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Here is one way to do this in MacAnova.

COmd> n<-vector(7, 7, 7, 10) # sample sizes

Ond> N <- sum(n); N # total number of EU's
(1) 31

QOmd> treatments <- rep(0,N) # empty vector to be filled
Qmd> u <- runi(N) # random sample of uniform random variables
Qmd> J <-rank(u); J # their ranks are a random permutation

(1) 21 17 16

14 11
(6) 3 29 6 1 26
(11) 27 25 13 28 2
(16) 4 18 23 9 31
(21) 10 30 7 5 24
(26) 8 20 22 12

(31) 15 ur%gerl ining gives treatment groups

COmd> treatments[J[run(n[1])]] <- 1 # Assign trt 1 to first 7

Ond> treatments[J[n[1] + run(n[2])]] <- 2 # trt 2 to next 7

Qmd> treatments[J[n[1] + n[2] + run(n[3])]] <- 3# 3 to next 7

Ovd> treatments[J[n[1] + n[2] + n[3] + run(n[4])]] <- 4

Qmd> print(paste(treatments)) # final assignment

2313424433142141134414342222143
With experience, you can use the looping
facilities of MacAnova to do it more
compactly.

COmd> treatments <- rep(0,sum(n)); Ni <- 0

Ovd> for(i,1,nrows(n)){
treatments[J[Ni + run(n[i)]] <-i
Ni <- Ni + n[i[;;

QOnd> print(paste(treatments))
2313424433142141134414342222143

This works for any set of n's.
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Suppose you have N = 31 EU’s you want to
assign to 4 treatments, withn, =n, = n, =

2 3
7 and n, = 10.

You could put slips numbered 1, 2, ..., 31
into a box, shuffle well, and draw num-
bers sequentially, assigning treatment 1
to EU’'s whose numbers were the first 7
drawn, treatment 2 to the next 7, ... .

This procedure provides you a random
permutation (reordering) of {1, 2, 3, ...,
31} with all permutations equally likely.
You use the permuted set of numbers in
assigning treatments.

Any other way of producing a random
permutation could be used instead of
drawing numbers from a box. One such
way uses random numbers (more
accurately pseudo-random numbers)
generated on a computer.
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Randomization in Inference

Example from text.

Table 1 had data on the length of time it
took each of 30 workers to runstitch a
collar on a man’s shirt, using a standard
workplace and an ergonomic workplace,
the tow "treatments”.

The data are paired, because each worker
stitched once at each workplace.

Here is how you might randomize the
order:

Cnd> N <- 30 # numbers of pairs

Q> first <- rbin(N, 1, .5) + 1 #first treatment
COnd> print(paste(first))
112122221122121122112121122221
Here rbin(N, 1, .5) generates 30
independent Bernoulli (binomial with n =
1) random variables with p = .5
(computer generated coin flips). Adding
1 turns the O's and 1's into 1's and 2's.
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The standard "normal theory” test is the
paired t-test, essentially a one sample t-
test on the differences x, - x,, where x,
and x, are times using the standard and
ergonomic workplaces, respectively.

You can use tval () in MacAnova to do it.
QOvd> readdata(™,standard,ergonomic)
Read fromfile "TPL: St at 5303: Dat a: Ch02: enp2- 1. dat "
Colum 1 saved as REAL vector standard
Col um 2 saved as REAL vector ergononic

Qrd> list(standard,ergonomic)

er gonom ¢ REAL 30
st andar d REAL 30
QOrd> d <- standard - ergonomic # differences
Qmd> d

(1) 1.03 -0.04 0.26 0.3 -0.97

(6) 0.04 -0.57 1.75 0.01 0.42
(11) 0. 45 -0.8 0.39 0.25 0.18
(16) 0.95 -0.18 0.71 0. 42 0.43
(21) -0.48 -1.08 -0.57 1.1 0.27
(26) -0.45 0.62 0.21 -0.21 0.82
Ond> n <- nrows(d); n # number of pairs

1) 30
Ond> tstat <- tval(d); df <-n-1
QOnd> vector(tstat,df twotailt(tstat,df))
(1) 1.49 29 0. 14701

t-stat DF P-val ue
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Randomization inference is conditional on
the actual data observed.

The null hypothesis tested is stated
somewhat differently, but has the same
interpretation as stating there was no
treatment effect.

H,: the type of workplace is irrelevant

so which number in each pair is
labeled standard and which ergonomic
Is arbitrary.
The numbers observed are considered as
if they were fixed. Inferences considers
all possible results that might have

occurred for the possible outcomes of the
randomization.
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This paired t test assumes the d's are a
random sample from N(p o). It tests
the null hypothesis H: p, = 0 (no
difference between workplace types), vs
the alternative H: p =z O (there is a
difference).

Assuming the order was in fact ran-
domized, you can do a randomization-
based test whose only assumption is that
the randomization was done properly.
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To simplify, suppose we had only the
first n = S pairs.

Then there are 32 different possible
assignments of treatments to the first
and second elements of the pairs.

Each possible assignment is essentially a
specification of the signs for all the
differences.

Cmd> dl <-d[run(5)] # d1 s first 5 differences
Cnd> tvalobs <- tval(dl); tvalobs # paired t

(1) 0. 35852
COnd> twotailt(tvalobs,4) # two tail P-value
(1) 0. 73808

Omitting some steps, | created a 32 by
matrix Si gns, each row of which contains
a different ordered set of -1's and +1's.
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Omd> tstats <- rep(0,32) # place to put t-statistics

Q> for(i,1,32){tstats|i] <- tval(d1*vector(Signsli,)));;}
Signs[i,] is row i of Signs and contains
one possible outcome of the

randomization. d1*vector (Signs[i,])
applies the signs to the differences.
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COnd> twotailt(tvalobs,4) # normal theory P-value
(1) 0. 73808

Ond> sum(tstats >= tvalobs) # counts number 2> observed
(1) 10

Omd> 2*sum(tstats >= tvalobs)/32 # randomization P-value
(1) 0. 625

[t's not the same as the normal theory
but gives the same conclusion. For larger
samples it is usually quite close.

In fact, with many randomization tests,
you don’t need to compute the t-
statistics, since there is a simpler
statistic that is monotonically related.

Paired t statistic is t = /nd/s,,
d = yd/n, s, = /{¥(d-d)?/(n-1)}
A little algebra shows that
t = V/n-1}e/y/{1 - 2%
T = /nd/\/1Yd’} = $d//inyd}
ny d* is is the same for all sets of signs,
so t depends only on > d
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This last computed paired t-statistics
for each of the possible sets of data that
might have been observed for the 32
outcomes of the randomization. One of
the values must be the actual t-statistic
we observed.

COmd> stemleaf(tstats) # glimpse of the distribution
-2.15

-2*|3

-1.]655

-1*] 40

- 9

- 0*| 43320000
00002334
+0.]9

1*| 04
1.|556

2*| 3

2.15

1*|1 represents 1.1 Leaf digit unit = 0.1
Cnd> tvalobs <- tval(dl); tvalobs # observed value

=
RNUINOOOONUIN P
+
o
*

(1) 0. 35852
COnd> tstats >= tvalobs # comparison with observed
(1) F F F F F
(8) F F F F F F F
(15) F F T F T F T
(22) F T T T F T F
(29) T F T T

T means tstat > observed t; F means
tstat < observed t.
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COmd> sums <- rep(0,32) # place to put sums
Cmd> for(i,1,32){sums[i] <- sum(d1*vector(Signs]i,]));;}
Ond> stemleaf(sums) #distribution of sums

2.]65

2 )
5 -2%[000
6 -1.]9
8 -1*[44

11 -0.[655

16 -0*| 41000
16  +0*| 00014

11 +0.| 556
8 1*| 44
6 1.9
5 2*| 000
2 2.]56

1*|1 represents 1.1 Leaf digit unit = 0.1
COnd> sumobs <- sum(d1); sumobs # observed value of sum

(1)
COnd> sums >= sumobs # compare with observed
(1) F F F F F F F
(8) F F F F F F F
(15) F F T F T F T
(22) F T T T F T F
(29) T F T T

This is the same pattern of T's and F’'s as
for the t-statistics.

Ond> 2*sum(sums >= sumobs)/32 # same P-value, too
(1) 0. 625
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There is a macro randsi gn() that does

this for you automatically.
Q> stuff <- randsign(d1)
WARNI NG searching for unrecogni zed macro randsi gn near
stuff <- randsign(
Qvd> list(stuff)
stuff 32

Omd> stemleaf(stuff) # exactly the same as before
2.|65

2 -2,

5 -2*| 000

6 -1.]19

8 -1*]44
11 -0.]655

16 -0*| 41000
16  +0*| 00014
11 +0.| 556

8 1*| 44
6 1.]19
5 2*| 000
2 2.|56

1*|1 represents 1.1 Leaf digit unit = 0.1

Qrd> 2*sum(stuff >= abs(sum(d1)))/32
(1) 0. 625

Unfortunately, you can’t do this for the
complete data set, since with n = 30
there are 2°° = 1073741824 = 1.07x10°
different assignments of signs. You can,
however, randomly select a large number
of these. You use keyword trial s.
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COnd> stuff <- randsign(d,trials:5000); list(stuff)

stuf f REAL 5000
COmd> 2*sum(stuff >= abs(sum(d)))/5000 # approximate P-value
(1) 0. 1508

Ond> twotailt(tval(d),n-1) # normal theory P-value
(1) 0. 1868

randsi gn() generated 5000 sums of
signed differences.

Here are histograms of the  xd as well
as the equivalent t statistics computed
as t = /(n-1)z//(1 - %),

Ond> tau <- stuff/sqrt(30*sum(d”2))

COnd> hist(stuff,50,xlab:"sum(signs*d)", \
title:"5000 values of sum(signs*d)")

Ovd> hist(sgrt(n-1)*tau/sqrt(1 - tau2),50, \
title:"5000 of t-statistics",

xlab:"t-statistics")
5000 val ues of sun(signs*d)

5000 of t-statistics
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On the right, I added the density for t_,
You see it is a good approximation to the
histogram.
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