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LSD (Least Significant Difference)
C(o) = t - t

/2,0t grror ot/2,N-g

Use of the LSD controls the per com-
parison error rate, and when preceded by
an F-test, controls the per experiment
error rate. But it can have a large
strong experimentwise error rate
(consider the case when j << j = j, =

e T )
BSD (Bonferroni Significant Difference)
Colat) = t(o(/K)/Z,dferror = Yo N-g

where K = g(g-1)/2
This controls the strong experimentwise
error rate, but can be quite conservative
(actual significance << intended).
Consider the case
M. o M, all very different but p = J |

The S experimentwise error rate will be
close to /K << o
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Summary of XSD methods based on
“significant” differences

These methods all are based on a signif-
icant difference XSD where X is L, H, B
or some other letter.
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For each method, you compute XSD as
XSD = C (o)xSE[Y, - U .1,

where the estimated standard error is
SE[Y. - U] = s,v/{1/n + 1/n}
=s,4/(2/n) whenn = n =n,
s, = +/IMS,} and C () is a constant which
s specific to the method.

When the sample sizes {n} are not all
equal, the value of XSD may be different
for different pairs of treatments.

Effects o« and « are significantly
different when |&, - &, | > XSD. Thus

XSD is the minimum significant
difference for the method.
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HSD
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Honestly Significant Difference
C,(ct) = q(g, df__)/y/2
where q_ (g, df__) is an upper probability
point of the Studentized range
distribution.

Usually the formula for HSD is given as
HSD = q (g, df__)xs /4/n

Scheffe Significant Difference
CS(OO = \/{(g_1)xFo(,g—1,dferror}

This controls the family wise error rate
for the entire family of all contrasts.

In MacAnova, you can compute these
XSD's by

COnd> stderror <- sgrt(mse)*sqrt(2/n) # standard error

COmd> Isd <- invstu(1-alpha/2,dferror)*stderror # LSD

COmd> K <- g*(g-1)/2 # number of pairwise comparisons

COnd> bsd <- invstu(1-(alpha/K)/2,dferror)*stderror # BSD

COmd> hsd <- (invstudrng(1-alpha,g,dferror)*stderror/sqrt(2)#HSD

Omd> ssd <- sgrt((g-1)*invF(1 - alpha, g-1, dferror)) # SSD

SSD
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Example (from Ex. 3.3). Study of resis-
tance to trampling. 20 lanes (EU’s) in
New Hampsire alpine meadows, with S
treatments, 0, 25, 75, 200, 500 walking
passes by 70 kg person. Response is
average vegetation height one year later.

Omd> data33 <- read(™,"pr3.3",quiet:T) # Problem 3.3 data
Read fromfile "TP1l: St at 5303: Dat a: CeCh03. dat "

Ond> treat <- factor(data33[,1]) # create treatment factor
Ond> height <- vector(data33][,2])

COmd> anova("height = treat" fstat:
Model used is height = treat
DF SS

CONSTANT 1 2782. 4
treat 4 243.16 60. 79 29. 48371 5.9878e-07
ERRCRL 15 30. 928 2.0618

Ond> g <-5; n <- 4; dferror <- 15 # or dferror <- DF[3]
COmd> mse <- SS[3]/DF[3]; mse
ERRCRL

%] F P-val ue
2782.4 1349. 49826 0

2.0618

COnd> stderror <- sqrt(2*mse/n); stderror
(1) 1. 0153 Estinmat ed SE[ al phahat _i

Ond> alpha <- .05 # signficance level
QOmd> Isd <- invstu(1-alpha/2, dferror)*stderror

o> K <-g*(g-1)/2; K

(1) 10

Ord> bsd <- invstu(1 - (alpha/K)/2, dferror)

Ovd> hsd <- invstudrng(1 - alpha, g, dferror)*stderror/sqrt(2)
Ond> ssd <- sqrt((g-1)*invF(1 - alpha, g-1, dferror))*stderror
COnd> vector(Isd, bsd, hsd, ssd) # 4 XSD's
(1) 2.1641 3.286

- al phahat _j]

3.1354 3. 5497
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Here are commands that compute the
constants for g groups, g = 4, 5, ..., 100

with n = 4 observations per group.
Omd> G <-run(4,100); n<-4
QOmd> Edf <- n*G - G # vector of error df for all g's
Omd> K <- G*(G-1)/2 # vector of Bonferronizing constants
Ord> c_| <-invstu(l - alpha/2,Edf ) #for LSD
Ord> c_b <-invstu(l - (alpha/K)/2,Edf) # for BSD
Omd> c_h <-invstudrng(1 - alpha, G, Edf)/sqrt(2) # for HSD
Omd> c_s <- sgrt((G-1)*invF(1-alpha,G-1,Edf)) # for Scheffe

Q> Ilneplot(G hconcat(c_l,c_b,c_h,c_s),ymin:0,xmin:0,\
title:"Constants for LSD, BSD HSD and SSD” \
xlab:"g = Number of groups", ylab "Constant")
Constants for LSD, BED, HED and S50

Lo C, for SSD

Ll =N - R = Y
o
g
5
=
=]
W
o

i xc for HSD
xc for LSD

20 a0 20 0 Too
g = Humber of groups

Clearly HSD is preferred to BSD (it's
smaller); SSD should not be used.
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Here are summaries of comparisons of all
pairs by these methods:
QOrd> pairwise("treat",.05,Isd:T)
| 5 -3.79

| 4 -2.79
| 3 0.18

| 2 0.205

1 6.21

Cnd> pairwise("treat",.05,bsd:T)
| 5 -3.79

I 4 -2.79
| 3 0.18

| 2 0.205

1 6.21

COnd> pairwise("treat",.05,hsd:T)
| -3.79

-2.79
0.18
0. 205
6.21

PNwWwhAO

There is no Scheffe option for
pai rwi se(), so | did it "by hand":

Cnd> sort(ybars)[-5] + ssd
(1) 11.55

12. 55 15. 525 15.55

Cnd> sort(ybars)

(1) 8 9 11.975 12 18

Here are just the constants C,:

COnd> c <- vector(invstu(1-alpha/2, dferror), \
invstu(1 - (alpha/K)/2, dferror), \
invstudrng(1 - alpha, g, dferror)/sqrt(2), \
sqrt((g-1)*invF(1 - alpha, g-1, dferror)))

QOnd> vector(c,labels:vector("LSD","BSD","HSD","Scheffe"))

LSD BSD HSI Scheffe
2.1314 3. 286 3.088 3. 496
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The reason the Scheffe method is so bad
Is because 1t is controlling the family-
wise error for the infinite set of all
contrasts ) wot, 2w, = 0.

Recall the standard error of a contrast is
SE, = V{Xwi/nls,
The family of confidence intervals
YWt =y wa x/{(g-1F | IxSE,
has simultaneous coverage 1 - o, that is
P(any interval does not cover its 3 W )

= ot and
P(all intervals cover their Y w«) = 1-o

[t can be shown that
max (¥ w o /SE ) = /{(g-1)xF}, F=MS_/MS,
The quantity on the left is the largest
possible t-statistic for testing H:>_ W .
SO

P(max (¥ w .ot /SE )>/{(g-1)xF
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HSD is designed just for pairwise com-
parisons, although it can be extended to
all contrasts.
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You compare | w & | with
HSD,, = q,(g.N-g{> | w,|/2}s,

Note that{y |w | xs }/2 is not a multiple
of SE[}. W], the estimated standard
error of ¥ w.o. You probably shouldn't
use this; it's usually worse than Scheffe.

BSD is a particular case of the Bonferroni
method for a family of K contrasts
defined by weights {w '}, 2=1,...K,

chosen in advance of seeing the data.

You compare each observed contrast

| z:iWiR<;(i| Wlth t(o(/K)/Z,NfgSAEW

LSD is a particular case of the naive
method for all contrasts. You compare
| T we | with t,, SE

9
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Bonferroni const for E comparisons with HED & Scheffe constants

<__“‘“Constant for Bonferroni

e Constant for Scheffe
o
K=6 Constant for HSD
2.5H
/ / K=15

1 L 1 .
20 40 &0 a0 100

The Bonferroni constant t for K

(ot/K)/2 N-g
contrasts is plotted against K together
with the HSD constant for paired compar-
isons and the Scheffe constant for all
contrasts in the case g = 5, df = 15.

[t shows that when you are testing 6 or
fewer pre-chosen contrasts, Bonferroni is
better than HSD. If you are testing more
than 15 contrasts, then Scheffe is better
than Bonferroni.
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There are only two situations in which
you should consider the Scheffe method:

1. You want to test K picked in advance
contrasts where K is substantially
greater than the number g(g-1)/2 of all
pairwise contrasts.

2. You want to test one or more con-
trasts selected after seeing the data.

This graph on the next overhead compares
the constants t_, .. (Bonferroni),

Ji(g-1)F, ..} (Scheffe) and q (g.dfe)//2
(BSD) for K from 1 to 100.
g = S and dfe = 15 was assumed.

Only the Bonferroni constant depends on
K.
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A disadvantage of the HSD is that it
assumes equal sample sizes.

A natural path to extend it to unequal
sample sizes is to use the standard error

SElY,. - y,.] = V/{s7(1/n + 1/n)}
in place of \/{sD2x2/n} in computing an
Honestly Significant Difference

HSD, = (q.(g.df, _)/4/2)/{s*(1/n + 1/n)}

The use of HSD,, is known as the Tukey-
Cramer method.

September 27, 2002
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Unlike the HSD in the equal sample size
case, Tukey-Cramer is not an “exact”
method, since the Sudentized range of
means based on unequal sample sizes
doesn’t have the usual Studentized range
distribution.

But it's close. | did a simulation with
10,000 replications with g = 4 and n = (5,
10, 15, 20). For each replication I
computed I computed the "t" statistic

g(g Yo /\/ 1/n * 1/0(”)}

where gm and gm were the the smallest
and largest means based on n,, and n
cases. It exceeded q,(4,46)/,/2 = 2.666
469 times out of 10000, not significantly
different from 500/10,000 = .05. In
general, it's conservative, i.e. the error
rate is a little less than the intended «.
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If &, - &, is significantly different
from O, _you repeat thls process com-
paring o< w2 " o(m and o< @ o< , with the
significant difference for g-2 groups.
You do something similar & - &, is

significantly different from O.

You keep stepping down, doing the same
thing at each stage, but using the
significant difference appropriate to the
number of groups that might be homo-
geneous.

The SNK (Student-Neuman-Keuls method)
s of this form. At each stage when you

are checking whether o< - o( s signi-
ficant, it is compared W1th
(q(i-j+1, N-g)/+/2)/1s *(1/n +1/n )},

the HSD for g =1 - ] + 1 groups
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Sequential Methods

These are methods that use different
significant differences at different
stages.

September 27, 2002

First you compare & , Where &m :
min({x}) and &, = max({ }) with the
significant difference for g groups.

[f they are not significantly different,
you stop and say there are no significant
differences and draw a line under all
ordered effects or means.

If oy - o, IS signific:antlg dAifferentA
from O, you compare ., - o, and o, -
o, With the significant difference for

g - 1 groups. If neither is is significant
you stop with a pattern of lines like

1 2 3 ... g-1 ¢
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Here is an illustration, using the same

data as previously.
COmd> ybars <- tabs(height,treat,means:T)

COnd> ybar_sorted <- sort(ybars);ybar_sorted
(1) 8 9 11. 975 12 18

COnd> id <- grade(ybars);id # treatment numbers
5 4

2 1
Ord> mse <- SS[3)/DF[3] # mean square error s"2
Ond> hsd5 <- sgri(mse/n)*invstudrng(l - alpha,5,15); hsd5
(1) 3.1354
hsd5 is the HSD for g = 4, df__ =15.

Cnd> ybar_sorted[5] - ybar_sorted[1] # largest difference
(1) 10

Since 10 > 3.1354, 18 and 8 are
significantly different and you go on to
check the range of the two sets of 4
consecutive means

Ord> hsd4 <- sgrt(mse/n)*invstudrng(1 - alpha,4,15); hsd4

(1) 2.9265

hsd4 is the HSD for g = 4, df

Cmd> J1 <-run(2);J2 <- run(4,5)

=15.

error

Cnd> ybar_sorted[J2] - ybar_sorted[J1]

(1) 4 9

These are 12 - 8 and 18 - 9. Both exceed

2.93 so0 12 and 8 are significantly
different as are 18 and 9.
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We continue on, looking at subsets of
size 3:

QOmd> hsd3 <- sgrt(mse/n)*invstudrng(1 - alpha,3,15); hsd3
(1) 2.6374

hsd3 is the HSD for g = 3, df

Qmd> J1 <-run(3);J2 <- run(3,5)

COnd> ybar_sorted[J2] - ybar_sorted[J1]
(1) 3.975 3

These are 11.975 - 8, 12 - 9 and 18-
11.975. All exceed 2.6374 so no group of
3 means appears to be homogeneous.

Q> hsd2 <- sgrt(mse/n)*invstudrng(1 - alpha,2,15); hsd2
(1) 2.1643

=15.

error

6. 025

hsd2 is the HSD for g = 2, df__ =15.
QOnd> J1 <- run(4);J2 <- run(2,5)
COnd> ybar_sorted[J2] - ybar_sorted[J1]
(1) 1 2.975 0.025 6

1 =Y,. - Y,. < 2.1643 and hence the two
smallest means are not significantly
different. Similarly. y,. - Y,. = .025 <
2.1643. The other differences > 2.1643.
You can summarize this by

QOvd> ybar_sorted

(1) 8 9 11,975 12 18
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Here’'s the black box way to get to the
same point.
Ovd> pairwise("treat",.05,snk:T)
| -3.79
| 4

| 3
| 2
1

-2.79
0.18
0. 205
6.21

Note that the SNK method gives the same
pattern of significant differences as the
LSD method (not usually the case).

Unlike the LSD method, it has a low
strong experimentwise error rate and low
FDR = false discovery rate.
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