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COmd> type2anova("l ogy = (assaytenp+grow ht enp+variety)~3",\
pval : T)

WARNI NG searching for unrecogni zed macro type2anova near

type2anova

DF Type Il SS %S P-val ue
CONSTANT 1 3200.5 3200.5 0
assayt enp 7 3.0375 0.43393 0
growt ht enp 1 0.0020694 0.0020694 0. 53521
variety 1 0.55989 0.55989 4.6629%-15
assayt enp. gr owt ht enp 7 0.067156 0.0095937 0. 10245
assaytenp.variety 7 0.026029 0.0037184 0. 67307
growt htenp. vari ety 1 0.078632 0.078632 0.00028496
assayt enp. growt htenp.variety 7  0.053554 0.0076506 0. 20654
ERRCRL 63 0. 33538 0. 0053235 0.5

A quick check shows the two-way SS
interactions are correct.

Ovd> anova("logy = (assaytenp+growt ht enp+variety)”2",\
nmargi nal : T)

Model used is logy = (assaytenp+growt ht enp+variety) "2

WARNI NG cases with mssing val ues del eted

WARNING SS are Type |1l suns of squares

DF SS M
CONSTANT 1 3189.9 3189.9
assayt enp 7 3.0241 0. 43202
growt ht enp 1 0.0030172 0.0030172
variety 1 0. 56505 0. 56505
assayt enp. gr owt ht enp 7 0.067156 0. 0095937
assaytenp.variety 7 0.026029 0.0037184
grow htenp. vari ety 1 0. 078632 0. 078632
ERRCRL 70 0.38893 0. 0055562
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New Macro

[ have posted a new macro t ype2anova()
to compute ANOVA type Il SS. You can
download it through the class web page

Type Il SS:
Type I1 SS are hierarchical SS. Each
SS is the amount of the total SS
“explained” by a term after fitting the
largest hierarchical model that does
not include the term.

Ord> data <- read("", "exnpl 8. 10", qui et: T)
Read fromfile "TP1l: Stat5303: Dat a: CeCh08. dat "

Ovd> makecol s(dat a, assayt enp, growt ht enp, vari ety, activity)
Ovd> assaytenp <- factor(assaytenp)

Cmd> growt htenp <- fact or (grow ht enp)

COmd> variety <- factor(variety)

Ovd> | ogy <- log(activity)

Ovd> logy[1] <- ? # nake unbal anced.

Ovd> addmacrofile(getfilenane()) # find type2anova. mac

getfil enanme() brings up a file navigation
dialog box in which you locate and select
the file of macros. Then addmacrofil e()
adds the file to the list of files where
MacAnova looks for macros.
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Two-series Factorial Designs
(continued)

[ previously entered factors for three
replicates of a 2° factorial.
Cmd> list(A B, C D
A REAL

64 FACTOR with 2 levels

B REAL 64 FACTOR with 2 levels

C REAL 64 FACTOR with 2 levels

D REAL 64 FACTOR with 2 levels

Ovd> hconcat (A B,C, D)[run(16),] # first replicate
(1) (2) (4)
(1) 1 1 1
a 2 1 1 1
b 1 2 1 1
ab 2 2 1 1
c 1 1 2 1
ac 2 1 2 1
bc 1 2 2 1
abc 2 2 2 1
d 1 1 1 2
ad 2 1 1 2
bd 1 2 1 2
abd 2 2 1 2
cd 1 1 2 2
acd 2 1 2 2
bed 1 2 2 2
abcd 2 2 2 2

The row labels are the conventional

treatment names in standard order.

e The presence of a letter indicates the
factor was at the high level

e The absence of a letter indicates the
factor was at the low level.
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| generated a vector of 16 J,,'s by
treating the factor levels as if they were
numerical values. It corresponds to a
model of the form

}Jijkﬁ = H+ Cxi * 131 * c>(i311 * Zyk
with g = 107, &, = -, = 0.5, 8, = -8,
¥, =-7 =0.5.

Ovd> mu_ijkl < 100 + A+ 2*B + A*B + C
Q> Y <- mu_ijkl + rnorn(64) # artificial data with sigma =1

Ovd> array(tabs(Y, A B, C D, count T)
| abel s: structure("A",
DL

1
Y

"C',"D")) #sanple sizes n_ijkl

Al Bl C1 4 4
@ 4 4

B2 Cl 4 4

@ 4 4

A2 Bl C1 4 4
@ 4 4

B2 Cl 4 4

@ 4 4

These are the n

ijke*®
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One advantage of 2“ designs is that all
effects can be computed by simple con-
trasts with coefficients +1.

Omd> concoefs <- hconcat(c_a, c_b,c_ab,c_c, c_ac, c_bc, c_abc,\
c_d, c_ad, c_bd, c_abd, c_cd, c_acd, c_bcd, c_abcd)

Qrd> print(concoefs, format:"
concoef s:
(1,1) -1 -

2.0f") # all contrast vectors
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Omd> all <- vector(sun(concoefs *ybarvec)) # contrast val ues
Om> al 1 /16 # values of all 15 contrasts divided by 2"k = 274

(1) 1.1359 1.8474 0. 3268 0. 40271 0.1621
(6) 0. 11016 -0. 16991 0. 063402 0. 022282 -0. 33279
(11) 0. 047321 0. 035495 0. 017744 0.16621 0. 10664

These are all the factorial coefficients

S B, 8,8, &8, ..., 1BTE
Q> vector(effects[z][z] effects[3][2] effects[4][2,2],\
effects[16][2,2,2,2])
(1) 1.1359 1.8474 0. 3268 0. 10664
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Ond> anova("Y=A*B*C*D')
Mbdel used is Y=A*B*C*D

DF SS %] P-val ue
CONSTANT 1 7.4798e+05 7.4798e+05 0
A 1 82.573 82.573 6.1273e-11
B 1 218. 43 218.43 4.2375e-18
A B 1 6. 8349 6. 8349 0. 019937
C 1 10. 379 10. 379 0. 004674
AC 1 1. 6816 1. 6816 0. 23821
B.C 1 0. 77669 0. 77669 0. 42097
ABC 1 1. 8476 1. 8476 0. 21667
D 1 0. 25727 0. 25727 0. 6425
A D 1 0.031776 0.031776 0. 87028
B.D 1 7.0878 7.0878 0.017894
A B.D 1 0. 14331 0. 14331 0. 72886
C.D 1 0. 080634 0. 080634 0. 7948
ACD 1 0. 02015 0. 02015 0. 89653
B.C D 1 1.7681 1.7681 0. 22667
A B.CD 1 0.72778 0.72778 0. 43589
ERRORL 48 56. 585 1.1789

Omd> effects <- coefs() # get all factorial effects

Ovd> ybar _i j kl dot <- array(tabs(YABCDrrean m,\
|'abel s:structure("A D')); ybar_ijkl dot
Al Bl C1 105. 03 105. 95 Sanpl e cell neans

(o] 105. 03 105. 79
B2 C1 108. 39 107.55
(o] 109. 27 108. 75
A2 Bl Cl 105. 85 107. 03
(073 107.54 107. 84
B2 C1 111. 44 110. 39
(02 111.8 112. 05
Ovd> ybarvec <- vector(ybar _ijkldot); ybarvec
(1) 105. 03 105. 85 108. 39 111. 44 105. 03
(6) 107. 54 109. 27 111.8 105. 95 107. 03
(11) 107.55 110. 39 105. 79 107.84 108. 75
(16) 112. 05

ybarvec is the vector of y . in standard
order: (1), a, b, ab, c, ac, bc, abc, d, ad,
bd, abd, cd, acd, bcd, abcd.
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Every contrast has the form sum,
where sum_is the sum of the 2" = 8

- sum,,

Y,.'S getting weight +1 and sum_is the
sum of the 2" = 8 y,,.'s getting weight -
1. So the contrasts divided by 2' are a

difference of two means. For instance
( iJkQ(:iij gijkﬁ) 8 = U 2000 U lees :2<>(

COmd> all/8 # values of all 15 contrasts divided by 2*(k-1) = 8

(1) 2.2717 3. 6949 0. 65359 0. 80543 0. 32419
(6) 0.22033 -0. 33982 0.1268 0. 044565 -0. 66558
(11) 0. 094642 0. 07099 0. 035488 0. 33242 0.21328

Ond> neans_a <- tabs(Y, A nean:T); means_a # Factor A neans
(1) 106. 97 109. 24

COmd> neans_a[ 2] - neans_a[1] # 109.24 - 106.97
(1) 2.2717

MacAnova function yates() is a quick way
to compute these from a vector of treat-
ment means in standard order.

COnd> usage(yat es)

yates(x), x a REAL vector
Ond> yates_val ues <- yates(ybarvec); yates_val ues
(1) 2.2717 3. 6949 0. 65359 0. 80543 0.32419
(6) 0. 22033 -0.33982 0. 1268 0. 044565 - 0. 66558
(11) 0. 094642 0. 07099 0. 035488 0. 33242 0.21328

This works only when there are 2 means.
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yates() is an implementation of Yates’
algorithm, a fairly easy way to compute
all the values by hand, without writing
down all the contrasts. The algorithm
itself is no longer of much interest.

Why do we care about this?

When there is only one replicate, there is
no error estimate, and you can be uncer-
tain which terms to pool.

The Yate's effects are helpful in (a)
indicating the important effects and (b)
giving information about the error.

9
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COmd> chpl ot (ranki t s(yat es_val ues), yat es_val ues, \

title:"Normal score plot of Yates effects")
Nornal score plot of Yates effects

[ Normal scores plot of Y W 7]
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You can use stringplot () to make the
plot with labels identifying the effect if
you want:

o> labs <- vector("a","b","ab","c", "ac", "bc", "abc", \
"d", "ad", "bd", "abd", "cd", "acd", "bcd", " abcd")

These labels identify terms in the
ANOVA, not treatment combinations. It
would be more accurate to use, say,
"a.b" for the AB interaction instead of
"ab", but the extra ". " would clutter the
graph.

11
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For any terms for which the true effects
are 0, the Yates effects behave like
independent N(0,c?).

This suggests making a normal scores
plot of the Yates effects, not to test
normality, but to spot "outliers”, signi-
ficantly large effects. Large positive
effects "stick out” in the upper right
hand corner; large negative effects "stick
out” in the lower left hand corner.

Alternatively, if you prefer that all the
large effects, both positive and negative,
"stick out” together, you can make a
“half normal” plot of ‘Yates effects |
The half normal scores (computed by

hal rnorm() ) are like normal scores for
data of the form |X |, X, N(0,5?).

Let's treat the vector of means as if it
were a vector from an unreplicated
experiment.

10
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COmd> stringpl ot (rankits(yates_val ues), yat es_val ues, | abs, \
title:"Normal score plot of Yates effects",\
x| ab: " Nor mal Scores")

Nornal score plot of Yates effects

[Normal scores plot of } W 7]
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Because of the way the data were gen-
erated, you know the only non-zero true
effects are for A, B, AB and C.

Even though the C and AB effects don't
stick out as A and B do, they are the next
in order of size.

12
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COd> stringpl ot (hal f nor n{ abs(yat es_val ues)), abs(yat es_val ues), \

| abs, x| ab: "Hal f normal Scores”,\

title:"Half normal score plot of Yates effects")

Hal f normal score plot of Yates effects

3.srHalf normal plot of | Yates effects |

25t Large effects

1.5F
1+ . .
Nothing sticks c
ab bd
o.st out down here
ac bcd abc
abcdbc
cdad_cdabd d
0.5 1 1.5 2

Hal f normal Scores

A more formal procedure to identify large
effects is due to Lenth. He proposed
using a PSE = pseudo standard error.

Let s, = 1.5xmedian( | yates effects | )

Then PSE =
1.5xmedian( | yates effeots| < 2.5s)

is a crude estimate of SE(Yates effect)
Then treat (yates effects)/PSE like t-
statistics on (2* - 1)/3 DF.

13
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This suggests you may be everything
except A and B. But since AB and C are
next you probably should check their F-
statistics.

To use anova() on on the vector means
ybarvec you need factor vectors for one
replicate. You can get these from the
first 16 rows of factors A, B and C.

Ond> Al <- factor(A[run(16)]);Bl <- factor(B[run(16)])

COm> C1 <- factor(Jrun(16)]); Dl <- factor(D run(16)])

Ovd> anova("ybarvec = A1*Bl + Cl1" pval s:T)
Model used is ybarvec = A1*Bl1 +

DF SS VB P-val ue
CONSTANT 1 1.8699e+05 1.8699e+05 2.7525e-27
Al 1 20. 643 20.643 7.0516e-06
Bl 1 54, 608 54,608 5.4814e-08
Al. Bl 1 1.7087 1.7087 0. 043294
Cl 1 2.5949 2.5949 0. 01686
ERRORL 11 3. 6057 0. 32779

In this analysis, both AB and C are nom-
inally significant. But when you take
into account the number of terms that
were screened, you would certainly not
have a lot of confidence the effects were
real. (Of course, you know they are real
because you know how the data were
generated. In the real world you don't.)

15
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Omd> s_0 <- 1.5*describe(abs(yates_val ues), nedi an: T)

Om> J <- abs(yates_values) <= 2.5*s_0 # T except for a and b
Cmi>ullzlibs[!J] # effects deleted in conputing PSE

Bl

Ord> pse <- 1.5*describe(abs(yates_val ues)[J], nedi an: T) ; pse

(1) 0.33049 Pseudo standard error
Om> t_stats <- yates_val ues/pse;t_stats
(1) 6. 8739 1.9777 2.4371 0. 98094
(6) 0. 66667 -1.0282 0. 38369 0. 13485 -2.0139
(11) 0. 28637 0.2148 0. 10738 1. 0059 0. 64533
Only first two, A and B, are large
Omd> df <- (274 - 1)/3; df
(D 5
COmd> twotailt(t_stats,df) # ordinary P-val ues
(1) 0.00099661 9. 99e- 05 0. 10489 0. 058864 0. 37167
(6) 0. 53451 0. 35099 0. 71699 0. 89799 0. 10014
(11) 0. 78608 0. 83841 0. 91866 0. 36065 0. 54715
Ord> 15*twotailt(t_stats, df)
(1) 0.014949  0.0014985 1.5734 0. 88296 5.5751
(6) 8.0176 5. 2648 10. 755 13. 47 1.5022
(11) 11.791 12.576 13.78 5. 4098 8.2073
Only A and B are significant. Neither AB

interaction or C main effect was.

14
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Random and fixed effects
In the ANOVA models we have so far con-
sidered, each y, has just one random
part €, . We have considered everything

else to be non-random or fixed
parameters.

November 4, 2002

e One factor:
Y, = B+ € = Mo+ X+ gy
M, {ot} are not random but fixed
e Two factors:
Uijk - pij * 8ij = Moo Bk * dBij * Eij
u, {o}, {8}, {8} are fixed
Inference has mainly been about the
values of the fixed parameters.
e TestingH: ot = o, = ... =t =0
e Testing H;: All &, =
e Finding which «'s differ from which
(factor effects multiple comparisons).

16
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In many situations it is not realistic or
at least not sensible to view the factor
effects as fixed.

Oehlert example:

A company has 50 machines to make
cardboard cartons and they want to
understand the sources of the variation in
strength of cartons they produce.

They choose 10 machines randomly and
make 40 cartons on each machine, 400 in
all, making each box from a different lot
of cardboard.

This looks like a one-factor experiment
with a = 10 machines as factor levels
andn =n,=...=n,= 40 replicates of

each factor level.

17
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M has a different interpretation from u
in a fixed effects model where y is the
average of the means for each factor
level, that is u = y,. Instead

H = E(average strength on a random
machine)

that is, an average of all 50 means, not
not the average of the 10 means [ that
happened to be sampled.

o = J. - W is the deviation of the mean
for the i" machine sampled from the
population mean { and is a random
variable with E(«) = 0.

In random effect models, the property
E(x) = O takes the place of the the
restriction 3 o = 0. Indeed it is very
likely 2_ o =z 0.

19
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But in the factorial model
Y, = B+ ot +g 1= 1,8 = 1.0

the machine effects o's are should

probably be thought of as random. This
is true, even for each individual machine
o = W - W is fixed, because the machines

were selected randomly. So the unob-
served o« are a random sample from a

population of S0 possible values.

18
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There are really only three parameters
that might be said to be fixed.

e J = average all the u.'s over the entire
population, not the sample.

e o/ = Var(«) = variance of machine
effect = between machine variance.

e ©° = Var(e ) = variance of box strength
among boxes made on the same
machine = within machine variance.

M, o ?and c® are at the focus of
statistical inference for random effect
models. In more complicated designs
there can be many more variances..
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