Statistics 5303 Lecture 21 October 23, 2002

Polynomial contrasts with carbon wire
data (continued)

Cmd> anova("y=(temp+time+degas)"3",pvals:T)
Model used is y=(temp-+time+degas)*3

DF SS MS  P-value
D_m_u_mcm for Statistics 5303 CONSTANT 1 36154 36154 <1e-08
temp 2 41069 20535 <1e-08
time 2 80541 40.27 <1e-08
degas 1 046722 046722 0.21249
Lecture 21 temptime 4 14.814 3.7035 2.5659e-07

temp.degas 2 031361 0.15681 0.58919
time.degas 2 0.70194 0.35097 0.31036
temp.time.degas 4 0.87472 0.21868 0.56559
ERROR1 54 15.85 0.29352

October 23, 2002

Cmd> c_lin <- vector(-1,0,1); ¢c_quad <- vector(-1,2,-1)

Cmd> contrast(temp,c_lin) #temp main effect line
OO_,:UO_)_m:ﬁ estimate
(1) 585 t = 5.85/.1564 = 37.4
component: ss
. . (1) 410.67
ojzm#onmﬁwSQ:mB._:w:coﬁoﬁ 8383%%

(1) 0.1564
Cmd> contrast(temp,c_quad) #temp main effect quadratic

612-625-7023 (St. Paul) Aomauo%o@%m_a% t = 0.075/0.27089 = -0.277

component: ss

612-625-1024 (Minneapolis) @ 00235

OOBUO:QDH se
1)  0.27089

Class Web Page There is a strong linear effect of temp-
http://www.stat.umn.edu/~kb/classes/5303 Aw_smﬁc_xm (t vu 37.4) but no quadratic effect
t =0.277).
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Statistics 5303

Note SS, + SS

quad
410.69 = SS__, in the ANOVA table.

Cmd> contrast(time,c_lin) #time main effect linear

component: estimate

1) 24417 t = 2.4417/.1564 = 15.61
component: ss

(1) 71541

component: se

(1) 0.1564

Cmd> contrast(time,c_quad) #time main effect quadratic
component: estimate

@) 15 t = 1.5/.27089 = 5.537
component: ss

@ 9

component: se

(1) 0.27089

Lecture 21 October 23, 2002

= 410.67 + 0.0225 =

Both linear and quadratic main effect
contrasts in time are significant, but the
quadratic effect is much smaller. Again
SS,_ +SS__ =71.541 + 9 = 80.541 = SS

quad time
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Look at time by temperature interaction
effects.

Cmd> interactplot(y,temp,time)

Cmd> interactplot(y,time,temp)
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The lines are not very parallel, sug-
gesting interaction of time and temp.

The main effect linear contrasts are
isolating the average of linear contrasts
for each level of the other factor (along
each line) separately. That can be near
zero when slopes are of opposite signs or
curvatures in opposite directions.

[t should be fairly clear why we found
significant linear main effect contrasts,
and why there was some quadratic depen-
dence on time and none on temperature.



Statistics 5303 Lecture 21 October 23, 2002

[nteraction contrasts allow you to
extract various features of the inter-

action. First I calculate the y .

ije
Cmd> ybar_ijdot <- tabs(y,temp,time,means:T); ybar_ijdot
(1,1) 18538 19.675 20.2

(1) 21275 22575 2345
(31) 23 26475 26.488

Now [ compute linear contrasts com-
paring temp levels in each column (level
of time ) and comparing time levels in
each row (level of temp)

Cmd> lins_temp <- vector(sum(c_lin*ybar_ijdot));lins_temp
(1) 4.4625 6.8 6.2875

Cmd> lins_time <- vector(sum(c_lin*ybar_ijdot");lins_time
(1) 1.6625 2175 3.4875

Note the use of the transpose operator
to swap rows and columns so sum()
would sum accross a row rather than a
column.

The averages of these are the same as
the main effect linear contrasts
computed previously.

Cmd> vector(sum(lins_temp)/3, sum(lins_time)/3)
(1) 585 24417
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A more "black box” way to find these
separate contrasts is using contrast()
with a third argument.

Cmd> contrast(temp,c_lin,time)
component: estimate

(1) 4.4625 6.8 6.2875
component: ss
(1) 79.656 184.96 158.13

component: se
(1) 0.27089 0.27089 0.27089

The estimate component contains the
separate contrasts for each level of time .

Cmd> contrast(time,c_lin,temp)
component: estimate

(1) 16625 2175 3.4875
OOBUO:Q:# SS
(1)  11.056 18923 48651

component: se
(1) 0.27089 0.27089 0.27089

Now the estimate component contains the
separate contrasts for each level of temp.

This also provides standard errors and
SS.
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Let’s see how these contrasts vary over
levels of the other factor.

Cmd> actualtemp <- run(2200,2500,150)
Cmd> actualtime <- run(4,12,4)

Cmd>plot(actualtime,lins_temp,xlab:"Diffusion time",\
title:"Linear contrast in temp vs time")

Cmd> plot(actualtemp,lins_time,xlab:"Temperature"\
title:"Linear contrast in time vs temp")
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The pattern of linear contrasts on the
left 1ooks like a curved dependence on
time, while the pattern on the right is
fairly close to linear on temperature,

with only a hint of curvature.

Since a linear contrast is proportional to
a least squares slope, it appears the
slope on temp may depend quadratically
on time , while the slope on time depends
linearly on temperature.

Statistics 5303 Lecture 21 October 23, 2002

Linear contrast coefficients are good for
extracting information about a linear
trend, so we can apply them to the
separate linear contrast values to extract
information about their linear dependence
on the othre factor.

Cmd> sum(c_lin*lins_temp)
1) 1825

You can do this in one step using an
interaction contrast created from the
separate contrasts using outer() .

Linear by Linear

Cmd> outer(c_lin,c_lin) # same thing
1,1) 1 0 -1
(2,1) 0 0 0
(3,1) -1 0 1

Cmd> contrast("temp.time",outer(c_lin,c_lin))
component: estimate

(1) 1825

component: ss

(1) 6.6612

component: se

(1) 0.38309

This is the linear by linear interaction
contrast computed above. It is highly
significant (t = 1.8254/.38309 = 4.76).
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The SS = 6.6612 1s much less than the
overall interaction SS = 14.814, so

time.temp

there 1s a lot more interaction to
"explain”.

Linear in temp by quadratic in time

Cmd> outer(c_lin,c_quad) # linear by quadratic
(1,1 1 -2 1
2,1 0 0 0
(3,1) -1 2 -1

Cmd> contrast("temp.time",outer(c_lin,c_quad))
component: estimate

(@) 2.85

component: Ss

(1) 5415

component: se

(1) 0.66353

t = 2.85/0.66353 = 4.30 is significant
Quadratic in temp by linear in time

Cmd> contrast("temp.time",outer(c_quad,c_lin))
component: estimate

1) -0.8

component: ss

(1) 0.42667

component: se

(1) 0.66353

t = 0.8/0.66353 = 1.21 is not significant

Statistics 5303 Lecture 21 October 23, 2002

Quadratic by quadratic

Cmd> contrast("temp.time",outer(c_quad,c_quad))
component: estimate

1) -3.225

component: ss

1) 23112

component: se

(1) 1.1493

t = -3.225/1.1493 = -2.81, significant at
the 1% level.

Conclusion:

For each level of time , the response on
temp 1s curved, but the curvature varies
from level to level.

For each level of temp, the response on
time 1s curved, but the curvature varies
from level to level.

The 4 interaction contrasts SS add up to
the overall 4 degree of freedom SS

temp.time

6.6612 + 5.415 + 0.42667 + 2.3112 =
14.814.

10
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What sort of a model underlies the use of
these contrasts?

Suppose you have a two factor model
where the two factors are defined by
values x,, 1 = 1,...,aand x,, ] = 1,....b of
quantitative variables x, and x, so that
= f(x,.x,) for some function f(x,,x,).

Suppose for each fixed value x,, the
dependence of f(x,,x,) on x, is quadratic.
f(x,.x;) = B(x.) + B .(x)x, + B (x)x>2
where B (x_) are the coefficients for that

level of Xx..

11
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Now suppose the dependence of each
coefficient B (x,) on x_ is also quadratic
WOAva - moo * mOan * mOmem
B(x)=28_+8x +8& x°
B(x) =8, + 8%, + & X°

Then f(x,,x,) = & + & X

00 107 A * mQAXw
2 2
* MMQX> * m:Xb,Xw * QOXw
2 2 2y 2
+ 8, X, X+ O X X"+ & X X,

127°A" B

In the context of this model, when §, =
§,=8, =8,=0,all «f, =0 and

12 21

e the A ,DyB ., ForttestsH:¢§, =0.

e Provided &, =0, the A byB__Fort
tests H: 6 ,=0

e Provided §,,=0, the A by B, Fort

tests H: 8, =0
e Provided §,,=6, =8, =0, the A by

21 22

B, ForttestsH:6. =0

12
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One degree of freedom for non-
additivity

Part of the purpose of using interaction
contrasts is the hope they will help you
describe the pattern of interaction.

Another approach, which is particularly
useful in experiments with no replica-
tion, goes under the name of Tukey's one
degree of freedom for non-additivity.

Tukey was looking for the simplest sort
of model beyond an additive model. He
asked the question,

What sort of a model would [ get if the
data were derived by some transfor-
mation of an additive model?

13
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That is, 1n the two factor case, suppose
there is an additive model for a
response §, which is related to y by y, =
f(y,) for some function f. For example,
you might have y, = log, .y, or y. =y, .

To say that ,H_ has an additive model

means that the mean p, of y for levels 1

and j of factors A and B has the form
Moo= o+ o+ B

~,

Suppose y = g(y) is the inverse trans-
formation to f. For example, when @

10g,,Y,. U, = 9(y,) = 10% and when U
y, = aly) =y, "

=Y,

14



Statistics 5303 Lecture 21 October 23, 2002

Although it won't be exact, in many cases
the means will be similarly related.

~

That is j, = E(y,) = g(,)
Here is a 3 by 3 additive table of JI

Cmd> muij_tilde

(1,1) 1.58 2.08 1.98
(2,1) 1.33 1.83 1.73
(3,1) 1.23 1.73 1.63

Cmd> colplot(muij_tilde,title:"Column plot of muij_tilde")

Cmd> rowplot(muij_tilde title:"Row plot of muij_tilde")

Column plot of muij tilde Fow plot of maij_tilde
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[n this scale the factors act additively,
with no interaction.
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Now transform to g = 10" and make
interaction plots.

Cmd> muij <- 10”muij_tilde # muji <- g(muij_tilde)

Cmd> colplot(muij,title:"Column plot of muij")

Cmd> rowplot(muij,title:"Row plot of muij")

Column plet of muij Fow plot of muij
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The lines are no longer parallel. The
model is no longer additive.

~ ~

When 1, = g(il + o + $), and the

i
(et + B)/4 are not too big, approximately,

~ ~

My = @At:v = m_C,\H + mv,w + W
= g(p) + clet + ) + dlot, + B)°
where ¢ = g'(J1) and d = g"(J1)/2 (deriva-
:<mmo~q@@:

16
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After some simplification, leaving out
terms of 3rd or 4th degree in & and §
you can find effects {ot} and {B } such
that

\C:_ \H<t+OA + @__ + @xOﬁ@__

where & = 2d/c® = g"(J)/g'()>. This is a
model with interaction with a simple
model for the interaction effects:

of, = TP, 1=1,a ]=1,..D
requiring just 1 additional parameter 7.
In the particular case when f(u) = p” and

g(p) = u'*,

~ ~ ~ ~

¥=g'(W/g ) = (1 -p)/u”®= (1 -p)/y
Then p = 1 - . From estimates I and &

pf & and u you can get a handle on a
UOmmG_mqm:ﬂo_,BmioPcnvcza.

17
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The model

c:_ = t + Oﬁ + ,@__ + @xOﬁ,@__ + m:.
might be called the 1-dofna two-factor
model. If it is appropriate, then the null
hypothesis H: «f, = 0 all i and j is
equivalent toH: & = O
How can you fit the 1-dofna model?
You can do it in two stages:

1. Fit the additive model j,. = g+ & + 8
and from it find the fitted values

~

t:. - m + AWW + m_.
2. Compute z, = (JI, - [1)?/2 = ( + B)/2
3. Fit the model with an additional term

Y, = B+t + B + 0z +¢

1]

The F- or t-statistic for z is a test of
H: & = 0, that is H: model is additive.

18
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Here is an example from Snedecor and
Cochran Table 15.9.1. The response is
the number of insects caught in a trap
over night. There were 5 nights and
three traps.

Cmd> sned15_9 <- vector(19.1,23.4,29.5,23.4,16.6,\
50.1,166.1,223.9,58.9,64.6, 123,407.4,398.1,229.1,251.2)

Cmd> print(matrix(sned15_9,5, \
labels:structure("Trap ","Night ")),format:"11.1f")
MATRIX:

Night1 Night2 Night3
Trap 1 19.1 50.1  123.0
Trap 2 234 1661 4074
Trap 3 295 2239 398.1
Trap 4 234 589 2291
Trap 5 16.6 64.6 2512

Cmd> period <- factor(rep(run(5),3))
Cmd> trap <- factor(rep(run(3),rep(5,3)))

Cmd> anova("sned15_9=period + trap", fstat:T)
Model used is sned15_9=period + trap

DF SS MS F P-value
CONSTANT 1 2.8965e+05 2.8965e+05 75.70780 2.3739e-05
period 4 52066 13016 3.40223 0.06611
trap 2 1.7333e+05 86667 22.65276 0.00050731
ERROR1 8 30607 3825.9

Cmd> fitted <- sned15_9 - RESIDUALS # muij_hat

fitted contains the additive fit because
RESIDUALS = sned15 9 - fitted :

19
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Cmd> resvsyhat(title:"Residuals from sned15_9=period+trap vs
yhat")
Residuals from sned15_9=period+trap vs yhat
s 15 F *
t
P -
d * * *
a 05 F * .
d *
i
z 0 * ¥
e
*
4 o5t ** .
R
e
s r 1
i
*
d
s L5} * .
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Fitted Values (Yhat)

There seems to be some sort of quadratic
dependence of residuals on fitted values.

Cmd> grandmean <- describe(sned15_9,mean:T)
Cmd> z <- (fitted - grandmean)"2/2

Cmd> anova("sned15_9=period + trap + z", fstat:T)
Model used is sned15_9=period + trap + z
WARNING: summaries are sequential
DF SS MS F P-value
CONSTANT 1 2.8965e+05 2.8965e+05 322.45184 4.1032e-07
period 4 52066 13016 14.49064 0.0016932
trap 2 1.7333e+05 86667 96.48180 8.0263e-06
z 1 24319 24319 27.07330 0.0012486
_m_u_uo_uﬁ ﬂmmmﬂbmom.mﬂ
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The original SS___ = 30607 was effect-

error

ively the period by trap interaction SS.
The 1 degree of freedom SS = 24319
associated with z - 1 degree of freedom
for non-additivity or 1-dofna - has
“explained” about 80% of that. F _ =
27.07 is highly significant.

The error MS has been reduced from

3825.9 to 898.27 and both main effects
are significant.
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