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Statistics 5303 Lecture 12 September 30, 2002
Checking Assumptions

Checking assumptions is always in the
context of some model.

The one-way ANOVA model for the CRD
design is

Yy, = B* + o+ €, 1=1,..4,] = 1,...n

1

The multiple regression model is
Ji = @o * @_x: ¥ V@MXB e ? V@_sz * g
1= 1,..n; X,....x,_predictor variables

The e's - disturbances or errors - always
have zero mean, that is p_= 0.

Both these models are of the form
y = predictable part + unpredictable part
The fact that the parts are added

together rather than, say, multiplied, is
an important feature of both models.

In both cases the predictable part is
itself a sum of various terms.



Statistics 5303 Lecture 12 September 30, 2002

These models have 3 assumptions about
the €'s in common

e All €'s are independent
For ANOVA model, this implies

1. Different observations in the same
group are independent

2.Data from different groups are
independent

e The variances of all €'s are all ¢?
For ANOVA model, this implies that
each group has the same variance

e The €¢'s are normally distributed

You can combine all these assumptions in
one statement:
£'s are a random sample from N(0,c?)

The three assumptions are listed in

decreasing order of importance.
Independence (most important)
Constant ¢ (next most important)
Normal distribution (least important)
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Vocabulary:

Homoskedastic errors all have the same
variances. This is the condition of
homoskedasticity.

Heteroskedastic errors do not all have
the same variances. This is the condition
of heteroskedasticity.

In ANOVA heteroskedasticity means o
differs between groups, often depending
on the value of U

In ANOVA heteroskedasticity means o
depends on the values of the predictors.
An important case is when ¢ depends on
the mean §, + B, x,. + ... + B X..
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The condition that y_ = O essentially

means that your model for the mean of |
Is correct.

e [n regression, dependence of y on the
X's 1s linear and that you haven't left
out any important x's.

e In ANOVA situation, you haven't left
out any factors such as time of day
that might affect mean of y.

The possibility of such unknown factors
s one of the reasons randomization is
important. If you have randomized well,
on the average unknown factors have no
systematic effect, although they can
increase the variability.
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You need the assumptions to be true, or
at least true "enough”, so that your
statistical methods will "work as
advertised”.

e Confidence intervals have the intended
coverage

e Significance tests have the intended
type 1 error rate €, whether compari-
sonwise, experimentwise, strong
experimentwise, false discovery rate,

When sample sizes are moderately large,
ANOVA methods based on means such as
the F test work quite well even when the
data are not normal. That is, they are
robust against non-normality.

Inference about variances tends to be
very non-robust against non-normality.

When sample sizes are close to equal, the
F-test is fairly robust against hetero-
skedasticity, but standard errors are off.
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Probably all these assumptions are never
exactly true.

With any assumption, there are at least

two issues:

e How to diagnose that the data do not
satisfy the assumption (a violation)

e What to do when you find a violation

| discussed ion Lecture 7 (September 18)
some ways to diagnose lack of indepen-
dence when you collect data sequentially
in time. 1 did not give any remedy, since
that would lead us too far in the direc-
tion of time series analysis.

Proper randomization is the best pro-
tection against lack of independence,
since the randomization itself induces
Independence.
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Generally, even with dependent (not
independent) errors estimates of means
and regression coefficients are unbiased,
so there is no systematic error.

However, the estimate of ¢® can be very
biased and hence standard errors, t-
statistics and confidence intervals
computed the usual way can be
misleading.

[ did a simulation with g = 5 treatments,
each with n = 4 observations. For each
serial correlation values -.8, -.6, .-4, -
2,0, .2, .4, .6 and .8 | did an ANOVA
with simulated 2500 sets of normal data
with o = 1, but with correlated errors.

-08|-06|-04-02| 0 | 02|04 |06 | 08

118 |1 1.16 | 1.12 | 1.06 | 1.01 | 0.90 | 0.77 | 0.59 | 0.35

Row 1: Serial correlation

Row 2: Average MSE

Average MSE z 1 indicates bias.
Positive serial correlation = serious
underestimation of ©
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Essentially all methods for diagnosing
violation of assumptions are based on
study of the observed residuals

_s:.mcs_utmu_):_uciu_ms_ut*|OA
This is because you can't observe the
true residuals €, =y, - J, = Y, - B* - .
You should check residuals as a standard

part of every analysis of a designed
experiment.

Comment:
Even when the {¢ } are independent, the

i
{r i are not. For one thing, in each group

MAM__ME_\:_ - O. SO _‘.:: - IMAM__M}L_\:_.

In fact, correlation of two residuals in
the same group is -1/n.

And, even when o_ is constant, c® may

not be constant. In the ANOVA case,
Vir.]1 = ((n-1)/n)oc® = (1 - 1/n)oc* < ¢°

1]
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e When you find non-normal errors, you
often also find heteroskedastic errors.

e When you find heteroskedastic errors,
you often also find non-normal errors.

Although this often happens, there are
lots of exceptions. Because heterosked-
asticity 1s more important than non-
normality, it should have take priority in
seeking a remedy.

The principal remedial tool available is
re-expression of the response, that is
analyzing some transformation of the
response instead of the response itself.

Common transformations are log(y), v/y.
y'*, 1/4/y and 1/y.

Because y® = 1/y° reverses order (if y, >
y,, then 1/y° < 1/y/, p > 0), Oehlert

suggests using -y™® which preserves
order. | don’'t see the advantage.

10
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Remark:

log, (y) = log_(y)/10g (10) = log (y)/2.3026
log (y) = log (10)xlog, (y) = 2.3026xlog. (y)
That is, they differ by a multiplicative
constant and hence serve equally well (o

badly) to correct non-normality and/or
non-constant ©

This 1s a reflection of the following fact:

[f you have two L:,m:wﬂo_,_,:mfo:m
y, = f.(y)and y, = f(y)

such that
y, = (y, - a)/b
then they are completely equivalent in

terms of their use to cope with viola-
tions of assumptions.

11
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The Box-Cox power family of trans-
formations for a positive response
variable is

g =(y-1)/p, p=0

y = log(y),p =0

Clearly, when p =z O, the Box-Cox
transformation, is equivalent to the
power transformation y = y°, which
includes 4/ 1/2) and 17y (p = -1).
Oehlert uses a slightly different defini-

tion which matches what MacAnova macro
boxcox() ooBUcﬁmm

y - {(y" - 1)/pt/GM, p =
y » GMxlog(y) P =
where GM = €4 is the @@OBQDO

mean. Since this is a multiple of the
first definition, it is equivalent to the
first definition and to y* or log(y).

12
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Here is a very small computation to
demonstrate that for p near 0, (y*-1)/p is
very close to log(y):

Cmd>y # short vector of positive data

(1) 035376 0.46584 2.1432 11.08 1.8897
Cmd>p <- .0001; hconcat (log(y), (y*p - 1)/p)
(1,1) -1.0391 -1.0391

(2,1) -0.76392 -0.76389

(3,1) 0.76229 0.76232

(41) 24052 2.4055
(5,1) 0.63643 0.63645

hconcat() binds its arguments side by
side to form a matrix or table.

Here's a comparison of the simple form
(y* - 1)/p and the form involving GM.

Cmd>p <- .5

Cmd>(y?p - 1)/p # Sinple formof Box-Cox transfornation
(1) -0.81045 -0.63495 0.92793 4.6573 0.74933

Cmd>GM <- exp(sun{log(y))/5); GM# geomnetric mean
(1) 14921

Cmd> (y?p - 1)/ (p*GW'(p-1)) # as defined by Cehlert
(1) -0.98996 -0.77559 1.1335 5.6889 0.9153

Cmd> boxcox(y, p) #as conputed by boxcox()
(1) -0.98996 -0.77559 1.1335 5.6889 0.9153

13

September 30, 2002

Statistics 5303 Lecture 12 September 30, 2002

Because residuals may have different
variances, it is common to standardize
them in some way.

VIr,1=(1 - 1/n)c” = (1 - H)o” H, = 1/n,

i i
The quantity H, is called the leverage.

anova() and regress() always compute a
vector HIl , the same length as y, which
contains the leverages for each case.

Since o° is estimate by MS_, the
internally standardized residuals are

s, = r,//{(1 - H)MS

1]

These all have the same variance, which
s approximately, but slightly < 1

They are called internally Studentized,
since MS_ the estimate of variance
includes a contribution from r . If, say,
r. 1s an outlier, 1t inflates MS_,

1]

14



Statistics 5303 Lecture 12 September 30, 2002

The externally studentized residuals are

t, = Vidf - 1)s, x//(df - s.%)

ij error ij

These have the property that when all the
assumptions are satisfied, t, has a t-

distribution on d - 1 d.f.

ferror

They are called externally studentized

since it can be shown that

ﬁ__ - E:_ N PI_J\/\“: _ I:_Vmef:J
where 17V is the mean of the responses
in group j, omitting case i and MS_"" is
the MS_ in an ANOVA of the data omitting
y,- Thus the estimated standard error in

the denominator is computed by data that
is "external” to y,..

15
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Cloud seeding example from the text.

Cmd>data <- read("","exnpl 6.1", quiet:T)
Read from file "TP1:Stat5303:Data:0eCh06.dat"

Cmd>treat <- factor(vector(data[,1]))
Cmd>rainfall <- vector(data[, 2])

Cmd>list(treat,rainfall)
rainfall REAL 52
treat REAL 52 FACTOR with 2 levels

Cmd>n <- tabs(rainfall,treat,count:T);n
&N 26 26

Cmd>anova("rainfall = treat")
Model used is rainfall=treat

DF SS MS
CONSTANT 1 4.7831e+06 4.7831e+06
treat 1 1.0003e+06 1.0003e+06
ERROR1 50 1.2526e+07 2.5052e+05

Cmd>list(H1) # HI was conputed by anova()
HIl REAL 52

Cmd>unique(H 1) # all the values are the sane
(1) 0.038462

Cmd>1/n # In 1-way ANOVA, HI = 1/n[i]
(1) 0.038462 0.038462

You can check normality of residuals
using a normal scores or rankit plot.
When the residuals are normal, this plot
should be close to linear.

16
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Cmd>resvsrankits(title:"Normal scores plot of cloudseeding
resi dual s")

Normal scores plot of cloudseeding residuals
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Curved in an asymmetrical way, indica-
ting a skewed distribution of residuals.

resid) computes both s, (column 2) and
t, for each residuals, plus other quan-
tities.

17
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Cmd>stuff <- resid() # must follow anova()

Cmd>stuff[run(5),] # first 5 rows

Depvar StdResids HIl Cook'sD t-stats

(1) 12026 21149 0.038462 0.089458 2.1941
(2) 8301 1.356 0.038462 0.036773 1.3677
(3) 3724 0.42341 0.038462 0.0035855 0.41991

(4) 3455 0.3686 0.038462 0.0027174 0.3654
(5) 321.2 0.31909 0.038462 0.0020364 0.31621

Column 1 is y,, followed by s, H , D, and
t,. D, 1s Cook’s distance, a measure how
much influence the case had on the

parameter estimates. It can be increased

by large leverage (H ) or large t..
Cmd>J <- grade(abs(stuff[,5]), down:T)
J now contains the case numbers of the

data rearranged in order of decreasing
It

18
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Cmd> stuff[J[run(10)],]
Depvar StdResids HIl Cook'sD t-stats

(27) 27456 4.6936 0.038462 0.44059 6.2123
(28) 1697.8 25587 0.038462 0.13094 2.7171
(29) 1656 2.4735 0.038462 0.12237 2.6138
(1) 1202.6 2.1149 0.038462 0.089458 2.1941
(2) 830.1 1.356 0.038462 0.036773 1.3677
(30) 978 1.0921 0.038462 0.023855 1.0943
(52) 41 -0.89218 0.038462 0.01592 -0.89033
(51) 7.7 -0.88485 0.038462 0.015659 -0.88289
(50) 17.5 -0.86488 0.038462 0.01496 -0.86266
(49) 314 -0.83656 0.038462 0.013997 -0.83401

These are the rows associated with the
residuals with the largest _ﬁ_. _ The
first is large and might be an outlier.
You can test it by comparing it with

t , a Bonferronized cut point.

1-(/n)/2,n-g-1

You Bonferronize by n because there are

potentially n values of t, to test.

Cmd>invstu(l - .025/52, DF[ 3] -1)
(1) 35135

max(|t, |) = 6.21 > 3.51 confirms that

case 27 may be an outlier. You could
delete 1t, and refit, and test the new
residuals.
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