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Statistics 5303 Lecture 9 September 23, 2002

Error Rates

This has to do when you are testing a
family of null hypotheses H , 1 =1, ... K.

Examples:

All possible pairwise comparisons
Qﬁ-oN__;M@A_.M@

K =g(g-1)/2

All comparisons with a control, say
treatment 1

X -, 1=22,..,(
K=g-1

All polynomial contrasts
K=g-1
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Assume that
e For each H in the family you have a

test statistic, say T,

e A definite procedure based of the
values of T, T, ..., T, to determine, for

each H_ in the family, whether you
should reject it or not reject it.

The T.'s might be t-statistics, F-
statistics, X* statistic or any other
appropriate statistic.

Let p, be the P-value associated with T.
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We have considered two procedures:

o Naive method: Reject H  if T is
significant at significance level .
Equivalently, reject H if p, < «.

» Bonferroni method: Reject H_ if T, is

significant at significance level «/K.
Equivalently, reject H  1f Kp, < o

Neither of these makes any use of the
values of T, for other hypotheses.
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A test of a single hypothesis is charac-
terized by two error rates, the type I
error rate
o« = P(reject H, |H, true)

and the type Il error rate

8 = P(not reject H, |H, false)
Of these, only « is under direct control.
When there are K hypotheses, the situa-

tion 1s more complicated since several
type | error rates can be defined.

Per comparison or per hypothesis
error rate

This 1s the probability € of a type I error
relative to any specific H_:

e = P(reject H, | H, true)
e For the « level naive method the per
comparison error rate is € =

e For the « level Bonferroni method, the
per comparison error rate is € = ot/K
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Per Experiment or familywise
error rate

This 1s the probability € of rejecting at
least one H_, when all H_ are true.

e Naive method: « < € < K, usually
much greater than «

e Bonferroni method: /K < € < «, often
close to o« when « is small

An important part of this definition is

the condition that all H_ are true.

[n many situations, this is very far
fetched since you may have very strong
evidence that some of the H  are false.

But this is probably the most commonly
referred to type of error rate when
testing a family of hypotheses.
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False Discovery Rate FDR

When you reject H , you want think you
have discovered something, some effect,
some difference of effects. For this
reason, Oehlert calls a hypothesis rejec-
tion a discovery.

e A true discovery occurs when the
tested hypothesis actually is false.

o A false discovery occurs when you
reject a true null hypothesis, that is,
commit a type I error.
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When testing a family of hypotheses, you
will make k discoveries where 0 < k <K
(k = 0 means no H,, are rejected; k = K

means all H are rejected.

Some unknown number £, 0 < § <Kk, of
these discoveries will be false discov-
eries, because the test hypothesis is
true.

The proportion of false discoveries is
pfd = 0, whenk =0
pfd = 2/k < 1 when k > 0.

pfd 1s an unobservable random variable

The false discovery rate is
FDR = u . = E[pfd]

pfd
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When all H_ are true, pfd is either O or 1
and

FDR

P(reject any H_)
Experimentwise error rate.

Some multiple testing methods are
designed to control type I errors so that
FDR < €. For such a method clearly
limits the experimentwise error rate to
€, but also controls the error rate when
some H  are false.

The actual value of FDR depends on how
many H, 's are false. When all are false,
FDR = 0. If all H are false except 1,
say, H,,, then FDR = P(reject H_)).

a1’
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Reminder: FDR and other error rates are
computed on the basis of the testing
procedure which tests all H . The

decision for any particular H may depend
on all the P-values, not just on p.

This means that the FDR and other error
rates may depend on how “untrue” H_ is,

for instance how different o« and «, are..

10
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Strong familywise error rate

This is P(make any false discoveries)
= P(reject at least 1 true H )

This probability is not based on the
assumption that all H  are true.

The actual value depends on how many
H,'s are false and may depend on how

false they are.

e If all H, are false, the strong family-
wise error rate = 0.

e If all H, are true, the strong family-
wise error rate = ordinary familywise
error rate

The Bonferroni method (reject if Kp, < «)
has strong familywise error rate < g, but
if H, 1s true and H is false, i = 2, ..., K,

it has strong familywise error rate =
e/K.

11
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Suppose

e Each H,: concerns one parameter ©..
often defined in terms of other par-
ameters. For example, with 3 groups,
andH:0 =0,1=1, 2,3, where
0, =K -, 0, =K - A, O, = KX - X

e You have a procedure for computing a
simultaneous confidence intervals for
every 6,

A set of intervals CI, CL, ..., Cl, are

simultaneous confidence intervals

provided:

P(all Cl, Cl, ....Cl, cover the true 8's)

=1 -¢gor atleast > 1 - ¢ for some
specified €. A CI "covers” its para-
meter 6 if 8 is in the CI (a random
event).

The simultaneous confidence level is
1 - €.

12
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You can base a test procedure for the

family {H,} where H :6 = § (often 8§ = 0)

as follows:

1. Calculate all CI, 1 =1, ..., K

2. Reject H_ if Cl. does not cover &, that
is & is not in Cl.

[f 1 - € is the simultaneous confidence

level, then the strong familywise error
rate < e.

When all the H, concern a hypothesis that

can be tested by a t-statistic, the Bon-
ferront method is a method based on
simultaneous confidence intervals

,SEI6)

~

B =6 *+1t

i i (/2
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There are at least two other procedures
based on the Bonferroni approach, the
Holm and FDR procedures.

They are similar in that the first step is

to order the H  in order of increasing p-
values p..

The Holm procedure works from the
smallest p on up, rejecting H 's until it
finds a p value too big to reject at which
point no further H 's are rejected, using a

Bonferroni-based procedure at each stage.

The FDR procedure works from the
largest p down, checking each using a
Bonferroni-based criterion until a small
enough one is found largest. The corres-
ponding hypothesis and all hypotheses
associated with smaller p's are also
rejected.

14
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Holm procedure

0. Find ordinary P-values for the K
hypotheses and sort them in increasing
order p,, <P, < P, and reorder
the H, the same way as H . H,, .-
Io:c

1. If Kp,, > €, stop, rejecting no H_..
Otherwise reject H,,, and continue
testing the remaining K-1 hypotheses.

2.1f (K - 1)p,, > € stop. Otherwise re-
ject H ,, and continue testing the

33935@ _A m jccogmmmm

]- Continue in a similar <<mc until cOC
find a (K-j+ 1)p,, > €, at which point
you declare H_, is not rejected, 1 > ]

Thus at each stage, you apply the Bonfer-
roni inequality to the set of hypotheses
not yet rejected.

15
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FDR procedure
0. Order the P-values and H_'s as for the

Holm method.
1. If the largest P-value p,, < €, stop and

_,m_.moﬁm:_._o_m.

2. If not, look at p, .. If Kp, < (K-1)e
stop and reject all H ,, 1 < K-T, that is
all <<_§ as small or mBm:Q, v-<m_cmm

] If cOC have not _,m_moﬁma m:c H
look at p,;,.
reject all H

o)’ b. > ._
If Kp;, < j€, stop and

o)’ ~ M ._

That is, the more p-values too large to
reject that you find, the lower the cut
point for a Bonferronized p-value. If you

reach the final stage and the smallest p,
leads to reject only if Kp,, < €, that is
Py = €.

16
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Here 1 apply these four methods, naive,
Bonferroni, Holm and FDR to the Problem
3.3 data.

Cmd>dat a33 <- read("","pr3.3",quiet:T) # Problem 3.3 data
Read from file "TP1:Stat5303:Data:OeCh03.dat"

Cmd>treat <- factor(data33[,1]) # create treatnent factor
Cmd> 1| ongevity <- vector(data33[,2]) # create response vector

Cmd> anova( "l ongevity=treat",fstat:T)
Model used is longevity=treat

DF SS MS F P-value
CONSTANT 1 27824 2782.4 1349.49826 < 1le-08
treat 4 24316 60.79 29.48371 5.9878e-07

ERROR1 15 30.928 2.0618

Cmd>W <- natrix(enter(1 -1 000 10-100 100-10\
1000-1 01-100 010-10 0100 -1\
001-10 0010-1 0001-1), 5

Cmd>print(W, format:"4.0f") # all 5*(5-1)/2 conparisons

W1:

(11 1 1 1212 0 0 0 0 00O

1) 1 0 0 0111000

81 0-1 00-100110

(41) 0 0-1 0 0-10-101

61 0 00-100-10-1-1

Cmd>K <- ncol s(W); K # (5*4/2)

(1) 10

Cmd>tstats <- rep(0,K) # place to put t-statistics

Cmd>for (i, 1, K){
result <- contrast(treat,W][,i]) # uses colum i of W
tstats[i] <- result$estimate/result$se
i}
Cmd> hypes <- vector ("nmul-mu2", "nmul-mu3", "nmul- nu4", "mul- mu5",\
"nmu2- mu3", "nu2- nu4", "nu2- nu5", " mu3- nu4", " mu3- nu5", \
" mu4- nus")

17
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Cmd>pvals <- twotailt(tstats, 15)
Cmd> set | abel s(pval s, hypes) # add | abels to pvals

Cmd> pval s
mul-mu2 mul-mu3 mul-mu4 mul-mu5 mu2-mu3
mu2-mu4 mu2-mu5 mu3-mu4 mu3-mu5 mud-mu5
2.8671e-05 2.7416e-05 2.3821e-07 6.1028e-08 0.98068
0.0098395 0.0013111 0.010344 0.0013786 0.3403

Cmd>J <- grade(pvals) # indices of increasing pval ues

Cmd>J # smallest is p[4], next is p[3],
Q) 4 3 2 1 7
(6) 9 6 8 10 5

Cmd>p_sorted <- pvals[J]; p_sorted
mul-mu5 mul-mu4 mul-mu3 mul-mu2 mu2-mu5
mu3-mu5 mu2-mu4  mu3-mu4 mud4-mu5 mu2-mu3
6.1028e-08 2.3821e-07 2.7416e-05 2.8671e-05 0.0013111
0.0013786 0.0098395 0.010344 0.3403 0.98068

The first eight p, < .05 so the naive

method finds all differences significant
at the 5% level except u, - W, and J, - M.

Cmd>K*p_sorted # Bonferroni zed p-val ues
mul-mu5 mul-mu4 mul-mu3 mul-mu2 mu2-mu5
mu3-mu5 mu2-mu4  mu3-mu4 mud4-mu5 mu2-mu3

6.1028e-07 2.3821e-06 0.00027416 0.00028671 0.013111
0.013786 0.098395 0.10344  3.403 9.8068

Now only 6 are less than .05, and u, - U,
and W, - M, are significant in addition to
My - tmmja My = Hs.

..., largest is p[5]

18
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Here are the modified P-values for the
Holm procedure.
Cmd>run(K, 1)*p_sorted # Hol m zed p-val ues
mul-mu5 mul-mu4 mul-mu3 mul-mu2 mu2-mu5
mu3-mu5 mu2-mu4 mu3-mu4 mu4-mu5 mu2-mu3

6.1028e-07 2.1439e-06 0.00021933 0.0002007 0.0078666
0.0068929 0.039358 0.031033 0.6806 0.98068

The 9" is the first > .05 so the the first
8 are rejected. This is the same result
as for the naive method, but controls the
strong family wise error rate.

Finally, here are modified P-values for
the FDR method.

Cmd>K*p_sorted/run(K, 1) # "FDR-ized" p-val ues
mul-mu5 mul-mu4 mul-mu3 mul-mu2 mu2-mu5
mu3-mu5 muz2-mu4 mu3-mud4 mud4-mu5 mu2-mu3

6.1028e-08 2.6468e-07 3.427e-05 4.0958e-05 0.0021852
0.0027571 0.024599 0.034481 1.7015 9.8068

Starting at the high end, the third largest
P < .05, so you again reject H_,,, ..., H

o(8)*
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