ator may produce boxes with different
strengths on different machines.

Conclusion: it may be reasonable to test
for main effects even when there are
interactions (o_° > 0), even though it is
seldom of interest to do so in the fixed
effect case.
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The variance of a single y, . is

ijk
V(gijk) = 6: + 6ﬁ2 + 60432 + 62

so there are four components of variance,

although one or more o's might be O.

Correlations
e Same operator, machine

Cor(y )=(c)+0c’+0)/V(Q,)

ijk? Uij!l ijk

e Same operator, different machines
Corly » Yy, = (0.7 + 070/VIY,), J=],

3

e Same machine, different operators
Cor(y, o Yy,4) = (0,7 + 07)/VIY,), 121,

e Different machines, different operators
Cor(y ) =0, 1,21, ] 2],

ik’ gizjzl
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Q Why should you be interested in random
effects? Why can’t you just always
treateffects as fixed but unknown
numbers”?

A You can. But it limits your inference
to the particular levels of each factor
actually included in the experiment.
You might, for example, be able to
infer that operator 2 of the 10 opera-
tors selected was signifificantly
different from the other 9 the fixed
effect analysis tells you nothing about
factor levels not selected.

Moreover, without a model involving
randomness for the effects, you can’t

make any statements about the popul-
ation you sampled.
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Understanding the expectations (means)
of the mean squares in an random effects
ANOVA table are basic to knowing how to
make tests.

When data are balanced, formulas for the
expected mean squares (EMS) are fairly

simple. They can be very complicated for
unbalanced data.

Here is a brief derivation of an EMS
formula for the balanced one-factor case
withn = ..=n =n.

Formula for MA,
MS, = Ny (Y. - y.)/(a- 1) =ns_’

2

where s-° is a sample variance computed

from {y.}.
Now a sample variance is an unbiased

variance estimator. This means .
E(s, ) = V(y,) and hence E(MS,) = nV(y,)
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This can be summarized in the "skeleton”
ANOVA table.

Source DF EMS
Treatments a-1 o+ no?
Error N-a o?

For the two-factor random effects model
a more complicated derivation yields

source DF EMS
A a-1 G’ +no_’ + nbo ]
B b-1 G’ +no  + nac,’
AB (a-1)(b-1) &* + no

Error ab(n-1) ©*
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So what is V(y,.)?
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Since Y, = W+ ot + €, U, = M+ ol+E,,
where € is the treatment mean of the
unobservable errors.

And because V(e ) = o7, V(g.) = o°/n.
This means

V(y.) = V(et) + V(e,) = 6>+ 6°/n

1 1 1e

Finally

E(MS,) = nV(y,) = nc? + ¢

Similarly, since

Y, - Y. = €, - €, Which doesn’t involve «,
MS, = (178)¥% . .(y, - y.)/(n-1)

(17a)2 2 ,..(e, - €.)/(n-1)

SO

E(MS,) = (1/a)xaxc? = ©°

14

Statistics 5303 Lecture 27 November 6, 2002

For the box machines, a = 10, b = 10, n =
4

Source DF EMS
A:Machines 9 o’ + 40+ 400/
B:Operators 9 o©°+ 40’ + 400
AB 81 ©*+no’

Error 300 o?

Note that EMS, = EMS,, + nbo .

This means that EMS, = EMS,, if and only
if 0?=0.

Since an F statistics F = MS /MS, really
tests H,: E(MS,) = E(MS,), the proper F-
statistic totest H: ¢ * = 0 is

F = MS,/Ms,, (AB MS denominator).

This is different from the fixed effect
case for which F to test H: all « = O, is

F = MS,/MS, (error MS denominator).
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Three way random effects
skeleton ANOVA

Source DF EMS
2 2 2
A a-1 G°+NO _,,~ + NCO _,° +
nbo_* + nbco ?
2 2 2
B b-1 o +nodﬁg + nccso(132 +
nac,,” + naco,
C c-1 (52+n(5dM2 + nb6d62+
2 2
nac,,” + nabo,
AB (a-1)(b-1) ©? + nddwz + r1CC5dﬁ2
AC  (a-1)(c-1) o+ no_,,* + nbo_’
BC  (b-1)(c-1) ¢+ no_,° + nac,,’
ABC (a-b)(b-1) &+ no_,’
(c-1)
Error abc(n-1) o7

This tells you, for example, that there is
no simple F that tests H: ¢ * = 0 (why?).
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