Displays for Statistics 5303

Lecture 8

September 20, 2002

Christopher Bingham, Instructor

612-625-7023 (St. Paul) 612-625-1024 (Minneapolis)

Class Web Page

http://www.stat.umn.edu/~kb/classes/5303

© 2002 by Christopher Bingham

Statistics 5303 Lecture 8 September 20, 2002

Quick review of contrasts in MacAnova

```
component: ss
(1) 2.9446
component: se
(1) 0.031886
                                                                                                                                                      (1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Cmd> anova("logy=treat",fstat:T) # same as before
Model used is logy=treat
WARNING: summaries are sequential
                                                                                                                         Cmd>
                                                                                                                                                                                                                                                                                                                                                                                                                                                  component: estimate
(1)     0.57114
Cmd>
                                                                                                                                                                                                                                                  Cmd>
                                                                                                                                                                                                                                                                                Cmd> errorss <- SS[3]; errordf <- DF[3]; mse <- errorss/errordf</pre>
                                                                                                                                                                                                                                                                                                                 Cmd> tstat <- result$estimate/result$se; tstat
(1) 17.912 t-statistic to test H0:sum(w*alphas)=0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Cmd> result <- contrast(treat,w); result</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Cmd> w <- vector(vector(1,1)/2,-vector(1,1,1)/3); w # contrast (1) 0.5 0.5 -0.33333 -0.33333 -0.3333
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Cmd> muhats - sum(muhats)/5 # direct computation of effects
(1) 0.49456 0.19081 -0.06044 -0.24365 -0.38
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Cmd> muhats <- tabs(logy,treat,mean:T) # sample means</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CONSTANT
                                                                                                                                                                                                          vector(errorss, errordf, mse)ERROR1ERROR10.29369320.00917
                                                  fstat <- result$ss/mse; fstat \# = 17.912^2
320.83 F-statistic with 1 d.f. in numerator
                                                                                                    tstat <- result$estimate/result$se; tstat 17.912
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             79.425
3.5376
0.29369
                                                                                                                                                                                                                                                                                                                                                                                                                                                Value of contrast
                                                                                                   Essentially 0
                                                                                                                                                                                                                                                                                                                                                                   Standard error of contrast
                                                                                                                                                                                                                                                                                                                                                                                                            SS for contrast
                                                                                                                                                                                                            ERROR1
0.0091779
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             MS
79.425
0.88441
0.0091779
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F
8653.95365
96.36296
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  P-value
1.6145e-40
2.2419e-17
```

September 20, 2002

Here's how you would compute a 95% confidence interval for

Polynomial Contrast

I didn't previously discuss the use of tables of coefficients for equally spaced doses and equal sample sizes in Table D.6

For these data, the sample sizes differ and the temperatures are not equally spaced.

To illustrate the use of the tables, I am going to discard enough cases so that all sample sizes are 6.

The temperatures are almost equally spaced by 19. So I will use modified temperatures that are completely equally spaced by 19.

```
cases in each group
                                                                                                                                                                                                                                                                                                                                                                                                                                       Use J as a subscript to select first 6
 {temper1} 1
{(temper1)^2} 1
{(temper1)^3} 1
{(temper1)^4} 1
ERROR1 25
                                                                                                                                                                                                                                       Cmd> temp1 <- run(175,251,19); temp1 # new temperatures (1) 175 194 213 232
                                                                                                                                                                                                                                                                                                                                          Cmd> logy1 <- logy[J] # new response
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  {\tt Cmd} > {\tt J} < - \ vector(run(6), 8 + run(6), 16 + run(6), 24 + run(6), 31 + run(6))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      WARNING: summaries are sequential
                                                                                                                                                     Cmd> anova("logy1=P4(temper1)",fstat:T) # fit 4th order polynom
Model used is logy1=P4(temper1)
                                                                                                                                                                                                     Cmd> temper1 <- temp1[treat1] # vector of length 30</pre>
                                                                                                                                                                                                                                                                                          Cmd> treat1 <- factor(treat[J]) # new treatment factor</pre>
\begin{array}{c} 62.814 \\ \underline{2.9526} \\ 1 \\ \underline{0.061344} \\ \underline{0.00010667} \\ \underline{0.00016095} \\ 0.26442 \end{array}
 62.814
2.9526
0.061344
0.00010667
0.00016095
0.010577
                    5938.94768
279.16183
5.79994
0.01009
0.01522
                                                         3.0168e-31
4.4799e-15
0.023727
                     0.92081
0.90281
```

The underlined values are the SS for the polynomial contrasts.

You can get the contrasts themselves or their standard errors this way, but that's OK since you would seldom need them.

ယ

polynomial contrast coefficients for g = 5 from Table D.6 on p. 630. Let's find the SS using the orthogonal

umns rather than in rows as in the table.

Cmd> WP <- matrix(enter(-2 -1 0 1 2 2 -1 -2 -1 2 \
-1 2 0 -2 1 1 -4 6 -4 1), 5) with 5 rows, with contrasts down col-Here I entered them into a matrix (table)

```
1 4 6 4 1
```

Do ANOVA so contrast can work. Cmd> anova("logy1=treat1",silent:T)

```
Cmd> contrast(treat1, WP[,1]) # linear contrast
component: estimate
(1) -2.2183
                                                                                                                                                                                                                                                                     component: ss (1) 2.9526
                                                                                                                                       Cmd> for(i,1,4){ss <- contrast(treat1,WP[,i])$ss
    print(paste("SS for temper1^",i," = ",ss,sep:""))</pre>
for temper1^1 = \frac{2.9526}{2.061344} for temper1^2 = \frac{0.061344}{0.0010667} for temper1^3 = \frac{0.00010667}{0.00016095}
                      -2,-1,0,1,2 linear 2,-1,0,-1,2 quadra -1,2,0,-2,1 cubic
```

These match the SS from anova() output.

Multiple Comparisons

treatment means are the same, or equivalently, that all the treatment have the same effects. $H_0: \mu_1 = \mu_2 = \dots = \mu_g$ The ANOVA F-test is just the beginning It tests the null hypothesis that all the

$$H_0: \mu_1 = \mu_2 = \dots = \mu_g$$
 $H_a: \mu_i \neq \mu_j$ for at least one pair $i \neq j$
 $H_0: \alpha_1 = \alpha_2 = \dots = \alpha_g$

next? When you reject H_o, what should you do

Ha: ⊲ ≠ ⊲ for at least one pair i ≠ j

Statistics 5303

specific questions in mind. treatment means, often with several Your goal is to understand the pattern of

any two treatments, whether their effects are significantly different Often you would like to determine, for

j. You just test $H_0^{(ij)}$: $\alpha_i - \alpha_j = 0$ using a t-test based on $\overline{y_{i\bullet}} - \overline{y_{j\bullet}} = \widehat{\alpha_i} - \widehat{\alpha_j}$. the data, say treatment i and treatment of treatments, chosen before looking at And this is easy to do for any fixed pair

What is the defining property of the

When
$$\mu_i = \mu_j$$
, P(reject $H_0^{(ij)}$) = α

say $\alpha = .05$ or $\alpha = .01$. where \varpropto is the chosen significance level,

specifically a type I error rate Significance level \varpropto is an *error rate*,

> trast and hence, in this context, is called This is the error rate for a single conthe per comparison error rate

 $\alpha_3 - \alpha_4 (W = \{0, 0, 1, -1, 0, ...\}).$ Suppose you nominated two contrasts to test, say $\alpha_1 - \alpha_2$ (w = {1 -1, 0, 0, ...}) and

and $H_0^{(34)}: \alpha_3 - \alpha_4 = 0$. That is, you want to test $H_0^{(12)}:\alpha_1 - \alpha_2 = 0$

- These contrasts are orthogonal for any sample sizes
- Hence they are independent

almost independent. in the denominator, but they should be pendent because they both have $s_p = \sqrt{MSE}$ The t-statistics won't be exactly inde-

For each comparison, you have type I error rate α .

Suppose both $H_0^{(12)}$ and $H_0^{(34)}$ are true, that is, $\mu_1 = \mu_2$ and $\mu_3 = \mu_4$.

What is P(you make some type I error), that is, the probability you erroneously reject $H_o^{(12)}$, $H_o^{(34)}$, or both?

Because of the almost independence,

P(reject one or both) = 1 - P(not reject either) \tilde{z} 1 - (1 - α)² = 2 α - α ²

For $\alpha = .05$ this is .10 - .0025 = .0975.

This is the **per two independent comparisons error rate**. It's much larger than the per single comparison error rate

If E_1 and E_2 are two events (outcomes that may or may not occur) in a probability model, then

$$P(E_1 \ or \ E_2) \leq P(E_1) + P(E_2)$$

This is the Bonferroni inequality.

If $E_1 = \{\text{reject } H_0^{(ij)}\}$ and $E_2 = \{\text{reject } H_0^{(kl)}\}$, it guarantees that the <u>per two compartisons error rate</u> $\leq 2 \times \infty$.

More generally, the Bonferroni inequality for K events, E_1 , E_2 , ..., E_K states that $P(E_1 \text{ or } E_2 \text{ or ... or } E_K) \leq \sum_{1 \leq i \leq K} P(E_i)$.

This guarantees that the per K comparisons error rate, each of which is at significance level α is \leq K× α .

That is, if you test K true null hypot-heses, the probability of rejecting one or more is bounded by K×α. In most cases, the probability is a lot closer to Kα than to α.

Suppose you are interested in comparing all K = g(g-1)/2 pairs of effects. Even if every $H_0^{(ij)}$ is true (can happen only when $\alpha_1 = \alpha_2 = ... = \alpha_g$), for any testing procedure, there is some probability that you would make at least one type I error.

The probability of making at least one type I error would be the *experiment-wise error rate* for the method used.

If you used t-tests with significance level ∝ and they were all independent (they're not), the experimentwise error rate would be

$$1 - (1 - \alpha)^{g(g-1)/2}$$

Cmd> alpha <- .05; g <- 5 Cmd> $I - (I - alpha)^*(g^*(g-1)/2)$ (1) 0.40126

This is a lot bigger than 5%. The Bonferroni upper bound for the experimentwise error rate is $(g(g-1)/2) \propto \frac{\text{Cmd} (g^*(g-1)/2)*aIpha}{0.5}$

The Bonferroni method of multiple comparisons for a family of comparisons with K contrasts, uses α/K as the α-level for each comparison, where α is the desired family-wise error rate.

September 20, 2002

An equivalent way to do it is to multiply each ordinary P-value by K, obtaining what is sometimes called a *Bonferro-nized* P-value.

```
Cmd> data33 <- read("","pr3.3",quiet:T) # Problem 3.3 data
Read from file "TP1:Stat5303:Data:OeCh03.dat"

Cmd> data33[1,] # first case; shows col. 1 is the factor
(1,1) 1 20.7

Cmd> treat <- factor(data33[,1]) # create treatment factor
Cmd> longevity <- vector(data33[,2]) # create treatment factor
Cmd> list(treat) # g = 5
treat REAL 20 1 FACTOR with 5 levels

Cmd> list(longevity,treat,count:T) # n1 = n2 = n3 = n4 = n5 = .
(1) 4 4 4 4 4 6 6 .79

Cmd> anova("longevity=treat",fstat:T)

Model used is longevity=treat
SS SS CONSTANT 1 2782.4 2782.4 1349.49826 4.1416e-.
ERRORL 15 30.928 2.0618
```

The F-statistic shows there is very strong evidence the means differ.

Cmd> tabs(longevity,treat,mean:T) # sample treatment means
(1) 18 12 11.975 9 ω

comparisons. There are g(g-1)/2 = 10 pairwise

Cmd> $g \leftarrow 5$; $g^*(g-1)/2$ (1)

define all 10 two-treatment comparisons Here I enter a matrix whose columns

print(W1,format:"4.0f")

```
Cmd > W: (1,1) (2,1) (2,1) (3,1) (4,1) (5,1)
00011
01001
10001
00110
0 1 0 1 0
10010
0 1 1 0 0
_
0 _ 0 0
11000
```

all 10 t-statistics using contrast(): I used a for loop in MacAnova to compute

```
Cmd> tstats <- rep(0,10) # place to put t-statistics
                                                                   Cmd> for(i,1,10){
result <- contrast(treat,W1[,i]) # uses column i
tstats[i] <- result$estimate/result$se</pre>
                                 of
```

Ø

(1) (6) (1) (6) > tstats 5.9093 2.9547 pvals <- twotailt(tstats, DF[3]); pvals
2.8671e-05 2.7416e-05 2.3821e-07 6.1028e-08
0.0098395 0.0013111 0.010344 0.0013786</pre> 5.934 3.9396 8.864 2.9301 9.8489 3.9149 0.024622 0.98489 0.98068 0.3403

These are the ordinary P-values.

Cmd> 10*pvals (1) 0.00028671 0.00027416 2.3821e-06 (6) 0.098395 0.013111 0.10344 6.1028e-07 0.013786 9.8068 3.403

hese are Bonferronized P-values.

Cmd> $t_025 < invstu(1 - .025, DF[3]); t_025$ (1) 2.1314 Ordinary critical value

Cmd> abs(tstats) > t_025 \ T means signif. at ordinary 5% level (1) T T T T F T T

(1) (8) T Grouped by left treatment

Cmd> $bonf_t_025 <- invstu(1 - .025/10, DF[3]); bonf_t_025$ (1) 3.286 **Bonferronized critical value**

 $\begin{array}{cccc} \text{Cmd} > abs(tstats) > \\ \text{(1)} & \text{T} & \text{T} \end{array}$ bonf_t_025 #significant by Bonferroni method

Here is a summary of the **ordinary** tests using underlining

СЛ

different are connected a line. Any treatments not significantly

Here is a summary of the **Bonferronized** t-tests using underlining

∝ - ഒ is to compare them with a Another way to test the differences = (critical value)×SE precomputed significant difference

the same same so that all the standard errors are used when all the sample sizes are the method is called a Bonferroni Signi-Such a difference for the Bonferroni ficant Difference or BSD. This is mainly

```
Cmd> bsd # Bonferroni significant difference
(1) 3.3364
                                                                            Cmd> bsd <- bonf_t_025*se
                                                                                                                              Cmd> contrast(treat,W1[,6])$se # 2 vs 4 contrast(1) 1.0153 Same
                                                                                                                                                                                                      Cmd> se <- contrast(treat,W[,1])$se; se # 1 vs 2 contrast(1) 1.0153
```

are significantly different from 0 Any effect differences larger than BSD

```
Cmd> diffs # pairwise differences of alphahats (1) \frac{6}{3} \frac{6.025}{4} 2.975
                                                                         Cmd> diffs <- rep(0,10) # place to put differences
\frac{9}{2.975} \frac{10}{3.975}
  0.025
1
```

than BSD = 3.3364. The underlined differences are greater

comparisons using vertical lines rather Macro pairwise() summarizes the than horizontal lines

BSD: T directs that the BSD is to be used. This is the same pattern as found before