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Statistics 5303 Lecture 5 September 13, 2002
Cmd>data <- read("","exnpl 3.2")# data has 37 cases, 2 vars
exmpl3.2 37

) A data set from Oehlert (2000) \emph{A First Course in Design

) and Analysis of Experiments}, New York: W. H. Freeman.

) Data originally from Kvam, P. H. and Samaniego, F. J. (1993).
) “Life Testing in Variably Scaled Environments." {\iem
Technometrics} 35, 306--314.

) Table 3.1, p. 33

) These are the log10 times to failure (in hours) of a resin

under five

) different temperature stresses. Column 1 is) temperature

(levels 1

) through 5 are 175, 194, 213, 231, 250) degrees C, and Column 2
is response.

Read from file "TP1:Stat5303:Data:OeCh03.dat"

Cmd>data[run(10),] # first 10 cases
2.04

1) 1

(2.1) 1 191
(3.1) 1 2
@1) 1 192
(5.1) 1 185
(6,1) 1 1.96
(7.1) 1 188
®.1) 119
(0,1 2 166
(10,1) 2 171

Cmd>treat <- factor(data[,1]) # 1st variable is treatnent
Cmd>|ogy <- data[,2] # 2nd variable is response
Cmd>stats <- tabs(logy,treat, mean: T, count: T, stddev:T)

Cmd>stats
component: mean

(1) 19325 1.6287
component: count

@ 8 8 8 7 6

component: stddev

(1) 0.063415 0.1048 0.10714 0.045774 0.13837

13775 11943 1.0567
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Reprise of Example 3.2:

Data on the log times until failure of a
resin under stress in accelerated life
tests. There were 5 treatments
determined by temperature. See Table
3.1.

| first read the info record on file
OeCh03.dat to find the data set name and
then and then read the data set and split
it into a factor and a response.

Cmd>read("","info") # read fromfile of named data sets
info O

September 13, 2002

) Data sets for Chapter 3 of Oehlert's A First Course in Design

) and Analysis of Experiments examples and exercises.

) Data set names for examples, exercises, and problems have the
) form exmplC.N, exC.N, or prC.N where C is the chapter number
) and N is the example/exercise/problem number. For example

) ex20.2 is Exercise 2 inChapter 30.

) The names of data sets in the file are

) exmpl3.2 (resin lifetimes)

) ex3.1 (rat liver weights)

) ex3.3 (orange pulp silage)

) ex3.5 (leaf angles)

) pr3.1 (solder joints)

) pr3.2 (fruit fly longevity)

) pr3.3 (alpine meadows)

) pr3.4 (caffeine/adenine)

) pr3.5 (polypropylene fibers)

WARNING: 0 lines of data in data set

Read from file "TP1:Stat5303:Data:OeCh03.dat"
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All formal statistical analysis is based
on probability models, usually best des-
cribed in the language of mathematics.

[n designed experiments, the model

usually consists of two parts.

e A part describing the means

e A part describing the "errors”, that is,
deviations of responses from means

The usual one-way ANOVA model with no

special restrictions on the means is:

e There are unknown means {,, ..., J for
each group (model for means)

e Errors e =y, - j are independent

normal N(0,c?) (model for errors)

An observation y, = p + €.

This is a particular case of an additive
decomposition of a response into a pre-
dictable part (J.) and an unpredictable

part (g,).
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Alternatively, you can summarize both
parts of the model simultaneously by

y, are independent N(y, o)

The most important feature of this model
s that all errors are independent of each
other.

The next most important feature of this
model is that the standard deviation does
not depend on the treatment, that is, ¢ is
constant

Another feature, usually less important,
is that the errors are normal.

Some features of the model such as con-
stant o and normality are checkable to
some extent.

Others such as independence are very
difficult or impossible to check, but are
effectively guaranteed by proper random-
ization. This is another reason random-
ization is important.

5
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Confidence intervals
A defining property of a 95% confidence
interval procedure, say, is that

P(interval surrounds parameter) = .95

When you calculate a C.I., you always
have an intended confidence level, often
85% or 99%.

A C.l. doesn’'t work when the actual
confidence level =

P(interval surrounds parameter) =z

intended confidence level.

Example Suppose you do the calculation
for a 95% interval (say u = y +
2.228xs/,/n for a mean based onn = 11
observations).
If the actual confidence level = 89.5% or

99.1%, the confidence interval isn’t
working.
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Why do we care about models and
whether the data is consistent with a
model?

Because statistical procedures are deve-
loped to "work” in an environment in

which certain assumptions are true. And
many procedures do not "work” in situa-
tions where these assumptions are false.

What does it mean for a statistical pro-
cedure to work?

Significance test
The actual significance level of a signi-
ficance or hypothesis test is defined as

« = P(reject H, | H, true)
When you do a significance or hypothesis
test you always have an intended signi-
ficance level say .05 or .01. If the
actual significance level z intended, the
significance tests is not working.

Example: You choose .05 and P(reject
H |H, true) = .11 = .05 = not working.

6
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Returning to the ANOVA model:

An important part of the model is that
the standard deviations are the same in
each group:
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c,=0,=..=0
g
You can get some information about this
from plots.
Cmd> vboxpl ot (split(logy,treat),title:"Log tines til failure")

Log times til failure

=

18

“ ’ g
*

1t

woc—w <

—

*
1 2 3 4 5
Box Number

There is no obvious pattern. The highest
temperature group may have a couple of
outliers, but it's hard to say, because the
groups size is small.

8
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Another useful plot is of standard
deviations s, vs means y:

Cmd>stats <- tabs(logy,treat, mean: T, count:T, stddev: T)

Cmd> pl ot (st at s$nean, stat s$st ddev, \
title:"s vs nmeans" synbols run(5) \
x| ab: "Means", yl ab: " St ddev", yni n: O)

S Vs means

0.4 FE . . . . .
— Don't miss this one

0.12

01

0.08

0.06

<ooo~n

0.04

%% Sample means vs sample standard deviations ]

0

T1 T2 13 T4 5 T6 T7 T8 15
Means

The dashed line is rather arbitrary, but
probably describes the pattern as well as
any other line or curve. This is what you
hope to see - scatter of the points around
a horizontal line.

9
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Means are often not of interest

When your interest is in comparing treat-
ments, the means u. themselves are
usually not of great interest, since they
often depend on the specific details of
the experiment such as time of year,
location, even time of day.

What you should be interested in is the
effect of one treatment as compared to
another. Because of this, almost always
the j.'s and are expressed in another
way:

M= J
where g* is a number summarizing the
overall level of the response regardless
of treatment and

di = }Ji B }J*
Is the "effect” of the treatment, the
amount the mean j is changed by the

treatment from the overall level u*

11
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[t’s hard to formally check the assump-

tion of equal ¢. Here a way using sim-

ulation, based on
max(s)/min(s) = /F__

where F__ max(s i)/mm( ?) is Hartley's
maximum F statistic:

Cmd>N <- sun(stats$count); N
@) 37

Cmd> max( st at s$st ddev)/ m n( st at s$st ddev) # observed
1) 3.0229

[s this unusually large? We can find out
by simulation. [ first do S000 repeti-
tions with normal data

Cmd>M <- 5000; ratio <- rep(0,M # place to put results

Cmd>for(i,1, M{
@enp <- tabs(rnorn(N), treat, stddev: T)
ratio[i] <- max(@enp)/mn(@enp) )

Cmd>sun(ratio >= 3.0229)/ M # P-val ue
(1) 0.0842 proportion 2 observed

This test depends strongly on normality.
Here I do S0Q0 repetitions with t, data
Cmd>for(i,1, M{

@enp <- tabs(invstu(runi (N, 10),treat, stddev: T)
ratio[i] <- max(@enp)/mn(@enp);;}

Cmd>sun(ratio >= 3.0229)/M
(1) 0.1444 '
The P-value is quite different.

10
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A confusing issue is that there is no
single way to do this, because the actual
values of the o's depend on what value
you take for p*

For many purposes, the definition of u*
doesn’t really matter, because

J‘li_“j:p**'di_(}—l*+0{j):0(i_0(j
no matter what u*
And more generally, if w, w,, ..., w_are a

set of numbers that define a contrast
among the means, that is 3w, = 0,
W H = (W )

which doesn’t depend on u*, reducing to a
contrast among the effects ot.

* Zwlo(i - Zwidi

12
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There are several fairly standard choices

for p*:

1 u* =) u/g = unweighted average of .
For this choice, . = O.
This is used by MacAnova in its
computations and is associated with
the name Scheffe.

2 p* = > nj/N = weighted average of .,
where N = >'n,
For this choice 2 n« = O.
In cases when the n’'s are somewhat
accidental, this probably doesn’t make

much sense, but it has some mathe-
matical advantages.

13
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Estimates of means and effects are fairly
obvious.

Each J. is estimated by a sample mean
Ho= Y. = 2y/n,

p* and the &'s are calculated from the

j1's the same way as p* and the o's are

defined in terms of the u's.

For the various definitions of u* and o

1% = 50./0. 9 = 5, - it

2 J*=3ny /N =55y /N=y,

3 0% 0. 850 & =00 i)

«

Because the estimated effects are diffe-
rent functions of the sample means, their
standard errors depend on the definition
used.

15
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3 P =P witho =0, % = [ - J, 12 ]
Particular cases are
B* o= f, With ot = 0, ot = 4 - L,
=g, with ot = 0, o = - J

Each treatment is compared with a
particular treatment.

This approach is particularly approp-
riate when the specific treatment
others are compared to is a control.

| believe SAS uses p* = j and GLIM
uses P* = . in computation.

[n using a computer program which pur-
ports to compute "effects”, it's important
to know their definition.

14
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An Analysis of Variance table consists of

e Several rows, each one associated with
one part of the model

e Several columns including some or all
of
Column to label each row
DF (degrees of freedom) column
SS (sum of squares) column
MS (mean squares) column
F-statistic column
P-value column corresponding to F's

Here is what a MacAnova ANOVA table
looks like:

Cmd>anova("logy = treat",fstat:T)
Model used is logy = treat
WARNING: summaries are sequential

DF S MS F  P-value
CONSTANT 1 79425 79.425 8653.95365 < 1e-08
treat 4 35376 0.88441 96.36296 < 1le-08
ERROR1 32 0.29369 0.0091779

The MS column is SS/DF. The F column
are ratios of MS to the error MS. (You
won’'t see P-values like <1e-08 until the
next release of MacAnova.) F and P-value
are omitted with fstat:T

16
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anova() always computes variables SS
and DF matching the sum of squares and
degrees of freedom columns. These can
be used to check other numbers in the
table or compute other quantities
depending on them.

Cmd> SS
CONSTANT  treat ERROR1
79.425 3.5376 0.29369

Cmd> DF
CONSTANT  treat
1 4 32

Cmd>Ms <- SS/DF; M5 # matches M5 col um
CONSTANT  treat ERROR1
79.425 0.88441 0.0091779

Cmd>fstats <- MS[-3]/M[3];fstats
CONSTANT  treat
8654 96.363

Cmd> pval ues <- 1 -
@ 0

ERROR1

cunt(fstats, DF[-3], DF[3]); pval ues

17
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e «'s (treatment effects)
SS S ¢ Z15iggni(g_i- B E.)z
DF =g -1
If the treatment effects are defined
as ol = W - Ynp/N, soa =y, -y,
SS,, = ngnldl but this is not true for
other definitions, including the one
MacAnova uses.

Cmd>n <- tabs(logy,treat,n:T) # sanple sizes

Cmd>ybars <- tabs(logy,treat,mean:T); ybars # sanpl e neans
(1) 19325 1.6287 13775 1.1943 1.0567

Cmd>sstrt <- sun{n*al phahat”2); sstrt
(1) 35376

e ¢,/'s (errorsor residuals)
SS =SS, =3 > (y, -y)=(n - 1)s?
DF =N -g-= Zmig(ni - 1)

Cmd>vars <- tabs(logy,treat,var:T)

Cmd>sse <- sun((n-1)*vars); sse
(1) 0.29369

19
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For the completely randomized design,
there are potentially three lines
corresponding to the three parts of the
additive decomposition
Y, = V% + o + €,
Grand mean + treatment effect + error
e u* (grand mean)
=Ny, ? DF = 1.
Since this line is usually not
interesting, many computer programs
omit it. MacAnova labels the p* line
CONSTANT

Cmd> gr andnean <- descri be(l ogy, mean: T)

Cmd>ssconst <- Nvrgrandmean”2; ssconst
(1) 79.425 Same as in anova() output

18
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Corresponding to the additive decom-
position

_ *
Uij_JJ +O<i+sij
there is an additive decomposition of SS
2 -_

ZW;iggZ1§jgnigij B SS<:onst * SStrt * SSE
associated with  p* X, €,
Numerical confirmation

Cmd> sun( | ogy”2)

(1,1) 83256

Cmd>ssconst + sstrt + sse

(1) 83.256
And the "total SS”

_ T2
SST = ZWsisgzujini(giJ h Q,.)
- 2 T2
- Z1:isgz1sj5nigij h Ng"
= SSconst * SStrt * SSE - SSconst
=SS + SS,
Cmd>sst  <- sun((logy grandnean)"Z); sst
(11) 38313 al SS
Cmd>SS[2] + SY[3] # or sun(SS[-1])

(1) 38313 Sstrt + SSE
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