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Statistics 5303 Lecture 7 September 18, 2002

Here we just want to estimate the mean
M. This is the same as fitting the model

d=Ha+e,1=1,..,n=64.

[ want to do this using anova() so [ can
use commands like resvsrankits() that
work only after anova() , regress() and
other similar commands. To fit only a
mean, you use the model "diffs = 1"

Cmd>anova("diffs = 1",fstat: T)

Model used is diffs = 1

DF SS MS F P-value

CONSTANT 1 63152 631.52 1.0022e+06 0
ERROR1 63  0.0397 0.00063016

This is one of the few times when the

CONSTANTIine might be useful.

e SS =Ny, 2

e The F-statistic tests H: u = 0. F = t%,
where t = one sample t-statistic:

Cmd>tval (di ffs)~2 # nunerical check; sane as F
(1) 1.0022e+06

But that’s not what we are interested in
here. We are checking assumptions.
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Coping with serial correlation
This example is based on the data in
Example 6.3. They are differences in
temperature readings for 64 consecutive
simultaneous measurements with two
thermocouples. The data file has a single
column of differences.
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Cmd>diffs <- read("","exnpl 6.3") # or natread()
exmpl6.3 64

) A data set from Oehlert (2000) \emph{A First Course in Design
) and Analysis of Experiments}, New York: W. H. Freeman.

) Data originally from Christensen, R. and L.~G. Blackwood .

) (1993) "Tests for precision and accuracy of multiple measuring

) devices."{\em Technometrics\V}~{\em 35}, 411--420.

) Table 6.2, p. 121

) Temperature differences in degrees Celsius between

) two thermocouples for 64 consecutive readings.
Read from file "TP1:Stat5303:Data:OeCh06.dat"
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The observations were entered in time
order. This allows some checking of the
independence assumption.

You can at least check that successive
observations are uncorrelated. If they
are correlated, we say there is data is
autocorrelated or has serial correla-
tion. [ used resvsindex() to plot resid-
uals against case number:

Cmd>r esvsi ndex(lines:T,\
title:"Thernocoupl e difference residuals vs case nunber")
Thermocouple difference residuals vs case number
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There a tendency for positive residuals to
follow positive residuals and negative
residuals to follow negative residuals (or
high response levels to follow high and
low to follow low).

This is a sign of positive serial correl-
ation, the most common kind.

In a significance test of the hypothesis
of no serial correlation, it is common to
do a one-tail test, protecting against
positive serial correlation, but not
against the much rarer negative serial
correlation.

Here are two or three ways to check the
null hypothesis of that successive values
are independent against the alternative
that there is non-zero first order serial
correlation.

5
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diffs[-64] (on the x-axis) is diffs
without case 64, running from case 1 to
case 63. diffs[-1] (on the y-axis) is
diffs running from case 2 to case 64,
one step ahead of diffs[-64]

There is some tendency for high diff-
erences to be followed by high (plotted in
the upper right hand corner) and low
followed by low (lower left hand corner),
just as we saw in the time plot.
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You can use cor() to estimate the first
order serial correlation p. = Corrly., y. ]
or regress()  to fit a regression of d on
d

When the residuals are independent, the
estimated first order serial correlation
has an approximate standard error 1/\/n.

Cmd>cor (diffs[-1],diffs[-64])[1,2] #serial correlation
(1,1) 0.21994 Estinmated 1st order ser. corr

Cmd>zstat <- 0.21994/(1/sqrt(64)) # z-statistic=estimate/SE

Cmd>1 - cumnor(zstat) # one sided P-val ue
(1) 0.039245 Significant at 5% | evel

i-1°
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A simple graphical check is to plot y, vs
y.,. the value for the preceding time.

[f you see an apparent linear pattern, or
even any pattern, there is serial corre-
lation.

When there is no serial correlation you

should get a featureless blob of points.

Cmd>pl ot (di ffs[-64],diffs[-1],xlab:"D fference | agged by 1",\
title:"diffs[i] vs diffs[i-1]")
diffs[i] vs diffs[i-1]
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Now regress responses for cases 2 - 64
on responses for cases 1 - 63, lagged one
step behind.

Cmd>regress("{diffs[-1]} = {diffs[-64]}",
Model used is {diffs[-1]} = {diffs[-64]}

Coef  StdErr t P-Value
CONSTANT 24709 0.38025 6.4981 1.6761e-08
{diffs[-64]} 0.21315 0.12105 1.7609 0.083262

N: 63, MSE: 0.00058167, DF: 61, R"2: 0.04837
Regression F(1,61): 3.1009, P-value: 0.083262, Durbin-Watson:
1.9948

pval : T)

To see the ANOVA table type 'anova()’

The printed P-value .08326 is a two tail
P-value.

The one tail P-value is .08326/2 =
.04163, not much different from the P-
value for the z-statistic.

The slope 0.21315 is an estimate of the
first order serial correlation that is
different from, but close to .21994.
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Another test statistic is the Durbin-
Watson statistic DW, computed from the
residuals from the previous ANOVA.
Since these were destroyed by regress()

[ needed to run anova() again to restore

them.
Cmd>anova("di ffs=1",silent: T) # redo anova() silently

n

2

,22(r,»-n--1)

— 1=

DW = n,

27

i=1
where r is the residual for case i.

When there is no serial correlation, u
=2

e Whenp >0, u,, <2

So a test based on DW rejects indepen-
dence in favor of positive serial corre-
lation when DW is significantly < 2.

Cmd>dw <- sur( ( RESI DUALS[ - 1] - RESI DUALS] - 64] ) ~2) /\
sun{ RESI DUALS"2)

Cmd>dw # observed DWstatistic
(1) 15139

9
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Caution: These tests for serial corre-
lation, including the Durbin-Watson test
are appropriate only when the data have
a relevant time order. The results make
sense only if the statistic is based on an
actual time order.

The Durbin-Watson statistic DW is
always part of regress()  output, whether
or not the order of cases is meaningful.
At present the only easy way in MacAnova
to test its significance is by simulation.

11
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It can be shown that (2 - DW)/2 is
another estimate of the first order serial
correlation

cmd>(2 - dw/2
1) 0.24307

[t would be nice to be able to check
whether DW is significantly below 2.

MacAnova doesn’t have a function to
compute critical values for DW, but you
can estimate the P-value by simulating
samples of independent normal data (for
which H, is true), computing values of DW
for each sample and seeing the proportion
of values that are less than the observed.

Cmd>M <- 5000; DW<- rep(0,M # do 5000 repetitions

Cmd>for(i,1, M{
tnpdi ffs <- rnorn{64)
anova("tnpdiffs=1",silent:T)
DWi] <- sun((RESIDUALS[-1]- RESIDUALS[-64])"2)/\
sun( RES| DUALS"2)
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Not far from .0213 and .0220

Cmd>sun{DW <= dw) # nunber <= observed
) 120
Cmd> 120/ M # proportion <= observed = one tail P-value
(1) 0.024

P-value < .05, confirming the other tests.

10
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DW is also used with independent data as
a test of constant mean.

[f there is a trend in the mean, whether
linear or curvilinear, there will be a
tendency for bunches of successive
residuals y, - y, to have the same sign.

For instance, when there is a strong
increasing linear trend with time, the
first half of the y -y, will probably be
negative and the last half positive.

This is just what makes the DW statistic
small.

[n this situation where you are not
testing for serial correlation but for
non-constant mean, the test is often
called the von Neumann test.

12
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More on contrasts
A contrast is a linear combination of W's
or «'s

w({pl) =2 w i, with Y w, =0
Because y_ w, = 0, w({p}) doesn’t depend
on p* and w({pu}h) = Zwot = w({e})
Under the ANOVA assumptions (indepen-

dent samples with equal o), the variance
of an observed contrast

September 18, 2002

- Ziwig_i
is
Varlw({y.D)] = o°% . w2/n,
Whenn =n,=..n =n, this simplifies to

2 g
Varlw(fy, bl = =c*(&,__ w?2)/n
The estimated standard error is

SEIw({y, D1 = s x/{¥,  w?/n}
where s* = MS_ from ANOVA.
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Under the normality assumption, you can
use Student’s t with df = N - g degrees

of freedom in tests or confidence inter-
vals.

Specifically, when W({j })
t = Z:iwigi-/ pr\/{z15i<g 2/n

is distributed as t_ .

pr—o

= /MSE

Cmd>tstat <- contrast(treat,w $estimate/ contrast(treat,w $se

Cmd>twotailt(tstat,
(1) 3.0663e-18

A 1 - « confidence interval for > w u. of

has the usual form
estimate + critical valuexstd error

= leigi- t t1 o(/2 p \/ 1<iigWi2/ni}

Cmd>contrast(treat,w $estimate + \
vector(-1,1)*invstu(l - .025,dfe)*contrast(treat,w) $se
(1) 050619 0.63609

vector(-1,1)
express *1.

dfe) # find two-tail P-value
Essentially O

1s a MacAnova way to

15
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For a comparison «, - o of two treat-
ment effects, the estimated contrast is

o - o= Ho- Ho= Yy, -y, Thishas
standard error c\/{1/n + 1/n}.
Whenn =n =n, SElx - 1= c,/(2/n).

Continuing with the example of log resin
times to failure:

Cmd> anova("l ogy=treat",

Model used is logy=treat

WARNING: summaries are sequential
SS MS F  P-value

CONSTANT 1 79425 79.425 8653.95365 1.6145e-40

treat 4 35376 0.88441 96.36296 2.2419e-17

ERROR1 32 0.29369 0.0091779

Cmd>dfe <- DF[3];
ERROR1
32

Cmd>nse <- SS[3]/dfe; nmse # Mean square error = s_p"2
ERROR1
0.0091779

Cmd>n <- tabs( treat);
@) 8 8
Cmd>w <- vector(vector(1,1)/2,-vector(1,1,1)/3);w #contrast
@ 0.5 05 -0.33333 -0.33333 -0.33333

Cmd>sqrt (nmse*sum{(w*2/n)) # estimated standard error
(1) 0.031886

Cmd>contrast (treat, W)$se # bl ack box approach
(1) 0.031886 Sane as direct conputation

fstat:T)

df e #error degrees of freedom

n # sanpl e sizes
7 6
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The sum of squares SS for a contrast is
ss, = wly . b/{¥ ..w?2/n}

Cmd> vect or (sun({w*nuhat s) 22/ sum(w*2/ n),
(1) 29446 2944

1<1<g

contrast(treat,w $ss)

When the sample sizes are equal, this
simplifies to

SSW =N (Z1§i§gwig_i)2/z15iigwi2

Sometimes related contrasts are grouped
together in families. For example, the
set of all pairwise contrasts o« - « is a

family.

16
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Another family of contrasts, which |
illustrated a little of last lecture, are
polynomial contrasts. These may be
useful when the treatments are
determined by levels of a quantitative
variable x.

We looked at a linear contrast, whose
coefficients are proportional to

W= X - X, X = 2 NX/N
Similarly there are contrasts that focus
on the quadratic, cubic and higher order

terms.

When doses are equally spaced, there are
tables of the contrast coefficients (see,
for example, Table D6, p. 630). But these
don’t help when the values predictor
variable are not equally spaced.

However, in either case, you can get the
polynomial contrast SS’s (but not their
values and standard errors) by fitting a
polynomial trend in anova() .

17
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An important property of some sets or
families of contrasts is orthogonality.

Definition
Two contrasts {w, "’} and {w ®} are
orthogonal when

> W Pw@/n =0
<i<g i i i

When the sample sizes are equal this
simplifies to

(1 (2) _
Z15iggwi Wi =0

When the ANOVA assumptions, including
normal errors, are satisfied, two ortho-
gonal contrasts

w(fy b = 2 .. w "y,

w?({y.h = ¥ w2y,

1

are independent. With independent
errors, but not normality, orthogonal
contrasts are uncorrelated.
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First you need a vector of temperatures
for each case. Start by entering the
temperatures for each treatment group
and then use treat as a subscript to get
the full length N = 37 vector temper

Cmd>tenperature <- vector (175, 194, 213, 231, 250)
Cmd>tenper <- tenperature[treat]

Cmd>1ist(treat,tenperature,tenper)
temper REAL 37

temperature REAL 5

treat REAL 37 1 FACTOR with5 levels

Cmd> anova("l ogy=P4(tenp)",fstat:T)
Model used is logy=P4(temp)
WARNING: summaries are sequential

DF SS MS F  P-value
CONSTANT 1 79425 79.425 8653.95365 0
{temp} 1 3.4593 3.4593 376.91283 2.8767e-19
{temp)*2} 1 0.078343  0.078343 8.53610 0.0063378
{(tempy*3} 1 1.8572e-05  1.8572e-05 0.00202 0.9644
{(temp)™4} 1 8.2568e-06  8.2568e-06 0.00090 0.97626
ERROR1 32 0.29369 0.0091779

The SS column has the contrast sums of
squares and the F column has the
corresponding t?. There is no easy way to
get the values or SE's of the contrasts.

[n testing these, you always work back-
ward starting from the highest order, and
stop when you find the first significant
polynomial contrast ({(temp)*2}  here).

18
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The polynomial contrasts are all mutually
orthogonal.

When there are g = 4 treatments defined
by all combinations of two factors A at
two levels and B at two levels, the 4
means M., M., M, and W can be arranged

in a2 by 2 table:

B] B2
A] .u]] -“12
A2 }121 »U22

An important family of contrasts for this

case are defined by the weights

e {1/2,1/2,-1/2,-1/2tor {1, 1, -1, -1}
Compares A and A, ignoring B

e {172, -1/2,1/2,-1/2}or {1, -1, 1, -1}
Compares B, and B, ignoring A

o {1,-1,-1,1}
Compares B,-B, at A, with B,-B, at A,
or A-A, at B, with A -A  at B,

20
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The first is an A main effect contrast
because it compares the effects of A, and

A, ignoring B.

The second is a B main effect contrast
because it compares the effects of B, and

B, ignoring A.

The third is an AxB interaction contrast
which is used to see if the effect of A
depends on the level of B (or the effect
of B depends on the level of A).

When the 4 sample sizes are equal, these
contrasts are orthogonal.

Cmd>w a <- vector(1,1,-1,-1)/2
Cmd>w_ b <- vector(1,-1,1,-1)/2
Cmd>w_ab <- vector(1,-1,-1,1)

Cmd> vect or (sun(w_a*w_b), sunm{w_a*w_ab), sunm(w_b*w_ab))
@ 0 0 0

All sums of products are O.
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