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Exercise 6.4

Treatment is choice of one of four over-
night delivery services, A, B, C or D.
The response is breakage rate (percent).

Cmd>readdat a("", treat, br eakage)

Read from file "TP1:Stat5303:Data:Ch06:ex6-4.dat"
Column 1 saved as REAL vector treat

Column 2 saved as REAL vector y

Cmd>treat[run(5)] # check | got colums correctly
1 1 1

@
Cmd>treat <- factor(treat) # turn into factor

Cmd>list(treat, breakage) # see what we have
breakage REAL 20
treat REAL 20 FACTOR with 4 levels

Cmd>stats <- tabs(breakage,treat, nean: T, stddev: T)

Cmd> vboxpl ot (split(br eakage treat),ylab:" Br eakage \
x| ab: " Dellvery service", xti ckl ab: vector( C,“D'),\
title:"Box plots of breakage rate vstreatrrent )

Cmd> pl ot (st at s$rean, stats$stddev \
synbols vector ("A"',"B","C',"D"),\
x| ab: Sanpl e neans",yl ab: " Sanpl e SD',\
title:"Std dev vs nean ') # plot SD vs nean
Std dev vs mean
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The Linearity of the plot of SD vs mean
suggests a log transform may be useful.

Make a couple of residual plots.
Cmd> anova("breakage=treat") # nust precede resvsxxxx()
Model used is breakage=treat
DF SS MS

CONSTANT 1 24642
treat 3 6326 21087
ERROR1 16 179.2 11.2

Cmd>resvsyhat (title:"Breakage Residuals vs Means",\
x| ab: "G oup neans")

2464.2

Cmd>resvsrankits(title:"Breakage residuals vs normal scores")
Breakage Residuals vs Means Breakage residuals vs normal scores
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The left plot of residuals vs y shows the
same pattern as the boxplots: When u is
high, o 1s bigger than when pu is low.
This is more evidence of heteroskedas-
ticity.

The right normal scores plot is pretty
straight, not putting normality in doubt.
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Clearly o differs among groups, possibly
related linearly to the mean.
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There is an objective way to judge
whether the plot is curved enough to be
evidence against normality.

Compute the Pearson correlation r of the
normal scores and the ordered values of
residuals or standardized residuals.

For a perfect straight line r = 1, and the
less straight the smaller r is.

An objective test is to reject
H,: residuals are normal

if r is "too small”, that is if r <r,
where r_is a lower tail probability point
of the distribution of r: P(r <r ) = o.

There are few if any tables available, but
you can find an approximate value by
simulation. Still better, you can est-
imate a p-value by simulation. You
generate many sets of data with normal
residuals so that H_ is true. For each set
you find residuals and computer r.
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Here is how you might do it with these
data. [ work with the standardized
residuals because that is what was
plotted.

Cmd>M <- 5000; R <- rep(0,M # sinmulate M sanples
Cmd>nornmal _scrs <- rankits(n:20) # nornal scores

Cmd>for(i,1, M{
anova("{rnorm(20)} = treat",silent:T)
nse <- SY[ 3]/DF 3]
Ri] <- cor(nornal _scrs,
sort (RESIDUALS/ (sqrt(1 - HI1)*nse)))[1,2];;}

RESIDUALS/(sqrt(1 - Hll)*mse) is the
vector of internally standardized resid-
uals. Now compute the observed r.

Cmd> anova( " br eakage=treat", silent:T)
Cmd>nse <- SS[3]/DF[3]

Cmd>r _observed <-\
cor (normal _scrs, sort (RESI DUALS/ (sqrt(1 - HI)*nse)))[1, 2]

Cmd>r_observed # Could this be significantly |ow?
(1,1) 0.97966

5

Statistics 5303 Lecture 13 October 2, 2002

A little more on the Box-Cox transforma-
tion. On Monday | defined the Box-Cox
transformation for power p to be

y-(y-1)p whenpz0

y - log(y) whenp =0
The geometric mean GM of y,, ...
GM = ¢ = o w
Oehlert defines the Box-Cox transfor-

mation similarly, except the transformed
value is divided by GM*":

y->y® ={"-1)pl/GM"  p=z0

y - y® = GMxlog(y) p=0
This has the result that no matter what p
is, the scale of the transformed values is
comparable and indeed is in the same
units as y. This means that all SS_(p)
computed from y® are comparable. The
value of p that minimizes SS_(p) is often
a good transformation.

.Y, 1s
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Here is the simulated distribution of r
for truly normal data.

Cmd> hi st (R, 100, title:"H stogramof null distribution of r",\
xlab:"r = corr(normal scores, residuals)")
Histogram of null distribution of r
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r = corr(normal scores, residuals)

The observed value r__ = oeees 1S Clearly

not unusual. Here is a estimated lower-
tail P-value

Cmd>sun{R <= r_observed)/ M # p-val ue
(1,1) 0.449

and critical values

Cmd>J <- round(vector(.10,.05,.01,.001)*M; J
1) 500 250 50 5

Cmd>sort (R [J] # approx 10% 5% 1% and 0.1%critical val ues
(1) 096147 0.95295 0.93035 0.89905
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['m going to use boxcoxvec() to try to
select a transformation. This runs

anova() using y® and returns a vector
containing SS_(p) for several powers p.

Cmd>stuff <- boxcoxvec("treat", breakage, power:run(-1,1,.05))

WARNING: searching for unrecognized macro boxcoxvec near
stuff <- boxcoxvec(

Cmd> conpnanes( st uf f)
(1) "power"
2)"ss"

Cmd> | i nepl ot ( Pover : st uf f $power , SSE: st uf f $SS, \
title:"Box-Cox SSE vs power",ym n:0)

Box-Cox SSE vs power
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Where is the minimum?

Cmd>jmn <- grade(stuff$SS)[run(3)]; jmn
D 27 26 28

These are the indices of the three
smallest values of stuff$SS
Cmd> hconcat ( st uf f $power, st uf f $SS) [ vect or (26, 27, 28) , ]

1,1 025 13209
(21) 03 13206
(31) 035 13242

The minimum of the compute values of
Ss.(p) was for p = .3. This might suggest
a cube root (p=1/3 = .3333). Or, since .3
is not very far from O or from .5, it
might suggest a log or square root
transformation.

What values of p are consistent with the
data?
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Look at residuals of transformed data:

Cmd> anova("{l ogl0(breakage)} = treat",fstat:T) # for |og(y)
Model used is {log10(breakage)} = treat

DF SS MS F  P-value
CONSTANT 1 18.999 18.999 1039.54802 0
treat 3 097545 0.32515 17.79136 2.3827e-05
ERROR1 16 0.29241 0.018276

Cmd>resvsyhat (title:"Residuals vs yhat for |0gl0(Breakage)")

Cmd>resvsrankits(title:"Residuals vs normal scores for
| 0g10( Br eakage) ")

Residuals vs yhat for log10(Breakage)
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Cmd> anova("{breakage™(1/3)}=treat",fstat: T) # cube root
Model used is cuberoot=treat

DF MS F  P-value
CONSTANT 1 92664 92.664 2010.90670 0
treat 3 26894 0.89648 19.45466 1.3787e-05
ERROR1 16 0.73729 0.046081

Cmd>resvsyhat (title:"Residuals vs yhat for Breakage”(1/3)")

Cmd>resvsrankits(title:"Residuals vs normal scores for
Breakage™(1/3)")

Residuals vs yhat for Breakage”(1/3) Residuals vs normal scores for Breakage™(1/3)
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An approximate 1-o confidence interval
for the "correct” p is the set of all

powers p such that
SSE(D) E mmpSSE(p)XU + Fo<,1,dferror/dferror)

Cmd>const <- 1 + invF(1 - .05, 1, DF[3])/DF3]; const
(1) 1.2809

Cmd> const *m n( st uf f $SS)
(1) 169.15

You can’t exclude any p for which
SS.(p) < 1.2809x132.06 = 169.15.

Cmd> addl i nes(vector (-1, 1), rep(const*m n(stuff$Ss), 2))

Box-Cox RSS vs power

169.15xmin(SS, (p))
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Arrows and annotations added by hand. p
=0, 1/3, 1/2 are in interval but not 1.

10

Statistics 5303 Lecture 13 October 2, 2002

There are other ways to choose trans-
formations:

Regression of 10g(SD) on log(mean):
p=1-fisaguess at a good power to
stabilize ©.

Cmd>regress("{l og(stats$stddev)} = {l og(stats$nmean)}")
Model used is {log(stats$stddev)} = {log(stats$mean)}

Coef  StdErr t
CONSTANT -0.74709  0.30833
{log(stats$mean)} 0.79133 0.13199

N: 4, MSE: 0.017408, DF: 2, R"2: 0.94729
Regression F(1,2): 35.945, Durbin-Watson: 2.9443
To see the ANOVA table type 'anova()’

Cmd> CCEF # autonatically created by regress()
CONSTANT {log(stats$mean)}
-0.74709  0.79133

Cmd>sl ope <- CCEF[2] # slope is second coefficient

-2.423
5.9954

Intercept and sl ope

Cmd>1 - slope # guess of power
(1) 0.20867

p = 0.209 is in the same ballpark as was
found using boxcoxvec()

Note: You seldom, if ever, use the exact
value found by boxcoxvec() or this reg-
ression method. You usually pick a
“neat” value such asp =-1,0, 1/3 or
1/2.

12
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In some cases, some math can suggest a
transformation which will stabilize ©.

Suppose you are trying to find a
transformation y -» § = f(y).

[f f(y) is a smooth monotonic (always

increasing or decreasing) function, it is

not hard to show using the §-method that
o’ = (f'(W)sc

y
where f'(u) is the derivative of f(j).

Now suppose o * depends on y = J, say
c=0o(u) =gy

y

Then _

o = ('()g(y)
[f you want this to be constant, K?, then
use f(y) such that

f'(y) = K/4/aly)
This is a differential equation that can
be solved for f(y) in some cases.
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The MacAnova function asin(x)
sin"'(x).

Cmd>sin(asin(.123)) # sin(asin(x)) is x for -1 sx 1
1 0123
Cmd>yl <- asin(sqrt(breakage/ 100))

Cmd> anova("yl=treat",fstat:T)
Model used is yl=treat

computes

DF SS MS F  P-value
CONSTANT 1 21469 2.1469 829.11074 0
treat 3 0.15317 0.051057 19.71791 1.2686e-05
ERROR1 16 0.04143 0.0025894

Cmd>stats <- tabs(yl,treat,nean: T, stddev:T)

Cmd>resvsyhat (title:"Residuals vs yhat for
asi n(sqrt (breakage))")

Cmd> pl ot ( Mean: st at s$nmean, SD: st at s$st ddev, yni n: 0, \
title:"SD vs nean for asin(sqrt(breakage)")
Residuals vs yhat for asi SD vs mean for asin(sqrt(breakage))
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The plots show some remaining hetero-
skedasticity.

Comment. For small p, sin"'y/p = /p, so
the transformation is like a square root.
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Examples
o o)’ =g(p) =Cp
f(u) = k4/y, i.e., square root
When y is Poisson, o(u)* = J
The Poisson distribution is a distri-
bution for counts with P(y=k) = e*u“/k!

o o(p)* =g(u) = Cp?
f(u) = kxlog W,
This applies when y is Gamma or X’

o o(p)?*=g(u) = Cu(1 - p)
f(p) = sin(/p)
This applies when y = p = X/n, where X
s binomial.

Even with non-binomial data, sin”(y/y)
is often tried when y is a proportion or
percent (sin''(y/{percent/100})

Note: sin'(x) satisfies sin(sin'(x)) = x.

14
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Sometimes when the variances differ
between groups you don’'t want to work
with a transformation because

e the original scale has some special
importance

or

e you can't find a good transformation

There are approximate ANOVA or t-test
methods available, which don't work with
single pooled estimate of variance

The variance of a contrast ¥ wy,, is
VI wy.l=yw’e>/n

So an estimate of the standard error is
SE[Z:iWigi':| = \/{Ziwizsiz/ni}

The "t-statistic” to test H, 3 Wt = 0
tw - Ziwig_i-/\/{ZiWiZSiZ/ni}

does not have Student’s t-distribution,

but t, is a good approximation when

v = {3 w?2s/n/{> w's/((n-1)n2)}

16
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Here I illustrate it comparing the first
delivery services A and B with C and D:

Cmd>stats <- tabs(breakage,treat)

Cmd>vars <- stats$var; vars # sanple variances s_i"2
1) 24.7 8.3 9.3 25

Cmd>n <- stats$count; n # sanple sizes
@ 5 5 5

Cmd>ybars <- stats$nean; ybars # sanpl e neans
@ 20.2 10.6 8.6 5

Cmd>w <- vector(1,1,-1,-1) # contrast weights

Cmd>estimate <- sun{w'ybars); estimate # of contrast
@ 172

Cmd>se <- sqgrt(sunm(w‘2*vars/n)); se # std error of contrast
2.9933

@

Cmd>tstat <- estimate/se; tstat # test statistic
(1) 57461

Cmd>df <- sum(w‘2*var s/ n) "2/ sum(w*4*vars”2/ ((n-1)*n"2)); df
(1) 10.403 Approxi mate d.f.

Cmd>twotailt(tstat,df) # Approxi mate P-val ue
(1) 0.00016003 Reject HO
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Here I found SS, , the numerator of BF, by
a "white box” method:

Cmd> gr andmean <- descri be(br eakage, nean: T)

Lecture 13 October 2, 2002

Cmd>top <- sun(n*(ybars-grandnean)”~2); top
(1) 6326

Cmd> bot t om <- sun{vars*(1-n/sun{(n))); bottom

Cmd> bf <- top/bottom bf
(1) 18827

Cmd>d <- vars*(1 - n/sun(n))

Cmd>df <- sunm(d)”2/sun(d”2/(n-1)); df
(1) 10.403

Cmd>1 - cunf(bf, 3,df)
(1) 0.00016065

Here is the ordinary ANOVA.

Cmd> anova("breakage=treat", fstat: T)
Model used is breakage=treat

DF SS F  P-value
CONSTANT 1 24642 24642 220.01786 < 1e-08
treat 3 6326 210.87 18.82738 1.6873e-05
ERROR1 16 179.2 11.2

F is the same as BF, but has 16 denom-
inator d.f. instead of 10.4. The P-value
1s smaller but the conclusion is the
same.
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The Brown-Forsythe test is a modifi-
cation of the ANOVA F-test.

Define

d =s*1 -n/N)=s*((N-n)/N)
Then the statistic is

BF = SS,./2.4,

SS.. = >.n(y. - y.)” is the usual ANOVA
treatment SS.
When H: o = ... = o is true, BF is is dis-
tributed approximately as F on g-1 and v
d.f., where

v = (3d)/y(d?*/(n-1))
Whenn =n, = ..=n_=n,
>.d =((g-1)/g)2s? = (g-1)MS_ so BF = F.
This puts a premium on having equal

sample sizes, since F is also BF, but with
smaller denominator degrees of freedom.

n o
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