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Exercise 6.4

Treatment is choice of one of four over-
night delivery services, A, B, C or D.
The response is breakage rate (percent).

Cmd>r eaddat a("", treat, br eakage)

Read from file "TP1:Stat5303:Data:Ch06:ex6-4.dat"
Column 1 saved as REAL vector treat

Column 2 saved as REAL vector y

OBQv:mmZ_‘c:Am:nosmox_@o”oo_c:smoo:mﬂ:
@) 1 1 1 1 1

Cmd>treat <- factor(treat) # turn into factor

Cmd>1ist(treat, breakage) # see what we have
breakage REAL 20
treat REAL 20 FACTOR with 4 levels

Cmd>stats <- tabs(breakage,treat, nean: T, stddev: T)

Cmd> vboxpl ot (spl it (breakage, treat), yl ab: " Breakage", \
x| ab: "Del i very service", xtickl ab: vector("A","B","C"',"D"),\
title:"Box plots of breakage rate vs treatnent")

Cmd> pl ot ( st at s$nean, st at s$st ddev, \
synbol s: vector ("A","B","C","D"),\
x| ab: " Sanpl e means", yl ab: " Sanpl e SD', \
title:"Std dev vs nean") # plot SD vs mean

Box plots of breakage rate vs treatment Std dev vs mean
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Clearly o differs among groups, possibly
related linearly to the mean.
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The Linearity of the plot of SD vs mean
suggests a log transform may be useful.

Make a couple of residual plots.

Cmd> anova( " breakage=treat") # nust precede resvsxxxx()
Model used is breakage=treat
DF SS MS
CONSTANT 1 24642 2464.2
treat 3 6326 21087
ERROR1 16 1792 11.2

Cmd>resvsyhat (title:"Breakage Residuals vs Means",\
x| ab: "G oup means")

Cmd>resvsrankits(title:"Breakage residual s vs nornal
Breakage Residuals vs Means
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The left plot of residuals vs y shows the
same pattern as the boxplots: When y is
high, ¢ 1s bigger than when y is low.
This 1s more evidence of heteroskedas-
ticity.

The right normal scores plot is pretty
straight, not putting normality in doubt.
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There is an objective way to judge
whether the plot is curved enough to be
evidence against normality.

Compute the Pearson correlation r of the
normal scores and the ordered values of
residuals or standardized residuals.

For a perfect straight liner = 1, and the
less straight the smaller r is.

An objective test is to reject
H,: residuals are normal

if ris "too small”, that is if r <r_,
where r_is a lower tail probability point
of the distribution of r: P(r <r)) = o.

There are few if any tables available, but
you can find an approximate value by
simulation. Still better, you can est-
imate a p-value by simulation. You
generate many sets of data with normal
residuals so that H  is true. For each set
you find residuals and computer r.
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Here is how you might do it with these
data. [ work with the standardized
residuals because that is what was
plotted.
Cmd>M <- 5000;R <- rep(0,M # sinulate M sanples
Cmd>normal _scrs <- rankits(n:20) # normal scores
cmd>for (i, 1, M{
anova("{rnorn(20)} = treat",silent:T)
mse <- SY[ 3]/ DF 3]

Ri] <- cor(nornal _scrs,
sort (RESI DUALS/ (sqrt(1 - HI)*mse)))[1,2];;}

RESIDUALS/(sqrt(1 - Hll)*mse) is the
vector of internally standardized resid-
uals. Now compute the observed r.

Cmd> anova( " breakage=treat",silent:T)

Cmd>nse <- SS[ 3]/ DF 3]

Cmd>r _observed <-\
cor(normal _scrs,sort (RESIDUALS/ (sqrt(1 - HI1)*mse)))[1, 2]

Cmd>r_observed # Could this be significantly | ow?
(1,1) 0.97966
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Here is the simulated distribution of r
for truly normal data.

Cmd>hi st (R 100, title:"H stogram of null distribution of r",\
xl ab:"r = corr(nornal scores, residuals)")
Histogram of null distribution of r
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The observed value r_ = oores 1S Clearly

not unusual. Here is a estimated lower-
tail P-value

Cmd>sun(R <= r_observed)/ M # p-val ue
(1,1) 0.4496

and critical values

Cmd>J <- round(vector(.10,.05,.01,.001)*NM; J
1) 500 250 50 5

Cmd>sort (R [J] # approx 10% 5% 1% and 0.1%critical val ues
(1) 0.96147 0.95295 0.93035 0.89905
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A little more on the Box-Cox transforma-
tion. On Monday | defined the Box-Cox
transformation for power p to be

y- (" -1)p whenp=zO
y - log(y) whenp = 0
The geometric mean GM of y,
GM = @62 - mﬁo@ %\z.
Oehlert defines the Box-Cox transfor-

mation similarly, except the transformed
value is divided by GM"':

y - y®={ - 1)/pl/oM! pzO0

y » y'” = GMxlog(y) D=0
This has the result that no matter what p
is, the scale of the transformed values is
comparable and indeed is in the same
units as y. This means that all SS_(p)
computed from y*® are comparable. The
value of p that minimizes SS_(p) is often

a good transformation.

oo Y 18
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['m going to use boxcoxvec() to try to
select a transformation. This runs

anova() using y® and returns a vector
containing SS_(p) for several powers p.

Cmd>stuff <- boxcoxvec("treat", breakage, power:run(-1,1,.05))

WARNING: searching for unrecognized macro boxcoxvec near
stuff <- boxcoxvec(

Cmd> conpnanes( st uf f)

(1) "power"

(2)"ss”

Cmd> | i nepl ot ( Power : st uf f $power, SSE: st uf f $SS, \
title:"Box-Cox SSE vs power",ym n:0)

Box-Cox SSE vs power
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Where is the minimum?

OBQV_.B.:A-@qmamﬁmﬁc:mm@?ciw:“_.3:
(@))] 27 26 28

These are the indices of the three
smallest values of stuff$SS .

Cmd> hconcat ( st uf f $power, st uf f $SS) [ vect or ( 26, 27, 28), ]

11 025 132.09
(1) 03 13206
(31 035 13242

The minimum of the compute values of
SS.(p) was for p = .3. This might suggest
a cube root (p=1/3 = .3333). Or, since .3
s not very far from O or from .5, it
might suggest a log or square root
transformation.

What values of p are consistent with the
data?
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An approximate 1-« confidence interval
for the “correct” p is the set of all
powers p such that

SS.(p) < minSS.(p)x(1 + F_ .
Cmd>const <- 1 + invF(1 - .05, 1, DF[3])/DF3]; const

1) 1.2809

Cmd> const *mi n( st uf f $SS)
(1) 169.15

You can't exclude any p for which
mmmhnv < 1.2809x132.06 = 169.15.

Cmd> addl i nes(vector (-1, 1), rep(const*m n(stuff$SS), 2))

Box-Cox RSS vs power

169.15xmin(SS, (p))
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Arrows and annotations added by hand. p
=0, 1/3, 1/2 are in interval but not 1.
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Look at residuals of transformed data:

Cmd> anova("{l ogl0(breakage)} = treat",fstat:T) # for |og(y)
Model used is {log10(breakage)} = treat
DF SS MS F P-value
CONSTANT 1 18999 18.999 1039.54802 0
treat 3 097545 0.32515 17.79136 2.3827e-05
ERROR1 16 0.29241 0.018276

Cmd>resvsyhat (title:"Residuals vs yhat for | o0gl0O(Breakage)")

Cmd>resvsrankits(title:"Residuals vs normal scores for
| 0g10( Breakage)")

Residuals vs yhat for log10(Breakage) Residuals vs normal scores for log10(Breakage)
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Cmd> anova( " { breakage®(1/3)}=treat",fstat: T) # cube root
Model used is cuberoot=treat
DF SS MS F P-value
CONSTANT 1 92664 92.664 2010.90670 0
treat 3 26894 0.89648 19.45466 1.3787e-05
ERROR1 16 0.73729 0.046081

Cmd>resvsyhat (title:"Residuals vs yhat for Breakage”(1/3)")

Cmd>resvsrankits(title:"Residuals vs normal scores for
Br eakage™(1/3)")

Residuals vs yhat for Breakage”(1/3) Residuals vs normal scores for Breakage™\(1/3)
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There are other ways to choose trans-
formations:

Regression of 1og(SD) on log(mean):
p=1-fisaguess at a good power to
stabilize o.

Cmd>regress("{l og(stats$stddev)} = {log(stats$mean)}")
Model used is {log(stats$stddev)} = {log(stats$mean)}

Coef  StdErr t
CONSTANT -0.74709 0.30833
{log(statsmean)} 0.79133 0.13199

N: 4, MSE: 0.017408, DF: 2, R"2: 0.94729
Regression F(1,2): 35.945, Durbin-Watson: 2.9443
To see the ANOVA table type 'anova()'

-2.423
5.9954

Cmd> COEF # autonatically created by regress()
CONSTANT {log(stats$mean)}
-0.74709 0.79133

Cmd> sl ope <- CCEF[2] # slope is second coefficient

Intercept and sl ope

Cmd>1 - slope # guess of power
(1) 0.20867

p = 0.209 is in the same ballpark as was
found using boxcoxvec() .

Note: You seldom, if ever, use the exact
value found by boxcoxvec() or this reg-
ression method. You usually pick a
"neat” value such as p = -1, 0, 1/3 or
1/2.

12
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In some cases, some math can suggest a
transformation which will stabilize ©.

Suppose you are trying to find a

~

transformation y -y = f(y).

[f f(y) is a smooth monotonic (always
increasing or decreasing) function, it is
not hard to show using the §-method that

~

o/ = (f'(W)o/

y
where f'(u) is the derivative of f(u).

Now suppose G ° depends on j = i, say
c?=o0o(u)? =gl

y

Then

o2 = (f'(u)g(p)
[f you want this to be constant, K?, then
use f(y) such that

f'(y) = K//g(y)

This is a differential equation that can
be solved for f(y) in some cases.

13
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Examples
o o()*=g(u)=Cp
f(u) = ky/u, i.e., square root
When y is Poisson, o(u)* = u
The Poisson distribution is a distri-
bution for counts with P(y=k) = e*u*/k!

e o(u)? =g(u) = Cp?
f(u) = kxlog p,
This applies when y is Gamma or X*

o o()”=g(u) =Cp(l - p)

f(u) = sin” (/)
This applies wheny = p = X/n, where X
s binomial.

Even with non-binomial data, sin”'(y/y)
is often tried when y is a proportion or
percent (sin”'(y/{percent/100})

Note: sin'(x) satisfies sin(sin'(x)) = x.

14
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The MacAnova function asin(x)
sin”'(x).

Cmd>sin(asin(.123)) # sin(asin(x)) is x for -1 sx <1
(1) o0.123

Cmd>yl <- asin(sqrt(breakage/ 100))

computes

Cmd> anova("yl=treat",fstat:T)
Model used is yl=treat

DF SS MS F P-value
CONSTANT 1 21469 2.1469 829.11074 0
treat 3 0.15317 0.051057 19.71791 1.2686e-05
ERROR1 16 0.04143 0.0025894

Cmd>stats <- tabs(yl,treat, mean: T, stddev: T)

Cmd>resvsyhat (title:"Residuals vs yhat for
asi n(sqrt (breakage))")

Cmd> pl ot ( Mean: st at s$nean, SD: st at s$st ddev, ym n: 0, \
title:"SD vs mean for asin(sqrt(breakage)")

Residuals vs yhat for asin(sqrt(breakage)) SD vs mean for asin(sqrt(breakage))
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The plots show some remaining hetero-
skedasticity.

Comment. For small p, sin"/p = /p, sO
the transformation is like a square root.
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Sometimes when the variances differ
between groups you don't want to work
with a transformation because

e the original scale has some special
importance

or

e you can't find a good transformation

There are approximate ANOVA or t-test
methods available, which don't work with
single pooled estimate of variance

The variance of a contrast ¥ w .y, is
SME&IL =y wc’/n

So an estimate of the standard error is
m\,mﬁMﬁéﬁcJ.”_ = /\*Mﬁéwwmm\jh

The "t-statistic” to test H ) w =0
.HZ = M@<<@c|7\/\.“Mw<<@mw@m\DL

does not have Student’'s t-distribution,

but t 1s a good approximation when

v = {3 w2 /nF/{yw's/((n-1)n

1

ol
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Here [ illustrate it comparing the first
delivery services A and B with C and D:

Cmd>stats <- tabs(breakage,treat)

Cmd>vars <- stats$var; vars # sanpl e variances s_i"2
(1) 247 83 93 25

Cmd>n <- stats$count; n # sanple sizes
1) 5 5 5 5

Cmd>ybars <- stats$nean; ybars # sanpl e neans
1) 20.2 10.6 8.6 5

Cmd>w <- vector(1,1,-1,-1) # contrast weights

Cmd>esti mate <- sun(w‘ybars); estinmate # of contrast
1 172

Cmd>se <- sqgrt(sum(w‘2*vars/n)); se # std error of contrast
(1) 2.9933

Cmd>tstat <- estinate/se; tstat # test statistic
(1) 5.7461

Cmd>df <- sum(wr2*vars/n)~2/ sum(w*4*vars*2/ ((n-1)*n*2)); df
(1) 10.403 Approxi mate d.f.

Cmd>twotailt(tstat,df) # Approxinate P-val ue
(1) 0.00016003 Rej ect H.O.

17
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The Brown-Forsythe test is a modifi-
cation of the ANOVA F-test.

Define
d =s?(1 - P\zv = Mﬁz - n)/N)

1 1 1

Then the statistic is

BF =SS /) d
SS._. = >.n(y. - y..) is the usual ANOVA
treatment SS.
When H: o = ... = « 1s true, BF is Is dis-
tributed approximately as F on g-1 and v
d.f., where

v = (Td)/¥(d?/(n-1))

Whenn =n,=..=n =n,

2

S d = ((g-1)/Q)5s” = (g-1)MS. 50 BF = F.

This puts a premium on having equal
sample sizes, since F is also BF, but with
smaller denominator degrees of freedom.
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Here | found SS,_ ., the numerator of BF, by
a "white box” method:

Cmd> gr andnean <- descri be(br eakage, mean: T)

Cmd>top <- sun{n*(ybars-grandmean)”2); top
(1) 6326

Cmd> bott om <- sun{vars*(1-n/sumn(n))); bottom

Cmd> bf <- top/bottom bf
(1) 18.827

Cmd>d <- vars*(1 - n/sum(n))

Cmd>df <- sun(d)”2/sun(d”2/(n-1)); df
1) 10.403

Cmd>1 - cunF(bf, 3, df)
(1) 0.00016065

Here is the ordinary ANOVA.

Cmd> anova( " breakage=treat",fstat:T)
Model used is breakage=treat

DF SS MS F P-value
CONSTANT 1 24642 24642 220.01786 <1e-08
treat 3 6326 210.87 18.82738 1.6873e-05
ERROR1 16 1792 11.2

F is the same as BF, but has 16 denom-
inator d.f. instead of 10.4. The P-value
1s smaller but the conclusion is the
same.
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