Displays for Statistics 5303
Lecture 4

September 11, 2002

Christopher Bingham, Instructor

612-625-7023 (St. Paul)
612-625-1024 (Minneapolis)

Class Web Page

http://www.stat.umn.edu/~kb/classes/5303

© 2002 by Christopher Bingham

Statistics 5303 Lecture 4 September 11, 2002

Because of the assumption of equal
variances, H implies the two distribu-
tions are the same, a stronger assertion
than that the means are the same.

The two-sample t is also standard in a
randomized experiment with N EU’s, n, of
which are randomly assigned to treat-
ment 1 and the remainder n, = N - n. are
assigned to treatment 2. Unless the
treatments differentially affect var-
lability, in a randomized experiment, the
equality of variances is usually plausible.
Inference based on the randomization

does not require the assumption of nor-
mality.

Statistics 5303
Randomization form of 2 sample t
When you have two independent random
samples, one of size n, from N(u,, o) and
the other of size n, from N(u,, o), one
standard way to test H: p, = u, (treat-
ments have same effect) uses the two
sample t-statistic
t = (U, - U..)/SElY,. - §,.1,
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where
SE[Y,. - U, )= s,/{1/n + 1/n)}
s> ={(n-1)s2 + (n,-1)s,}/(n, + n, - 2)
= {20y,-4,.0%+2(y,-y, )%/ (n, + 0, - 2)

Under H, t is Student’'s t on n +n -2 d.f.
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s,” is a "pooled” estimate of &~

This form of the two sample t is also
known as (R. A.) Fishers’ t statistic
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Here is an analysis of an experiment
comparing the coefficients of diges-
tibility (in percent) of dry matter feed
corn silage fed to 7 sheep and 6 steers.
The interest was whether there was a
difference between the groups.

In honesty, this is not a good example in
which to use randomization inference,
because it could not be randomized. At
best the two sample can be considered
random samples from populations of
sheep and steers.

Cmd>sheep <- enter (578 562 619 544 536 564 532)/10

Cmd>steers <- enter(642 587 631 625 598 592)/ 10

Cmd>stuff <- t2val (sheep, steers,df:T); stuff

component:t

(1) -3.3442

component: df

@) 11

Cmd>twotailt(stuff$t, stuff$df) # 2-tail P-value
(1) 0.0065449

HO: }Jsheep = }Jsteers’ Ha: ousheep z }‘lsteers
The P-value < .01 indicates a significant
difference of means.
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As for the paired situation, the ran-
domization test is conditional on the
observed set of N = n + n, values

Uppe woon Ypno Yo oo Yoy
[f the two treatment groups are truly
equivalent, and treatments have no
differential effect (in mean, variability
or anything else), then the subscript
labelling the group is irrelevant.

Since this labelling was selected ran-
domly, the test compares the observed
value of t with the set of possible values
that would have been obtained for
different randomizations.

In principle, you can compute t for each
possible split into samples. If the actual
t is extreme enough relative to the set of
all values found, you reject the hypot-
hesis that the treatments had the same
effect.
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Now there are

rno+ N
| | = (n,+n)1/(n,In.1)
L o4 J

1
possible samples. This binomial

coefficient can be huge.

Cmd>nl <- nrows(sheep); n2 <- nrows(steers); N <- nl + n2
Cmd> bi nom(N, n1) # nunber of possible assignnents

WARNING: searching for unrecognized macro binom near binom(
@ 1716 131/ (716!)

This is too many to do by hand. And the
code for generating the different samples
is a little tricky, so I immediately use
MacAnova macro randt2()
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With the paired t-statistic it was easier
to work with the simpler > +d. Simi-

larly, with the 2 sample test it is easier
to work with y,, -y,

Algebra shows that t can be expressed as
t=4(n +n -2)z/ /{1 -2
where
z = y/inn/(n+n)} (U,. - §,.)/+/SS
with
$S =2(y, -y + 20y, - 4.y
Since /(n, + n, - 2) and /{nn/(n +n )}
are constants and SS is the same for any
split into groups, conditional on the data,
t is a function of y,, - y,..

So to do the randomization test you com-
pute y,. - y,, for all possible splits of the
data and compare the observed value of
y,. - y,. with it.
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Cmd> actual <- describe(sheep, nean: T) - descri be(steers, nean: T)

Cmd>actual # observed ybar_sheep - ybar_steers
(1) -5.0357

Cmd> usage(randt 2
randt2(y1, y2 [,trials:n]), REAL vectors y1 and y2, positive
integer n

Cmd>diffs <- randt2(sheep, steers) 3 all possible val ues
WARNING: searching for unrecognized macro randt2 near
stuff <- randt2(

Cmd>M <- length(diffs); M# it has the right length
1) 1716

Cmd>sun(di ffs == actual ) # observed obtained just once
(@)

Cmd>sun(di ffs <= actual) # 9 out of 1716 are <= observed
(@) 9

Cmd>sun(stuff <= actual)/M# one tail P-value

(1) 0.0052448

Cmd>2*sun(stuff <= actual)/M# 2 tail P-value 18/1716
(1) 0.01049

The normal theory P-value was .0065449,
very much in the same ball park.
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When (n+n,)!/n,In.!) is impractically large,
you can estimate the P-value by randomly
sampling the set of (n+n,)!/(n !n.!)
possible assignments to treatments using
keyword trials

Cmd>M <- 5000 # nunber of random assi gnnents
Cmd>di ffs <- randt2(sheep, steers,trials: M

Cmd>p <- sun(diffs <= actual)/M p
(1) 0.0038

Cmd> 2*p
(1) 0.0076

The number < the actual y,, - y,, has a

binomial distribution so the estimated
pvalue p has standard error /{p(1-p)/M}

Cmd>1.96*sqrt(p*(1 - p)/M # margin of error for p
(1) 0.0017054
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Completely Randomized Design (CRD)

This is the simplest design for comparing
treatments and is sometimes the pre-
ferred design.

Setup You have g treatments to compare
and N EU’s available. By some process
that we will discuss at another time,
you have determined you want sample
sizes n, n,, ..., n_for the treatments,

with >.n = N.

11
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To reduce the margin of error in estima-
ting the p-value, you can increase the
size of the simulation.

Cmd>M <- 20000; diffs <- randt2(sheep,steers,trials:MN

Cmd>p <- sun(diffs <= actual)/M p
(1) 0.00545

Cmd> 2*p
(1) 0.0109

This is quite close to the exact random-
ization P-value 0.010489.

Now the margin of error is.

Cmd> 1. 96*sqrt (p*(1 - p)/ N
(1) 0.0010204
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CRD assignment
1 Randomly choose n, EU’s for treatment
1 (say first n, numbers to be drawn

from a box with 1, 2, ..., N).
2 Randomly choose n, EU’s from the

remaining for treatment 2,

September 11, 2002

g-1 Randomly choose n_, EU’s for treat-
ment g-1

g Remaining n EU’s are assigned to
treatment g

This amounts to selecting a random
permutation (reordering) of

{1,2, .. N=n +n, . ..+n}
just as in the two sample case.

12
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Advantages of CRD:

e Simple to do; all you need is one
random permutation of {1, 2, ..., N}

e Relatively simple to analyze
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* No restrictions on n’'s. Some other
designs severely restrict n's.

e [f you end up with missing values,
where the reason for them being
missing Is unrelated to treatment, the
analysis is still easy

Disadvantages of CRD:

e The accuracy of the experiment
depends on the variability among all
the experimental units, not on the
variability among subsets.

e Because of the greater variability you
may require more EU’s than with other
more complicated designs.

13

Statistics 5303 Lecture 4 September 11, 2002

Randomization inference is also appli-
cable in this situation.

There are N!/(n !n,!...n 1) possible assign-
ments of the EU’s to the groups. In
principle, you can compute an F-statistic
for each such assignment. Then you
compare the actual F-statistic with this
set of possible F's. If it is extreme
enough you reject the null hypothesis
that the treatments had the same effect.
The null hypothesis is that the treat-
ments have no influence on the observed

values so the labelling in groups is
irrelevant.

By similar algebra as for two-sample t,
you can show that a randomization test
using F is equivalent to one which

rejects H, for large SS_, = ¥n(y,. - y..)’.
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To test the hypothesis that there were no
treatment effects, the standard analysis
is a one-way ANOVA (Analysis of
Variance) .

If the treatment levels are qualitative
(qualitative), you almost always follow
up the ANOVA with a multiple compar-
isons analysis to try to pinpoint exactly
which treatments differed from which.

If the treatment levels are quantitative
(for example a dosage, a temperature,
dollars spent per child), your follow up
may include fitting a model such as a
linear (straight line) dependence of
means on the variable defining the
treatments or possible some curved
dependence, perhaps quadratic.

14
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If the treatments really have the same
effect,all the groups should be about
equally variable, just as for the normal
theory test which assumes ¢, = ¢, = ... =
o}

g
Also, the closer the observed distribu-
tions of response are to normal, the
closer the easily computed normal theory
P-values are to randomization-based P-
values which often can only be estimated
by simulation.

For both these reasons, some preliminary
examination of your data is almost
always called for to check assumptions.
[f they don’t hold, sometimes you can
work with some transformation of the
data such as log(y) or /y.
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Example 3.2:

This analysis data consisting of the log
times until failure of a resin under
stress in accelerated life tests. There
were S treatments determined by temp-
erature. See Table 3.1.

Here | read the data from file OeCh03.dat
containing Chapter 3 data sets in a form
readable by read() or matread() First |

read information on data sets in the file:

Cmd>r ead(""
info O
) Data sets for Chapter 3 of Oehlert's A First Course in Design
) and Analysis of Experiments examples and exercises.

,"info") # or matread("","info")

) Data set names for examples, exercises, and problems have the
) form exmplC.N, exC.N, or prC.N where C is the chapter number
) and N is the example/exercise/problem number. For example

) ex20.2 is Exercise 2 inChapter 30.

) The names of data sets in the file are
) exmpl3.2 (resin lifetimes)
) ex3.1 (rat liver weights)
) ex3.3 (orange pulp silage)
) ex3.5 (leaf angles)
) pr3.1 (solder joints)
) pr3.2 (fruit fly longevity)
) pr3.3 (alpine meadows)
) pr3.4 (caffeine/adenine)
) pr3 5 (polypropylene fibers)
RNING: 0 lines of data in data set
Read from file "TP1:Stat5303:Data:OeCh03.dat"
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Cmd> pl ot (st at s$nean, stat s$st ddev, \
title:"s vs means", synbol s: run(5) \
x| ab: "Means", yl ab: " St ddev", yni n: O)

S Vs means

\ Don't miss this one

<ooo~n

| Sample means vs sample standard deviations ]

T1 T2 13 T4 5 T6 T7 18 15
Means

Cmd> vboxpl ot (split(logy,treat),title:"Log times til failure")

Log times til failure

woc T <
N
IS
*

*

3
Box Number

19
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This shows the data set name s exmpl3.2

Cmd>data <- read( , "exnpl 3. 2")

exmpl3.2 37

) A data set from Oehlen (2000) \emph{A First Course in Design
) and Analysis of Experiments}, New York: W. H. Freeman.

) Data originally from Kvam, P. H. and Samaniego, F. J. (1993).
) “Life Testing in Variably Scaled Environments." {\iem
Technometrics} 35, 306--314.

)

) Table 3.1, p. 33

) These are the log10 times to failure (in hours) of a resin

under five

) different temperature stresses. Column 1 is) temperature

(levels 1

) through 5 are 175, 194, 213, 231, 250) degrees C, and Column 2
is response.

Read from file "TP1:Stat5303:Data:0eCh03.dat"

Cmd>data[run(10) ] # first 10 cases

1) 1

2.1) 1 1 91
(3.1) 1 2
@1) 1 192
(5.1) 1 185
6.1) 1 19
(7.1) 1 188
8.1) 1 19
©.1) 2 166
10.4) 2 17

Cmd>treat <- factor(data[,1]) # make colum 1 a factor
Cmd>|ogy <- data[,2] # response is colum 2
Cmd>stats <- tabs(logy,treat, mean: T, count: T, stddev: T)

Cmd>stats # sone statistics for each group
component: mean Treatment sanple neans
(1) 19325 16287 13775 11943 1.0567
component: count Treatment sanple sizes

1) 8 8 8 7 6

component: stddev Treatment sanple standard deviations
(1) 0.063415 0.1048 0.10714 0.045774 0.13837
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There isn't much visual evidence of non
constant standard deviation.

We can see what sort of dependence the

means have on temperature.
Cmd>tenperature <- vector (175, 194, 213, 231, 250)

Cmd> pl ot (t enper at ur e, st at s$nean, \
title:"Mean | og Ilfetl nes vs tenperature”,\
x| ab: " Tenper at ure", yl ab: " Means")

Mean Iog lifetimes vs (emperature

5 :

19 1
Strong negative relatlonshlp,

18r possibly curvilinear 1
171

M 16 [ *

e

a 15}

n

s 14 F *
13
12 *
11¢p

180 190 200 210 220 230 240 250
Temperature
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