Statistics 5303 Lecture 8 September 20, 2002

Quick review of contrasts in MacAnova

Crd> anova("logy=treat",fstat: T) # same as before
Model used is | ogy=treat
WARNI NG summaries are sequenti al

. 1St DF SS NG F P-val ue
D_m_u_mcm ﬂO_‘. m._”m.:m.:Om mwow CONSTANT 1 79. 425 79.425 8653.95365 1.6145e-40
treat 4 3. 5376 0. 88441 96. 36296 2.2419e-17
ERRCRL 32 0.29369 0.0091779
_|®O.ﬂ ure @ Ond> nuhats <- tabs(logy,treat, nean: T) # sanpl e neans
Crd> nmuhats - sun{nuhats)/5 # direct conputation of effects
(1) 0. 49456 0. 19081 -0. 06044 - 0. 24365 -0. 38127
Cmd> al phahats <- coefs(treat); al phahats #bl ack box effects
mm_“uﬁm_.j_um_a 20, 2002 (1) 0. 49456 0.19081 = -0.06044  -0.24365  -0.38127
Cmd> w <- vector(vector(1,1)/2,-vector(1,1,1)/3);w # contrast
(1) 0.5 0.5 -0. 33333 -0. 33333 -0. 33333

Crd> result <- contrast(treat,w); result
conponent: estimate
: : 1 0.57114 Val ue of contrast
Christopher Bingham, Instructor Carponent. ee
(1) 2. 9446 SS for contrast
conmponent: se
(1) 0. 031886 Standard error of contrast

@‘_ Ml@MMlNOMW mm.ﬂ _UmC_v Qmd> tstat <- result$esti mate/resul t $se; tstat

. . (1) 17.912 t-statistic to test HO:sum w*al phas)=0
@._ Ml@M@ld OMN_. Q(:DD@m_uo:wv Cmd> errorss <- SY[3]; errordf <- DF[3]; nse <- errorss/errordf

Cmd> vector(errorss, errordf, nse)
ERRCRL ERRORL ERRCRL

Class Web Page 0. 29369 32 0.0091779

http://ww. st at.um. edu/ ~kb/ cl asses/ 5303 Cmd> tstat <- resul t$esti mate/resul t$se; tstat
: - - - (1) 17.912

Ord> twotailt(tstat,errordf) # P-value (two tail)
© 2002 by Christopher Bingham (1) 3.0663e-18 Essentially O

Qmd> fstat <- result$ss/nse; fstat # = 17.91272
(1) 320. 83 F-statistic with 1 d.f. in nunerator

Cmd> 1 - cunk(fstat,1,errordf) # P-value (two tail)
(1) 0
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Here's how you would compute a 935%
confidence interval for
W({ot}) = (ot + *,)/2 - (ot + o, + *)/3

1
Cmd> t_025 <- invstu(l - .025, errordf); t_025

(1) ~ 2.0369 t 32 probability point

Ord> resul t $estimate + vector(-1,1)*t_025*resul t $se
(1) 0. 50619 0. 63609

Polynomial Contrast
[ didn't previously discuss the use of
tables of coefficients for equally spaced
doses and equal sample sizes in Table D.6

For these data, the sample sizes differ
and the temperatures are not equally
spaced.

To illustrate the use of the tables, | am
going to discard enough cases so that all
sample sizes are 6.

The temperatures are almost equally
spaced by 19. So I will use modified
temperatures that are completely equally
spaced by 19.
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Od> tabs(logy,count:treat) # original sanple sizes
(1) 8 8 8 7 6

Ond> J <- vector(run(6), 8+run(6), 16+run(6), 24+run(6), 31+run(6))

Use J as a subscript to select first 6
cases in each group
Ond> treatl <- factor(treat[J]) # new treatment factor
Ond> | ogyl <- logy[J] # new response

Cmd> nl <- tabs(logyl,treatl, count:T); nl # new sanple sizes
6 6 6

(1) 6 6

Cmd> tenpl <- run(175,251,19); tenpl # new tenperatures
(1) 175 194 213 232 251

Cmd> tenperl <- tenpl[treatl] # vector of length 30

Ord> anova("l ogyl=P4(tenperl)",fstat:T) # fit 4th order pol ynom
Model used is | ogyl=P4(tenperl)
WARNI NG summaries are sequenti al

DF SS VS F P-val ue
CONSTANT 1 62. 814 62.814 5938.94768 3.0168e-31
{t enper 1} 1 2. 9526 2.9526  279.16183 4.4799e-15
{(tenper1)~2} 1 0.061344 0.061344 5. 79994 0. 023727
{(tenper1)”~3} 1 0.00010667 0.00010667 0. 01009 0. 92081
{(tenper1)~4} 1 0.00016095 0.00016095 0. 01522 0.90281
ERRCRL 25 0. 26442 0. 010577

The underlined values are the SS for the
polynomial contrasts.

You can get the contrasts themselves or
their standard errors this way, but that's
OK since you would seldom need them.
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Let’s find the SS using the orthogonal Multiple Comparisons
polynomial contrast coefficients for g = The ANOVA F-test is just the beginning.
S from Table D.6 on p. 630. [t tests the null hypothesis that all the
Here | entered them into a matrix (table)  treatment means are the same, or equi-
with 5 rows, with contrasts down col- valently, that all the treatment have the
umns rather than in rows as in the table. same effects.
Qrd> WP <- natrix(enter(-2 -1 01 2 2-1-2-12 \ _|_ . — — —
2120-21 1-46-41), 5) of My T H, T =M
Muﬂuwv%nmmos mm_csﬁ is mmmﬁ of oo:.:wMH wei ght s L Iw” tﬁ z t__ HqO_\. m.ﬁ _®mw.ﬂ one _um:. # z _
(2,1) -1 -1 2 -4
(3, 1) 0 -2 0 6 or
(4,1) 1 -1 -2 -4
(5, 1) 2 2 1 1 H: of = of = - o
0 1 2 g
Do >Zo<> SO contrast can <<O—)_A H: o z « for at least one _um:) # z ._
Ond> anova("l ogyl=treat1",silent:T) a i ]
Somponent | est | mace 1) linear contrast When you reject H_, what should you do
(1) -2.2183
comonent 52 next?
conponent : se
(1) 0. 13277
Ord> for(i,1,4){ss <- contrast(treatl, W[,i])$ss
print(paste("SS for tenmper1™",i," =", ss,sep:""))
SS :w tenper 171 = 2. 9526 -2,-1,0,1,2 linear
SS for tenperl1”2 = 0.061344 2,-1,0,-1,2 quadratic
SS for tenper173 = 0.00010667 -1,2,0,-2,1 cubic
SS for tenper174 = 0.00016095 1,-4,6,-4,1 quartic

These match the SS from anova() output.
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Your goal is to understand the pattern of
treatment means, often with several
specific questions in mind.

Often you would like to determine, for
any two treatments, whether their
effects are significantly different.

And this is easy to do for any fixed pair
of treatments, chosen before looking at
the data, say treatment i and treatment
j. You just test H": o - o« = 0 using a

t-test basedony, - y. = & - .

What is the defining property of the
test?

When y, = p, P(reject H"") = o

where « is the chosen significance level,
say o« = .05 or « = .01.

Significance level « is an error rate,
specifically a type I error rate.
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This is the error rate for a single con-
trast and hence, in this context, is called
the per comparison error rate.

Suppose you nominated two contrasts to
test, say « - o, (w = {1 -1, 0,0, ...}) and
o - o (Ww=1{0,01,-1,0,..}H.

3

-o, =0

1 2

That is, you want to test H "?:
and H ®*":ot, - o, = 0.

3

e These contrasts are orthogonal for any
sample sizes

e Hence they are independent.
The t-statistics won't be exactly inde-
pendent because they both have s, = \/MSE

in the denominator, but they should be
almost independent.
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For each comparison, you have type I
error rate «.

Suppose both H "? and H ° are true, that
IS, J, = J,and p, = J,.

What is P(you make some type I error),
that is, the probability you erroneously
reject H,"?, H %Y, or both?

Because of the almost independence,

P(reject one or both) =
1 - P(not reject either)
=1 - (1 - k)= 20t -
For o« = .05 this is .10 - .0025 = .0975.
This is the per two independent
comparisons error rate. It's much

larger than the per single comparison
error rate
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If E, and E, are two events (outcomes
that may or may not occur) in a proba-
bility model, then

P(E, or E,) < P(E,) + P(E))
This is the Bonferroni inequality.
[f E, = {reject H, '} and E, = {reject H "},

it guarantees that the per two compar-
isons error rate < 2x«.

More generally, the Bonferroni inequality
for K events, E, E,, ..., E states that

P(E, orE, or..ork) <. . PE).

1<i<K i
This guarantees that the per K compar-
isons error rate, each of which is at
significance level « is < Kxo.

That is, if you test K true null hypot-
heses, the probability of rejecting one or
more is bounded by Kx«. In most cases,
the probability is a lot closer to Ko« than
to «.

10
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Suppose you are interested in comparing
all K = g(g-1)/2 pairs of effects. Even if
every H, " is true (can happen only when

o = o, = ... = o), for any testing proce-

1 2

dure, there is some probability that you
would make at least one type | error.

The probability of making at least one
type I error would be the experiment-
wise error rate for the method used.

[f you used t-tests with significance
level « and they were all independent
(they're not), the experimentwise error
rate would be
‘_ _ A‘_ _ OQQE-:\M
Ond> alpha <- .05; g <- 5

Q> 1 - (1 - alpha)™(g*(g-1)/2)
(1) 0. 40126

This 1s a lot bigger than 5S%. The
Bonferroni upper bound for the exper-
imentwise error rate is (g(g-1)/2)x

Qavgio-b\mv*m_c:m
(1) 0.5

11
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The Bonferroni method of multiple com-
parisons for a family of comparisons
with K contrasts, uses o/K as the «-
level for each comparison, where « is the
desired family-wise error rate.

An equivalent way to do it is to multiply
each ordinary P-value by K, obtaining
what is sometimes called a Bonferro-
nized P-value.

Cmd> data33 <- read("","pr3.3",quiet:T) # Problem 3.3 data
Read fromfile "TPl: Stat 5303: Dat a: CeCh03. dat "

Cmd> data33[1,] # first case; shows col. 1 is the factor
(1, 1) 1 20.7

Cmd> treat <- factor(data33[,1]) # create treatnent factor
CGmd> | ongevity <- vector(data33[,2]) # create response vector
Cmd> list(treat) # g =5

treat REAL 20 1 FACTCR with 5 | evel s
Cmd> tabs(longevity,treat,count: T) # n1 = n2 =n3 =n4 =n5 =4
(1) 4 4 4 4 4

Ord> anova("longevity=treat",fstat:T)
Model used is |ongevity=treat

DF SS VB F
CONSTANT 1 2782. 4
treat 4 243. 16
ERRCRL 15 30. 928

P-val ue
2782.4 1349.49826 4.1416e-16

60. 79 29. 48371 5.9878e-07
2.0618

The F-statistic shows there is very
strong evidence the means differ.

12
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Crd> tabs(longevity,treat, nean: T) # sanpl e treatnent neans
(1) 18 12 11. 975 9

There are g(g-1)/2 = 10 pairwise
comparisons.

nzach-m“@*A@-HV\N
(1) 10

Here | enter a matrix whose columns

define all 10 two-treatment comparisons

Cmd> W <- matrix(enter(1 -2 000 10-100 100-10\
1000 -1 01-100 010-10 0100 -1\
oou-uooouo-wooow-b*mv

Crd> print (WL, format:"4.0f")
W

~————
arwWNR
RPRRRPR

OQOOrr
'
OORrOoOr

1
0
0
-1
0

o
RPOOOR
'
oOOoOrkro
OoOrOoOro
RPOORrO
OoOrPFrOoo
RPOR,OO
PROOO
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[ used a for loop in MacAnova to compute
all 10 t-statistics using contrast():

Cmd> tstats <- rep(0,10) # place to put t-statistics

Oxd> for(i, 1, 10){
result <- contrast(treat,W[,i]) # uses colum i of W
tstats[i] <- result$esti mate/result$se

0}
Ond> tstats
(1) 5. 9093 5.934 8. 864 9. 8489 0. 024622
(6) 2.9547 3. 9396 2.9301 3.9149 0.98489
Cmd> pvals <- twotailt(tstats, DF[3]); pvals
(1) 2.8671e-05 2.7416e-05 2.3821e-07 6.1028e-08 0. 98068
(6) 0.0098395 0.0013111 0.010344 0.0013786 0. 3403

These are the ordinary P-values.

Ond> 10*pval s
(1) 0.00028671 0.00027416 2.3821e-06 6.1028e-07 9. 8068
(6) 0. 098395 0. 013111 0.10344 0. 013786 3. 403

These are Bonferronized P-values.

Omd> t_025 <- invstu(l - .025, DF[3]); t_025

(1) 2.1314 Ordinary critical value

Qmd> abs(tstats) > t_025 # T neans signif. at ordinary 5%/l evel
(1) T T T T F T T

(8) T T F Grouped by left treatnent

Ovd> bonf _t 025 <- invstu(l - .025/10, DF[3]); bonf t 025
(1) 3. 286 Bonferronized critical value

Crd> abs(tstats) > bonf_t 025 #significant by Bonferroni nethod
(1) T T T T F F T
(8 F_ T F

14
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Here is a summary of the ordinary t-
tests using underlining

Treatment 1 2 3 4 S
Any treatments not significantly
different are connected a line.

Here is a summary of the Bonferronized
t-tests using underlining

Treatment 1 2 3 4 S

>:o§m_, way to test the differences
X Q is to compare them with a

1

U_,moo_,:wcﬁma significant difference
= (critical value)xSE.

Such a difference for the Bonferroni
method is called a Bonferroni Signi-
ficant Difference or BSD. This is mainly
used when all the sample sizes are the
same so that all the standard errors are
the same.

15
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Ond> se <- contrast(treat, W,1])$se; se # 1 vs 2 contrast

(1) 1.0153
Ond> contrast(treat, W[, 6])%$se # 2 vs 4 contrast
(1) 1. 0153 Sane

Qrd> bsd <- bonf _t 025*se

Qrd> bsd # Bonferroni significant difference
(1) 3. 3364

Any effect differences larger than BSD
are significantly different from O.

Cmd> diffs <- rep(0,10) # place to put differences

Cmd> for(i,1,10){ # compute them using contrast()
diffs[i] <- contrast(treat, W[,i])$estimate
Y
Cmd> diffs # pairw se differences of al phahats
(1) 6 6.025 9 10

(6) 3 4 2.975 3.97

The underlined differences are greater
than BSD = 3.3364.

Macro pai rwi se() summarizes the
comparisons using vertical lines rather

than horizontal lines.
Crd> pairwi se("treat", .05, bsd: T)

_ -3.79

| ] -2.79

_ 0.18

| 0. 205

6.21

BSD: T directs that the BSD is to be used.
This is the same pattern as found before.

0. 025
1

[}

RPNWhO
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