Statistics 5303 Lecture 11 September 27, 2002

Summary of XSD methods based on
“significant” differences

: L These methods all are based on a signif-
Displays for Statistics 5303 icant difference XSD where X is L, H, B

or some other letter.

Lecture 11 For each method, you compute XSD as

XSD = C,()xSE[Y, - U],
where the estimated standard error is

SElY, - y.)=s,/{1/n + 1/n}
s,»/(2/n) whenn, = n =n,

J

s, = +/{MS_} and C («) is a constant which

p X
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When the sample sizes {n} are not all
equal, the value of XSD may be different
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Effects o« and « are significantly
different when TM - &, | > XSD. Thus

XSD 1s the minimum significant
difference for the method.
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LSD (Least Significant Difference)
Clx) =t =1

L ot/ 2,df orror o/2,N-g

Use of the LSD controls the per com-
parison error rate, and when preceded by
an F-test, controls the per experiment
error rate. But it can have a large
strong experimentwise error rate
(consider the case when j, << j = |, =

= t@v
BSD (Bonferroni Significant Difference)
Colet) = ﬁ%_c\m.&%oﬂ = T, N-g

where K = g(g-1)/2

This controls the strong experimentwise
error rate, but can be quite conservative
(actual significance << intended).
Consider the case

M, e B, all very different but p = p_
The S experimentwise error rate will be
close to /K << «,

Statistics 5303

HSD
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Honestly Significant Difference
C.(o0) = q(g, df__)//2
where q (g, df__) is an upper probability
point of the Studentized range
distribution.

Usually the formula for HSD is given as
HSD = q.(g, df__)xs,//n

Scheffe Significant Difference

Cile) = i(g-1)xF, . 1}

error

This controls the family wise error rate
for the entire family of all contrasts.

[In MacAnova, you can compute these
XSD's by
Ond>

stderror <- sgrt(mse)*sqrt(2/n) # standard error

SSD

Cnd> Isd <- invstu(1-alpha/2,dferror)*stderror # LSD

Cnmd> K <- g*(g-1)/2 # number of pairwise comparisons

Cmd> bsd <- invstu(1-(alpha/K)/2,dferror)*stderror # BSD

CGmd> hsd <- (invstudrng(1-alpha,g,dferror)*stderror/sqrt(2)#HSD
Cmd> ssd <- sqrt((g-1)*invF(1 - alpha, g-1, dferror)) # SSD
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Example (from Ex. 3.3). Study of resis-
tance to trampling. 20 lanes (EU’s) in
New Hampsire alpine meadows, with S
treatments, 0, 25, 75, 200, S00 walking
passes by 70 kg person. Response is
average vegetation height one year later.

COrd> data33 <- read(™,"pr3.3",quiet:T) # Problem 3.3 data
Read fromfile "TP1l: St at 5303: Dat a: CeCh03. dat "

COrd> treat <- factor(data33[,1]) # create treatment factor
COrd> height <- vector(data33[,2])

CGrd> anova(“height = treat" fstat: T
Model used is height = treat

DF SS %53 F P-val ue
CONSTANT 1 2782. 4 2782.4 1349. 49826 0
treat 4 243.16 60. 79 29.48371 5.9878e-07
ERRCRL 15 30. 928 2.0618

Q> g <-5; n <- 4; dferror <- 15 # or dferror <- DF[3]

COrd> mse <- SS[3]/DF[3]; mse
ERRORL
2.0618

Qrd> stderror <- sqrt(2*mse/n); stderror
(1) 1. 0153 Esti mated SE[ al phahat _i -

QOrd> alpha <- .05 # signficance level

COmd> Isd <- invstu(1-alpha/2, dferror)*stderror

o> K<-g%g-1)/2; K

(1) 10

Crd> bsd <- invstu(l - (alpha/K)/2, dferror)

Qrd> hsd <- invstudrng(1 - alpha, g, dferror)*stderror/sgrt(2)

al phahat _j ]

Qmd> ssd <- sqrt((g-1)*invF(1 - alpha, g-1, dferror))*stderror

Cmd> vector(lsd, bsd, hsd, ssd) # 4 XSD's

(1) 2. 1641 3. 286 3.1354 3.5497
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Here are summaries of comparisons of all
pairs by these methods:

Qmd> pairwise("treat",.05,Isd:T)
| 5 -3.79
| 4 -2.79
| 3 0.18
| 2 0. 205
1 6.21

Cnd> pairwise("treat",.05,bsd:T)
-3.79
-2.79
0.18
0. 205
6.21

RPNWhO

CQmd> pairwise("treat",.05,hsd:T)
| -3.79
| ] -2.79
| 0.18
| 0. 205
6.21

There is no Scheffe option for
pai rwi se(), so | did it "by hand":

Cmd> sort(ybars)[-5] + ssd
(1) 11.55

Qrd> sort(ybars)
(1) 8 9

PNWhO

12.55 15. 525 15.55

11. 975 12 18

Here are just the constants C,:

Qmd> c <- vector(invstu(1-alpha/2, dferror), \
invstu(1 - (alpha/K)/2, dferror), \
invstudrng(1 - alpha, g, dferror)/sqrt(2), \
sgrt((g-1)*invF(1 - alpha, g-1, dferror)))

Cnd> vector(c,labels:vector("LSD","BSD","HSD","Scheffe"))
LSD BSD HSD Scheffe
2.1314 3.286 3.088 3. 496
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Here are commands that compute the
constants for g groups, g = 4, 5, ..., 100

with
Ond>
Ond>
Ond>
Qrd>
Ond>
Ond>
Ond>

Qmd>

H R W H a0

n = 4 observations per group.
G <-run(4,100); n <-4

Edf <- n*G - G # vector of error df for all g's

K <- G*(G-1)/2 # vector of Bonferronizing constants
c_| <-invstu(1 - alpha/2,Edf ) #for LSD
¢_b <-invstu(l - (alpha/K)/2,Edf) # for BSD

¢_h <-invstudrng(1 - alpha, G, Edf)/sqrt(2) # for HSD
c_s <- sqrt((G-1)*invF(1-alpha,G-1,Edf)) # for Scheffe

lineplot(G,hconcat(c_l,c_b,c_h,c_s),ymin:0,xmin:0,\
title:"Constants for LSD, BSD, HSD and SSD"\

xlab:"g = Number of groups", ylab:"Constant")

Constants for LED, BSD, HSD and 53D

September 27, 2002
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Clearly HSD is preferred to BSD (it's

smal

ler); SSD should not be used.
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The reason the Scheffe method is so bad
Is because it is controlling the family-
wise error for the infinite set of all
contrasts ) wet, 2. w, = C.

Recall the standard error of a contrast is
SE, = V/iZ w?/nls,
The family of confidence intervals
M#S\#OA = M#<<#Oﬁ * /\AAQI._ V_HTQ.@-Tz-mwxmmi
has simultaneous coverage 1 - «, that is

P(any interval does not cover its  w.ot)
= ot and

P(all intervals cover their ) W o) = 1-

[t can be shown that

max (¥ W /SE ) = /{(g-1)xF}, F=MS_/MS_
The guantity on the left is the largest
possible t-statistic for testing H:>. w o,
SO
P(max (> .w

~ A~

oL /SE,)>/{(g-1)xF

1

b =

1-o4,g-1.,N-g
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HSD is designed just for pairwise com-
parisons, although it can be extended to
all contrasts.

You compare | ¥ w & | with

HSD, = q (g.N-g){> | w,|/2}s,
Note that{}" _ W, |xs }/2 is not a multiple
of SE[Y w ], the estimated standard

error of ¥ w.. You probably shouldn't
use this; it’'s usually worse than Scheffe.

BSD is a particular case of the Bonferroni
method for a family of K contrasts
defined by weights {w '}, ¢=1,...K,

chosen in advance of seeing the data.

You compare each observed contrast

| S w & | with t SE,

LSD is a particular case of the naive
method for all contrasts. You compare
|Swa | witht_, SE, .

9

(ot/K)/2,N-g

ot/2.N-g
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There are only two situations in which
you should consider the Scheffe method:

1. You want to test K picked in advance
contrasts where K is substantially
greater than the number g(g-1)/2 of all
pairwise contrasts.

2. You want to test one or more con-
trasts selected after seeing the data.

This graph on the next overhead compares
the constants t (Bonferroni),

(x/2)/K ,dfe

Ji(g-1)F, .} (Scheffe) and q (g.dfe)//2
(BSD) for K from 1 to 100.

g = S and dfe = 15 was assumed.

Only the Bonferroni constant depends on
K.

10
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Bonferroni const for E comparisons with HED & Scheffe constants

Affjﬁ_ﬂo:m.ﬁmsﬁ for Bonferroni

S ———_Constant for Scheffe
R
\ KM@/ Constant for HSD
2.9H W\\\\bﬂ\\\\—ﬁ}” Hm
Z0 40 £ B0 100
The Bonferroni constant t_, . for K
o N-g

contrasts is plotted against K together
with the HSD constant for paired compar-
isons and the Scheffe constant for all
contrasts in the case g = 5, df = 15,

error

[t shows that when you are testing 6 or
fewer pre-chosen contrasts, Bonferroni is
better than HSD. If you are testing more
than 15 contrasts, then Scheffe is better
than Bonferroni.
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A disadvantage of the HSD is that it
assumes equal sample sizes.

A natural path to extend it to unequal
sample sizes 1s to use the standard error

SEly, - y.J= /Is2(1/n + 1/n)}

in place of /\ﬁmmxm\i in computing an
Honestly Significant Difference

HSD, = (q(g.df_ )//2)/{s*(1/n + 1/n)}

The use of HSD, is known as the Tukey-
Cramer method.

12
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Unlike the HSD in the equal sample size
case, Tukey-Cramer is not an “exact”
method, since the Sudentized range of
means based on unequal sample sizes
doesn’'t have the usual Studentized range
distribution.

But it's close. I did a simulation with
10,000 replications with g = 4 and n = (5,
10, 15, 20). For each replication |
computed [ computed the "t" statistic

EI@ - clsv\iwm:\:@ +1/n,)}

where y, and y,, were the the smallest
and largest means based on n,, and n
cases. It exceeded q (4,46)/,/2 = 2.666

469 times out of 10000, not significantly
different from 500/10,000 = .05. In
general, it's conservative, 1.e. the error
rate is a little less than the intended «.
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Sequential Methods

These are methods that use different
significant differences at different
stages.

September 27, 2002

~ ~

First you compare o, - &, Where &, =
min({x}) and & = max({x}), with the

1

significant difference for g groups.

[f they are not significantly different,
you stop and say there are no significant
differences and draw a line under all
ordered effects or means.
If ot - ot IS mG:#:om::c &:m_,m:m
from O, you compare o, - &, and &, -
&, With the significant difference for
g - 1 groups. If neither is is significant
you stop with a pattern of lines like

1T 2 3 g-1 ¢

14
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If &, - &, is significantly different
2,03 0, you ﬁmnmmﬁ this process com-
paring oAa-s - QE and of-: Q , With the

significant difference for g-2 @ﬁo%m.

~

You do something similar & - o, is
significantly different from O.

You keep stepping down, doing the same
thing at each stage, but using the
significant difference appropriate to the
number of groups that might be homo-
geneous.

The SNK (Student-Neuman-Keuls method)
s of this form. At each mﬁm@m when you

are checking whether Q Qe Is signi-
ficant, it is compared <<;j
(g (i-j+1, N-g \)\m Vs (/0 +1/n )b,

the HSD for g’ -]+ 1 @_,o%m.

15
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Here is an illustration, using the same
data as previously.

Cmd> ybars <- tabs(height treat,means:T)
Cnd> ybar_sorted <- sort(ybars);ybar_sorted

(1) 8 9 11. 975 12 18
Cmd> id <- grade(ybars);id # treatment numbers
(1) 5 4 3 2 1

CGmd> mse <- SS[3]/DF[3] # mean square error s"2
CQmd> hsd5 <- sqrt(mse/n)*invstudrng(1 - alpha,5,15); hsd5

Apv.w.pwmh
hsd5 1s the HSD for g = 4, df___ =1S5.

Oé_v<Umﬁ|monmaﬁ-<cm_ﬁ|mo:mo_E#_mammﬁa_:m_ﬁm:om
(1) 10

Since 10 > 3.1354, 18 and 8 are
significantly different and you go on to
check the range of the two sets of 4
consecutive means

Qmd> hsd4 <- sqrt(mse/n)*invstudrng(1 - alpha,4,15); hsd4

AHV N.@Nmm
hsd4 is the HSD for g = 4, df__ =15.

Od> J1 <-run(2);J2 <- run(4,5)

Ond> ybar mo:matm_ ybar_ wo:m&.E
(1)

These are 12 - 8 and 18 - 9. Both exceed
2.93 so 12 and 8 are significantly
different as are 18 and 9.

16
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We continue on, looking at subsets of

size 3:

Ord> hsd3 <- sgrt(mse/n)*invstudrng(1 - alpha,3,15); hsd3
(1) 2.6374

hsd3 is the HSD for g = 3, df =15,

error
Cmd> J1 <-run(3);J2 <- run(3,5)

Qrd> ybar_sorted[J2] - ybar_sorted[J1]
(1) 3.975 3

These are 11.975 -8, 12 - 9 and 18-
11.975. All exceed 2.6374 so no group of
3 means appears to be homogeneous.

Qrd> hsd2 <- sqgrt(mse/n)*invstudrng(1 - alpha,2,15); hsd2
(1) 2.1643

hsd2 is the HSD for g = 2, df =15,

error
Qmd> J1 <-run(4);J2 <- run(2,5)

Qav<cmq|mo:mgtmu-<_omﬂ|monmatﬁ
(1) 1 2.975

6. 025

0. 025 6

1 =Y,. - Yu. < 2.1643 and hence the two
smallest means are not significantly

different. Similarly. y,. - U,. = .025 <

2.1643. The other differences > 2.1643.

You can summarize this by

Crd> ybar_sorted

(1) 8 9 11.975 12 18

17
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Here's the black box way to get to the
same point.

CQmd> pairwise("treat",.05,snk:T)
| -3.79
| -2.79
| 0.18
| 0. 205
6.21

PNWhO

Note that the SNK method gives the same
pattern of significant differences as the
LSD method (not usually the case).

Unlike the LSD method, it has a low
strong experimentwise error rate and low
FDR = false discovery rate.
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