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Statistics 5303 Lecture 8 September 20, 2002

Here's how you would compute a 95%
confidence interval for
W({ot}) = (ot + ot,)/2 - (ot + o, + t.)/3

Q> t_025 <- |nvstu(1 . 025, errordf); t_025
(1) 2.0369 t 32 probabn lity point

Omd> resul t $estimate + vector(-1,1)*t_025*resul t $se
(1) 0. 50619 0. 63609

Polynomial Contrast
[ didn't previously discuss the use of
tables of coefficients for equally spaced
doses and equal sample sizes in Table D.6

For these data, the sample sizes differ
and the temperatures are not equally
spaced.

To illustrate the use of the tables, | am
going to discard enough cases so that all
sample sizes are 6.

The temperatures are almost equally
spaced by 19. So I will use modified
temperatures that are completely equally
spaced by
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Quick review of contrasts in MacAnova

Cmd> anova("l ogy=treat",
Model used is | ogy=treat
WARNING summaries are sequenti al

fstat: T) # sanme as before

DF SS 1% F P-val ue
CONSTANT 1 79. 425 79.425 8653.95365 1.6145e-40
treat 4 3.5376 0. 88441 96. 36296 2.2419e-17
ERRORL 32 0.29369 0.0091779

Omd> nuhats <- tabs(logy,treat,nean: T) # sanpl e neans

COmd> nuhats - sun{nuhats)/5 # direct conputation of effects

(1) 0. 49456 0. 19081 -0. 06044 -0. 24365 -0. 38127
Omd> al phahats <- coefs(treat); alphahats #bl ack box effects
(1) 0. 49456 0.19081 -0. 06044 - 0. 24365 -0.38127
o> w <- vector(vector(l 1)/2 -vector(1,1,1)/3);w# contrast
(1) 0.5 -0.33333 -0.33333 -0. 33333
Om> result <- contrast(treat,w; result

conponent: estinmate

(1) 0.57114 Val ue of contrast

conponent: ss

(1) 2. 9446
conponent . se
(1) 0.031886

COmd> tstat <- result$estimate/resul t$se; tstat
(1) 17.912 t-statistic to test HO:sum w*al phas)=0

COmd> errorss <- SY3]; errordf <- DF[3];
Ovd> vector(errorss, errordf, nse)
ERRCRL ERRCRL El

SS for contrast

Standard error of contrast

nse <- errorss/errordf

0. 29369 32 0.0091779
Ord> tstat <- resul t$estimate/ resul t$se; tstat
17.912

(1)
Cmd> twotailt(tstat,errordf) # P-value (two tail)
(1) 3.0663e-18 Essentially O

Ond> fstat <- result$ss/nse; fstat # = 17.912"2
(1) 320. 83 F-statistic with 1 d.f.

Omd> 1 - cunf(fstat,1,errordf) # P-value (two tail)
(D 0

in nunerator
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Ord> J <- vector(run(6), 8+run(6), 16+run(6), 24+run(6), 31+run(6))
Use J as a subscript to select first 6
cases in each group

Om> treatl <- factor(treat[J]) # new treatnent factor

COnd> tabs(logy, count:treat) # original sanple sizes
) 8 8 8 7

COmd> | ogyl <- logy[J] # new response

o> nl <- tabs(l ogyl, treatl, count:T);
(1 6

Ord> tenpl <- run(175, 251, 19);
(1) 175 194

nl # new sanpl e sizes
6
tenpl # new tenperatures
213 232 251
Omd> tenperl <- tenpl[treatl] # vector of length 30
Cmd> anova("l ogyl=P4(tenperl)",

Model used is | ogyl=P4(tenperl)
WARNI NG summaries are sequenti al
SS

fstat:T) # fit 4th order pol ynom

(%3] F P-val ue

DF
CONSTANT 1

62. 814 62.814 5938.94768 3.0168e-31
{tenper 1} 1 2.9526 2.9526  279.16183 4. 4799- 15
{(tenper1)~2} 1  0.061344  0.061344 5.79994  0.023727
{(tenper1)~3} 1 0.00010667 0.00010667 0. 01009 0. 92081
{(tenper1)~4} 1 0.00016095 0.00016095 0.01522 0. 90281
ERRORL 25 0.26442  0.010577

The underlined values are the SS for the
polynomial contrasts.

You can get the contrasts themselves or
their standard errors this way, but that's
OK since you would seldom need them.
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Let’s find the SS using the orthogonal
polynomial contrast coefficients for g =
S from Table D.6 on p. 630.

Here | entered them into a matrix (table)
with 5 rows, with contrasts down col-

umns rather than in rows as in the table.

Q> WP <- rmtrlx(enter(Z 1012 2-1-2-12 \
-120-21 1-46-41), 5

Ord> WP # each column is a set of contrast wei ght s

(1,1) -2 2 1
(2.1) -1 -1 2 -4
(3,1 0 -2 0 6
(4,1) 1 -1 2 -4
(5, 1) 2 2 1 1

Do ANOVA so contrast can work.
Ovd> anova("l ogyl=treatl", silent:T)

Ovd> contrast(treatl, WP[,1]) # linear contrast
conponent: estinmate
1 -2.2183
conponent: ss
(1) 2.9526
conponent: se
(1) 0. 13277

Q> for(i,1,4){ss <- contrast(treatl V‘P[ |])$ss

prlnt(paste( SS for tenperl”',i," =", ss,sep:""))
SS for tenperl1”rl = 2.9526 -2,-1,0,1,2 linear
SS for tenperl1”2 = 0.061344 2,-1, 0 -1,2 quadratic
SS for tenper173 = 0.00010667 1 2,0,-2,1 cubic
SS for tenper174 = 0.00016095 1,-4,6,-4,1 quartic
These match the SS from anova() output.

5
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Your goal is to understand the pattern of
treatment means, often with several
specific questions in mind.

Often you would like to determine, for
any two treatments, whether their
effects are significantly different.

And this is easy to do for any fixed pair
of treatments, chosen before looking at
the data, say treatment i and treatment
j. You just test H": ot - o« = 0 using a
t-test based on Y. - Y, = & - .

What is the defining property of the
test?

When p, = j, P(reject H") = o

where « is the chosen significance level,
say o« = .05 or « = .01.

Significance level « is an error rate,
specifically a type I error rate.
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Multiple Comparisons

The ANOVA F-test is just the beginning.
[t tests the null hypothesis that all the
treatment means are the same, or equi-
valently, that all the treatment have the
same effects.

Hoo By = M, = e = J

H,: 4, =z J, for at least one pair i z ]
or

Hpr ot = o = s =

H,: % =z « for at least one pair i z ]

September 20, 2002

When you reject H,, what should you do
next?

6
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This is the error rate for a single con-
trast and hence, in this context, is called
the per comparison error rate.

Suppose you nominated two contrasts to
test, say &, - , (W = {1 -1, 0,0, ...}) and
o - o (w=1{0,01,-1,0,..}hH.

That is, you want to test H"”:t, - o, = O

and H *%:ot, - o, = 0.

e These contrasts are orthogonal for any
sample sizes

e Hence they are independent.

The t-statistics won't be exactly inde-

pendent because they both have s = /MSE

in the denominator, but they should be
almost independent.
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For each comparison, you have type I
error rate «.

Suppose both H_"® and H_ *“ are true, that
s, WM, = W, and {, = H,.
What is P(you make some type 1 error),

that is, the probability you erroneously
reject H,"?, H %", or both?

Because of the almost independence,

P(reject one or both) =
1 - P(not reject either)
1 -(1 - x)? =2 - o
For o« = .05 this is .10 - .0025 = .097S.

This is the per two independent
comparisons error rate. It's much
larger than the per single comparison
error rate

9
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Suppose you are interested in comparing
all K = g(g-1)/2 pairs of effects. Even if
every H "V is true (can happen only when
o = o, = ... = o), for any testing proce-
dure, there is some probability that you
would make at least one type I error.

The probability of making at least one
type | error would be the experiment-
wise error rate for the method used.

[f you used t-tests with significance
level « and they were all independent
(they're not), the experimentwise error
rate would be
1 -0
On> alpha <- .05; g <- 5

Cm> 1 - (1 - alpha)™(g*(g-1)/2)
(1) 0.40126

This is a lot bigger than 5%. The

Bonferroni upper bound for the exper-

imentwise error rate is (g(g-1)/2)x
?Bb (g*(g—lz)/é)*al pha

_ o()g(g—w/2

11
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If E, and E, are two events (outcomes
that may or may not occur) in a proba-
bility model, then

P(E, or E)) < P(E)) + P(E)
This is the Bonferroni inequality.
If £, = {reject H,"} and E, = {reject H “"},
it guarantees that the per two compar-
isons error rate < 2xo.

More generally, the Bonferroni inequality
for K events, £, E, ..., E states that

P(E, ork, or..ork) <y . P(E).

1<i<K i

This guarantees that the per K compar-
isons error rate, each of which is at
significance level « is < Kx«.

That is, if you test K true null hypot-
heses, the probability of rejecting one or
more is bounded by Kxot. In most cases,
the probability is a lot closer to K« than
to «.

10
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The Bonferroni method of multiple com-
parisons for a family of comparisons
with K contrasts, uses «/K as the «-
level for each comparison, where « is the
desired family-wise error rate.

An equivalent way to do it is to multiply
each ordinary P-value by K, obtaining
what is sometimes called a Bonferro-
nized P-value.

COmd> data33 <- read("","pr3.3",quiet:T) # Problem3.3 data
Read fromfile "TP1l: Stat 5303: Dat a: CeCh03. dat "

Omd> data33[1,] # first case; shows col. 1 is the factor
(1,1) 1 20.7

Om> treat <- factor(data33[,1]) # create treatnent factor
COmd> | ongevity <- vector(data33[,2]) # create response vector

o> list(treat) # g =5
treat REAL 20 1 FACTOR with 5 level s

Ovd> tabs(longevity,treat,count: T) # n1 = n2 =n3 =n4 =n5 =4
(1) 4 4 4 4 4

COmd> anova("longevity=treat",fstat:T)
Model used is |ongevity=treat

DF SS MB F P-val ue
2782.4 1349.49826 4.1416e-16

CONSTANT 1 2782. 4
treat 4 243.16 60. 79 29.48371 5.9878e-07
ERRCR1L 15 30. 928 2.0618

The F-statistic shows there is very
strong evidence the means differ.

12
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CQmd> tabs(| ongevn ty,treat,mean: T) # saerI e treatnent neans
(1) 12 11. 975 9

There are g(g-1)/2 = 10 pairwise
comparisons.

o> g <- 5 g(gl)/2

(1)
Here I enter a matrix whose columns
define all 10 two-treatment comparisons

On> WL <- matrix(enter(1-1000 10-100 100-10\
1000-1 01-100 010-10 0100 -1\
001-10 0010-1 0001-1), 5

CQrd> print(W, format:"4.0f")

W

(1,1) 1 1 1 1 0 0 0 0 0 0

(2,1) 1 0 0 0 1 1 1 0 0 0

(3,1) 0o -1 0 0o -1 0 0 1 1 0

(4,1) 0 0 -1 0 0o -1 0o -1 0 1

(5,1) 0 0 0o -1 0 0o -1 0 1 -1
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Here is a summary of the ordinary t-
tests using underlining

Treatment 1 2 3 4 )

Any treatments not significantly
different are connected a line.

Here is a summary of the Bonferronized
t-tests using underlining

Treatment 1 2 3 4 S

Another way to test the differences
o<i - o( s to compare them with a

precomputed significant difference
= (critical value)xSE.

Such a difference for the Bonferroni
method is called a Bonferroni Signi-
ficant Difference or BSD. This is mainly
used when all the sample sizes are the
same so that all the standard errors are
the same.
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[ used a for loop in MacAnova to compute
all 10 t-statistics using contrast ():

Omd> tstats <- rep(0,10) # place to put t-statistics

Qo> for(i, 1, 10){

result <- contrast(treat, W[,i]) # uses colum i of W
tstats[i] <- result$estimate/result$se

Qmd> tstats

(1) 5.9093 5.934 8. 864 9. 8489 0. 024622

(6) 2.9547 3. 9396 2.9301 3.9149 0.98489

Omd> pvals <- twotailt(tstats, DF[3]); pvals

(1) 2.8671e-05 2.7416e-05 2.3821le-07 6.1028e-08 0. 98068

(6) 0.0098395 0.0013111 0.010344 0.0013786 0. 3403
These are the ordinary P-values.

Ord> 10*pval s

(1) 0.00028671 0.00027416 2.3821e-06 6.1028e-07 9. 8068

(6) 0. 098395 0. 013111 0. 10344 0. 013786 3.403

These are Bonferronized P-values.
Qmi> t_025 <- invstu(l - .025 DF[3]); t_025

(1) = 2.1314 Ordinary critical” value

COmd> abs(tstats) > t_025 # T means signif. at ordinary 5%]1 evel
(1) T T T T E T T

(8) T T E Grouped by left treatnent

Qmd> bonf _t _025 <- invstu(l - .025/10, DF[3]); bonf_t_025

(1) 73,286 Bonferroni zed critical val Ue

Omd> abs(tstats) > bonf_t_025 #significant by Bonferroni nethod
(1) T T T T = = T
(8 T E

14
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Omd> se <- contrast(treat, W,1])$se; se # 1 vs 2 contrast
(1) 1. 0153

Ovd> contrast(treat, V\l[ 6])$se # 2 vs 4 contrast
(1) 1. 0153

COmd> bsd <- bonf_t_025*se

COrd> bsd # Bonferroni significant difference
(1) 3. 3364

Any effect differences larger than BSD
are significantly different from O.

Ovd> diffs <- rep(0,10) # place to put differences

Cmd> for(i,1,10){ # conpute themusing contrast()
diffs[i] <- contrast(treat, W[,i])$estimate

Ord> diffs # pal rwise differences of al phahats
1) 9

(6) 3 4

The underlined differences are greater
than BSD = 3.3364.

Macro pai rwi se() summarizes the
comparisons using vertical lines rather
than horizontal lines.

0. 025
1

S
o

2.975 3.9

Cd> pairw se("treat", .05, bsd: T)
5 -3.79
|| 4 -2.79
| 3 0.18
| 2 0. 205
1 6.21

BSD: T directs that the BSD is to be used.
This is the same pattern as found before.
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