Statistics 5303

September 23, 2002

Displays for Statistics 5303

Lecture 9

September 23, 2002

Christopher Bingham, Instructor

612-625-1024 (Minneapolis) 612-625-7023 (St. Paul)

Class Web Page

/www.stat.umn.edu/~kb/classes/5303

© 2002 by Christopher Bingham

Error Rates

family of null hypotheses H_{oi} , i = 1, ... K. This has to do when you are testing

Examples:

All possible pairwise comparisons

$$[-\alpha]$$
, $1 \leq 1 \leq j \leq 0$

- $\alpha_i \alpha_j$, $1 \le i < j \le g$ K = g(g-1)/2• All comparisons with a control, say treatment 1 $\alpha_i \alpha_j$, i = 2, ..., g K = g 1

$$x_1 - x_2, i = 2, ..., ($$

$$K = g - 1$$

All polynomial contrasts

$$K = g - 1$$

Assume that

- For each H_{o_1} in the family you have a test statistic, say T_i
- A definite procedure based of the values of T_1 , T_2 , ..., T_k to determine, for each H_{0i} in the family, whether you should reject it or not reject it.

The T_i 's might be t-statistics, F-statistics, χ^2 statistic or any other appropriate statistic.

Let p_i be the P-value associated with T_i .

We have considered two procedures:

- **Naive method:** Reject H_{0i} if T_i is significant at significance level α . Equivalently, reject H_{0i} if $p_i \leq \alpha$.
- **Bonferroni method**: Reject H_{0i} if T_i is significant at significance level α/K . Equivalently, reject H_{0i} if $Kp_i \leq \alpha$.

Neither of these makes any use of the values of T_j for other hypotheses.

ယ

error rate terized by two **error rates**, the type I A test of a single hypothesis is charac-

$$\alpha = P(reject H_0 | H_0 true)$$

and the type II error rate

$$\beta = P(\text{not reject H}_0 | H_0 \text{ false})$$

type I error rates can be defined. tion is more complicated since several When there are K hypotheses, the situa-

Per comparison or per hypothesis error rate

relative to any specific H_{oi}: This is the probability ϵ of a type I error

$$\varepsilon = P(reject H_{0i} \mid H_{0i} true)$$

- comparison error rate is $\varepsilon = \alpha$
- For the \varpropto level Bonferroni method, the per comparison error rate is $\epsilon = \varpropto/K$

September 23, 2002

Per Experiment or familywise error rate

least one Hoi, when all Hoi are true This is the probability ϵ of rejecting at

- Naive method: $\alpha \le \epsilon < K\alpha$, usually much greater than α
- Bonferroni method: α/K ≤ ε < α, often close to ∝ when ∝ is small

the condition that all H_{oi} are true An important part of this definition is

evidence that some of the H_{oi} are false fetched since you may have very strong In many situations, this is very far

referred to type of error rate when testing a family of hypotheses. But this is probably the most commonly

False Discovery Rate FDR

When you reject H_{oi} , you want think you have *discovered* something, some effect, some difference of effects. For this reason, Oehlert calls a hypothesis rejection a *discovery*.

- A true discovery occurs when the tested hypothesis actually is false.
- A false discovery occurs when you reject a true null hypothesis, that is, commit a type I error.

When testing a family of hypotheses, you will make k discoveries where $0 \le k \le K$ (k = 0 means no H_{0i} are rejected; k = K means all H_{0i} are rejected.

Some unknown number ℓ , $0 \le \ell \le k$, of these discoveries will be false discoveries, because the test hypothesis is true.

The proportion of false discoveries is pfd = 0, when k = 0 pfd = 1/k < 1 when k > 0.

pfd is an unobservable random variable The *false discovery rate* is FDR = µ_{pfd} = E[pfd]

7

œ

When all H_{oi} are true, pfd is either 0 or 1 and

FDR = P(reject any H_{oi})
= Experimentwise error rate

Some multiple testing methods are designed to control type I errors so that FDR $\leq \epsilon$. For such a method clearly limits the experimentwise error rate to ϵ , but also controls the error rate when some H_{oi} are false.

The actual value of FDR depends on how many H_{0i} 's are false. When all are false FDR = 0. If all H_{0i} are false except 1, say, H_{0i} , then FDR = P(reject H_{0i}).

Reminder: FDR and other error rates are computed on the basis of the testing procedure which tests all H_{oi}. The decision for any particular H_{oi} may depend on all the P-values, not just on p_i.

This means that the FDR and other error rates may depend on how "untrue" H_{0i} is, for instance how different \bowtie_1 and \bowtie_2 are..

10

Statistics 5303

Strong familywise error rate

This is P(make any false discoveries) = P(reject at least 1 true H_{oi})

This probability is not based on the assumption that all \mathbf{H}_{oi} are true.

The actual value depends on how many H_{oi} 's are false and may depend on how false they are.

- If all H_{0i} are false, the strong family-wise error rate = 0.
- If all H_{oi} are true, the strong familywise error rate = ordinary familywise error rate

The Bonferroni method (reject if $Kp_i \leq \infty$) has strong familywise error rate $\leq \epsilon$, but if H_{01} is true and H_{01} is false, i=2,...,K, it has strong familywise error rate = ϵ/K .

Suppose

Each H_{oi}: concerns one parameter θ_i. often defined in terms of other parameters. For example, with 3 groups, and H_{oi}: θ_i = 0, i = 1, 2, 3, where

 $\theta_1 = \alpha_1 - \alpha_2$, $\theta_2 = \alpha_1 - \alpha_3$, $\theta_3 = \alpha_2 - \alpha_3$

You have a procedure for computing a simultaneous confidence intervals for every Θ_i

A set of intervals CI_1 , CI_2 , ..., CI_K are simultaneous confidence intervals provided:

P(all CI, CI, ...,CI, cover the true θ_i 's) = 1 - ϵ or at least \geq 1 - ϵ for some specified ϵ . A CI "covers" its parameter θ if θ is in the CI (a random event).

The simultaneous confidence level is 1 - ε.

You can base a test procedure for the family $\{H_{0i}\}$ where H_{0i} : $\theta_i = \delta_i$ (often $\delta_i = 0$) as follows:

- 1. Calculate all Cl_i, i = 1, ..., K
- 2. Reject H_{0i} if CI_i does not cover δ_i , that is δ_i is not in CI_i .

If 1 - ϵ is the simultaneous confidence level, then the strong familywise error rate $< \epsilon$.

When all the H_{oi} concern a hypothesis that can be tested by a t-statistic, the Bonferroni method is a method based on simultaneous confidence intervals

$$\Theta_{i} = \hat{\Theta}_{i} \pm t_{(\omega/2)/K} \hat{SE[\hat{\Theta}_{i}]}$$

There are at least two other procedures based on the Bonferroni approach, the **Holm** and **FDR** procedures.

They are similar in that the first step is to order the H_{o_i} in order of increasing pvalues p_i .

The Holm procedure works from the smallest p on up, rejecting H_o's until it finds a p value too big to reject at which point no further H_o's are rejected, using a Bonferroni-based procedure at each stage

The FDR procedure works from the largest p down, checking each using a Bonferroni-based criterion until a small enough one is found largest. The corresponding hypothesis and all hypotheses associated with smaller p's are also rejected.

Holm procedure

- 0. Find ordinary P-values for the K hypotheses and sort them in increasing order $p_{(1)} \leq p_{(2)} \leq ... \leq p_{(K)}$, and reorder the H_{0i} the same way as $H_{0(1)}$, $H_{0(2)}$, ...,
- 1. If $Kp_{(t)} > \epsilon$, stop, rejecting no H_{0i} .

 Otherwise reject $H_{0(t)}$ and continue testing the remaining K-1 hypotheses
- 2. If $(K 1)p_{(2)} > \varepsilon$ stop. Otherwise reject $H_{o(2)}$ and continue testing the remaining K-2 hypotheses.
- j. Continue in a similar way until you find a (K-j+ 1)p_(j) > ε, at which point you declare H_{o(i)} is not rejected, i ≥ j
 Thus at each stage, you apply the Bonferroni inequality to the set of hypotheses not yet rejected.

FDR procedure

September 23, 2002

- 0. Order the P-values and $H_{_{0}}$'s as for the Holm method.
- 1. If the largest P-value $p_{(\kappa)} \leq \epsilon$, stop and reject all H_{0} 's.
- 2. If not, look at $p_{(K-1)}$. If $Kp_{(K-1)} \leq (K-1)\epsilon$, stop and reject all $H_{0(i)}$, $i \leq K-1$, that is all with as small or smaller P-values j. If you have not rejected any $H_{0(\mathfrak{Q})}$, $\mathfrak{Q} > j$.
- look at $p_{(j)}$. If $Kp_{(j)} \leq j\epsilon$, stop and reject all $H_{0(i)}$, $i \leq j$

That is, the more p-values too large to reject that you find, the lower the cut point for a Bonferronized p-value. If you reach the final stage and the smallest $p_{(1)} \leq \epsilon$, that is $p_{(1)} \leq \epsilon$.

Statistics 5303

Statistics 5303

```
3.3 data.
                           Bonferroni, Holm and FDR to the Problem
                                                       Here I apply these four methods, naive
```

```
Cmd> £
W1:
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
                                                                                                            Cmd>
                                                                                                                                                                                                                         Cmd> data33 <- read("","pr3.3",quiet:T) # Problem 3.3 data
Read from file "TP1:Stat5303:Data:OeCh03.dat"</pre>
                                                                                                                                                                                                                                                                                                         Model used is longevity=treat
                                                                                                                                                                                                                                                                                                                    Cmd> anova("longevity=treat",fstat:T)
                                                                                                                                                                                                                                                                                                                                                      Cmd> treat <- factor(data33[,1]) # create treatment factor</pre>
                                                                                         Cmd> tstats <- rep(0,K) # place to put t-statistics
                                                                                                                                                                                                                                                                                     CONSTANT
                                                                                                                                                                                                                                                                                                                                     Cmd> longevity <- vector(data33[,2]) # create response vector</pre>
                                                                                                            K \leftarrow mcols(W1); K \# (5*4/2)
10
                                                                                                                                                                                                     print(W1,format:"4.0f") # all 5*(5-1)/2 comparisons
          hypes <- vector("mu1-mu2","mu1-mu3","mu1-mu4","mu1-mu5",\
"mu2-mu3","mu2-mu4","mu2-mu5",\
"mu3-mu4","mu3-mu5",\
                                                                      for(i,1,K){
                                                                                                                                         00011
                                                 result <- contrast(treat,W1[,i]) # uses column i of
tstats[i] <- result$estimate/result$se</pre>
"mu4-mu5")
                                                                                                                                         00101
                                                                                                                                                                                                                                                                 1
4
15
                                                                                                                                                                                                                                                                                                爿
                                                                                                                                         01001
                                                                                                                                                                                                                                                                2782.4
243.16
30.928
                                                                                                                                         10001
                                                                                                                                       0
-1
0
0
-1
0
0
                                                                                                                                                                                                                                                               MS
2782.4
60.79
2.0618
                                                                                                                                         10010
                                                                                                                                                                                                                                                                           F P-value
1349.49826 < 1e-08
29.48371 5.9878e-07
                                                                                                                                        0 1 1 0 0
                                                                                                                                         10100
                                                                                                                                         11000
                                                            W_1
```

```
Cmd> J # smallest is p[4], next is p[3], ..., largest is p[5]
(1) 4 3 2
                                                                                                                                                                         Cmd>
                                                                                                                                                                                            Cmd>
                                                                                                                                                                                                               Cmd>
                                           Cmd> p_sorted <- pvals[J]; p_sorted</pre>
mu1-mu5
mu3-mu5
6.1028e-08
0.0013786
                                                                                                                            2.8671e-05
0.0098395
                                                                                                                                                                         pvals
                                                                                                                                                                                          setlabels(pvals,hypes) # add labels to pvals
                                                                                                                                                                                                               pvals <- twotailt(tstats,15)
                                                                                                                                                  mu2-mu4
                                                                                                                                                             mu1-mu2
mu2-mu4 mu3-mu4
2.3821e-07 2.7416e-05
0.0098395 0.010344
                                                                                                                            2.7416e-05
0.0013111
                                                                                                                                                  mu2-mu5
                                  mu1-mu4
                                                                                                                                                            mu1-mu3
                                                                                                                           2.3821e-07
0.010344
                                  mu1-mu3
                                                                                                                                                  mu3-mu4
mu1-mu2
mu4-mu5
2.8671e-05
0.3403
                                                                                                                            6.1028e-08
0.0013786
                                                                                                                                                  mu1-mu5
mu3-mu5
mu2-mu5
mu2-mu3
0.0013111
0.98068
                                                                                                                            0.98068
0.3403
                                                                                                                                                  mu2-mu3
mu4-mu5
                                                                 5 7
```

at the 5% level except μ_{s} - μ_{s} and μ_{4} - μ_{s} . method finds all differences significant The first eight $p_{(i)} \leq .05$ so the naive Cmd> $K*p_sorted \# Bonferronized p-values mul-mu5 mul-mu4 mul-mu3$ mul-mu4 mul-mu3

 μ_3 - μ_5 and μ_4 - μ_5 , and $\mu_{\scriptscriptstyle 3}$ - $\mu_{\scriptscriptstyle 4}$ are significant in addition to Now only 6 are less than .05, and $\mu_{_2}$ - $\mu_{_4}$

6.1028e-07 0.013786

mu2-mu4 mu3-mu4 2.3821e-06 0.00027416 0.098395 0.10344

mu4-mu5 0.00028671 3.403

0.013111 9.8068

mu2-mu3 mu2-mu5

mu1-mu2

mu3-mu5

Statistics 5303 Lecture 9 September 23, 2002

Here are the modified P-values for the Holm procedure.

```
Cmd> run(K,1)*p_sorted # Holmized p-values mu1-mu2 mu2-mu5 mu1-mu4 mu1-mu3 mu1-mu2 mu2-mu5 mu2-mu4 mu3-mu4 mu4-mu5 mu2-mu3 mu2-mu3 0.002007 0.078666 0.1028e-07 2.1439e-06 0.00021933 0.0002007 0.0078666 0.0068929 0.039358 0.031033 0.6806 0.98068
```

The 9th is the first > .05 so the the first 8 are rejected. This is the same result as for the naive method, but controls the strong family wise error rate.

Finally, here are modified P-values for the FDR method.

Starting at the high end, the third largest $p_{(8)} < .05$, so you again reject $H_{0(1)}$, ..., $H_{0(8)}$.