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SUMMARY

For many scientific experiments computing a p-value is the standard method

for reporting the outcome. Once the hypotheses testing problem has been for-

mulated it yields a simple way of summarizing the information in the data.

One theoretical justification for p-values is the Neyman-Pearson theory of hy-

potheses testing. However the decision making focus of this theory does not

correspond well with the desire, in most scientific experiments, for a simple

and easily interpretable summary of the data. Fuzzy set theory with its notion

of a fuzzy membership function gives a non-probabilistic way to talk about un-

certainty. Here we argue that for some situations where a p-value is usually

computed it may make more sense to formulate the question as one of estimat-

ing a fuzzy membership function. This function will be the fuzzy membership

function of the subset of special parameter points which are of particular inter-

est for the experiment. Choosing the appropriate fuzzy membership function

can be more difficult than specifying the null and alternative hypotheses but

the resulting payoff is greater. This is because a fuzzy membership function

can better represent the shades of desirability among the parameter points

than the sharp division of the parameter space into the null and alternative

hypotheses. The new approach yields an estimate which is easy to interpret

and more flexible and informative then the cruder p-value.

AMS 1991 subject classifications Primary 62F03; secondary 62G05.

Key Words and phrases: Fuzzy set theory; membership function; p-values;

hypotheses testing; point estimation.
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1 Introduction

The concept of p-value or level of significance is widely used in practice to

measure the strength of evidence against a null hypothesis. The usual formal

justification comes from the Neyman-Pearson theory of hypotheses testing

which assumes a sharp break between the null and alternative hypotheses and

the necessity of making an accept or reject decision. Both of these assump-

tions make little sense in most scientific work where a simple summary of the

information contained in the outcome of an experiment is desired. One ap-

proach which attempts to overcome some of these problems is the theory of

equivalence testing which is discussed in Wellek (2003). Another modification

of the theory allows for an indifference zone between the two hypotheses but

this is little used in practice. Both of these alternatives highlight the fact

that in many situations the choice of null and alternative hypotheses is not so

straightforward. Another problem with the standard theory is that if the true

state of nature is in the alternative but close to the boundary and the sample

size is large then there is high probability the outcome will be statistically sig-

nificant although most observers would agree that the result is of no practical

importance.

Fuzzy set theory was introduced in Zadeh (1965) and is another approach

to representing uncertainty. A fuzzy set A is characterized by its membership

function. This is a function whose range is contained in the unit interval. At a

point the value of the membership function is a measure of how much we think

the point belongs to the set A. A fuzzy set whose membership function only

takes on the values zero or one is called crisp. For a crisp set, the membership

function is just the usual indicator function of the set.
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For the most part statisticians have shown little enthusiasm for using this

new terminology to describe uncertainty. In the 1970’s Max Woodbury devel-

oped the notion of Grade of Membership for applications in the health sciences.

This notion measures the degree of partial membership of an individual be-

longing to several possible classes. The theory is developed in some detail in

Manton et al. (1994). Taheri (2003) gives a review of applications of fuzzy set

theory concepts to statistical methodology. Casals et al. (1986) consider the

problem of testing hypotheses when the data is fuzzy and the hypotheses are

crisp and Filzmoser and Viertl (2004) introduced the notion of fuzzy p-values

for such problems. Arnold (1996) and Taheri and Behboodian (1999) consider

problems where the hypotheses are fuzzy and the data are crisp. Blyth and

Staudte (1995) proposed a theory which stayed within the general Neyman-

Pearson framework and provided a measure of evidence for the alternative

hypothesis rather than an accept-reject decision. Dollinger et al. (1996) noted

that this approach can be reformulated using fuzzy terminology. Singpurwalla

and Booker (2004) have proposed a model which incorporates fuzzy member-

ship functions into a subjective Bayesian setup. However they do not give

them a probabilistic interpretation. Geyer and Meeden (2005) assumed that

both the hypotheses and data are crisp and introduced the notion of fuzzy

p-values and fuzzy confidence intervals.

Here we will argue that many scientific problems where a p-value is com-

puted can be reformulated as the problem of estimating the fuzzy membership

function of the set of good or useful or interesting parameter points. Rather

than specifying a null and alternative hypotheses we will choose a fuzzy mem-

bership function to represent what is of interest in the problem at hand. We
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will see that the usual p-value can be interpreted as estimating a particular

membership function. We believe this suggests that more attention should

be paid to the fuzzy membership function being estimated. A more careful

choice of this membership function will allow a better representation of the re-

alities of the problem under consideration and will avoid some of the difficulties

associated with standard methods.

2 Fuzzy set theory

We will only use some of the basic concepts and terminology of fuzzy set

theory, which can be found in the most elementary of introductions to the

subject (Klir and St. Clair, 1997).

A fuzzy set A in a space Θ is characterized by its membership function,

which is a map IA : Θ → [0, 1]. The value IA(θ) is the “degree of membership”

of the point θ in the fuzzy set A or the “degree of compatibility . . . with the

concept represented by the fuzzy set”. See page 75 of (Klir, St. Clair, and

Yuan, 1997). The idea is that we are uncertain about whether θ is in or out of

the set A. The value IA(θ) represents how much we think θ is in the fuzzy set

A. The closer IA(θ) is to 1.0, the more we think θ is in A. The closer IA(θ) is

to 0.0, the more we think θ is not in A.

A natural inclination for statisticians not familiar with fuzzy set theory is

to try to give a fuzzy membership function a probabilistic interpretation. To

help overcome this difficulty consider the following situation. You need to buy

a car. Let Θ be the set of all possible cars for sale in your area. Let A be the

fuzzy set of cars that you could consider owning. For each car in the area you
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can imagine assigning it a value between 0 and 1 which would represent the

degree of membership of this particular car in the fuzzy set A. For a given

car this depends on its age, condition, style, price and so forth. Here the

fuzzy membership function measures the overall attractiveness of a car to you.

After checking out several cars and assessing their fuzzy membership you will

eventually select one to buy.

We will consider some standard problems where p-values are often com-

puted. In each case we will discuss how a fuzzy membership function can be

selected which realisticly captures much of the background of the problem. We

will then discuss how the resulting function can be estimated using standard

methods.

3 Normal distribution testing problems

3.1 An example

An important responsibility of the Veterans Administration (VA) is to mon-

itor the health of veterans. The American Heart Association has made the

following recommendations for the level of total blood cholesterol.

• Desirable: Less than 200 mg/dL.

• High risk: More than 240 mg/dL.

• Borderline high risk: Between 200-239 mg/dL.

The VA is interested in the mean cholesterol level of a cohort of coronary

heart disease patients. They plan to take a random sample of individuals and
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observe their cholesterol levels. How should they analyze the resulting data

assuming that they are sampling from a normal population with unknown

mean θ and unknown variance σ2?

One possibility is to compute a simple point estimate for θ and make an

“informal” judgment about the status of the population. In practice this

judgment depends not only on the value of θ but on the value of σ2 as well. For

example their attitude could be quite different for a population with θ = 220

and σ = 20 than for one with θ = 220 and σ = 40

A second possibility would be to calculate the p-value for testing H : θ ≤ θ0

against K : θ > θ0 where θ0 is some value to be determined. In this example

it is not so clear how to choose θ0. Moreover whatever value of θ0 is selected

it is wrong to think of it as a sharp cut point between good and bad values

of the population mean. Furthermore the size of the resulting p-value and its

interpretation will very much depend on this choice.

One way to more formally bring these concerns into an analysis is to use

fuzzy set theory. To this end we let H denote the set of good parameter

points where the cholesterol level of the population is of lesser concern. This

is done by defining IH , the fuzzy membership function of H, for each point in

the parameter space. This sounds like a daunting task but we shall see that

convenient families of possible fuzzy membership functions make it feasible.

Furthermore the information used to select a specific fuzzy membership func-

tion for a given problem incorporates just the kind of things that are used to

interpret a p-value sensibly. An advantage of this approach is that it helps to

make such considerations more explicit in the inferential process.
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In what follows we will discuss how to select a reasonable fuzzy member-

ship function for this problem and discuss how the resulting function can be

estimated.

3.2 One sided alternative with known variance

To introduce our ideas we begin with a one sided normal mean testing problem

with know population variance. Then we will consider the more realistic prob-

lem with unknown variance. Let X1, X2, . . . , Xn be iid normal(θ, σ2) where

θ ∈ (−∞,∞) is unknown and σ2 is known. Consider the testing problem

H : θ ≤ θ0 against K : θ > θ0 (1)

For a fixed 0 < α < 1 let φ(X, α, θ0) be the UMP level α test of H against

K. Recall

Eθ(φ(X, α, θ)) = α for 0 ≤ α ≤ 1 and θ ∈ Θ (2)

Let IH(θ) be the indicator function of the hypothesis H. Then among all

tests φ with Eθ0φ(X) = 0.5 the test φ(X, 0.5, θ0) minimizes uniformly in θ

d(θ) =

Eθ(1− φ(X))− IH(θ) for θ < θ0,

IH(θ)− Eθ(1− φ(X)) for θ > θ0.

(3)

The Neyman-Pearson theory of hypotheses testing can be formulated as

a special case of decision theory. Here it will be useful to think of it as a

special kind of estimation problem where the function to be estimated is IH(θ).

Equation 3 shows that among all tests with Eθ0φ(X) = 0.5 the estimator

1 − φ(X, 0.5, θ0), as an estimator of IH(θ), uniformly minimizes the bias. As
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the sample size n increases its expectation becomes steeper and steeper in the

neighborhood of θ0 and a better and better approximation of IH(θ).

Let P (X) denote the p-value coming from the UMP family of tests. If θ0 is

true then the distribution of P (X) is uniformly distributed on the unit interval

and Eθ0P (X) = 0.5. P (X) is essentially a smoother version of 1−φ(X, 0.5, θ0)

and its expectation behaves very much like 1 − Eθφ(X, 0.5, θ0) for large n.

Hence the usual p-value can be interpreted as an unbiased estimator of a func-

tion which is an approximation of IH(θ). This suggests that instead of insisting

considering only crisp hypotheses, one could consider an hypothesis described

by a fuzzy membership function. In this formulation one specifies a fuzzy

membership function, IH(θ), which captures the vagueness in the specification

of the break point θ0 and which also can be estimated unbiasedly. For each

θ this function measures how strongly we believe that θ belongs to the set of

good parameter values. In the VA example the observed p-value is an estimate

of the degree of membership of the population parameters belonging to the set

of values where the population cholesterol is of little concern.

To reiterate, for us, the usual p-value is an unbiased estimator of its ex-

pectation. This expectation can be in interpreted as the fuzzy membership

function of the set of good parameter values. This new interpretation high-

lights one of the problems with the standard p-value. What it is estimating

depends on the sample size n. This is what causes it to be very significant with

high probability for large values of n and values of θ where θ − θ0 is positive

but very small. As we remarked earlier this is an unappealing property.

If our suggestion is accepted then an alternate program comes to mind.

Rather than estimating a fuzzy membership function which depends only on
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θ0 and n one should select the fuzzy membership to be estimated which more

accurately reflects the facets of the problem at hand. The degree of mem-

bership of θ in the fuzzy set of good parameter points can depend on many

factors. In a given problem a thoughtful assessment should yield a more sen-

sible fuzzy membership function than the one estimated by the usual p-value.

Instead of finding an unbiased estimator of a fuzzy membership function one

could find its Bayes estimate for a given prior distribution. Note however that

the choice of a prior distribution use different kinds of prior information than

what is used to select a sensible fuzzy membership function. There is nothing

Bayesian in the selection of the fuzzy membership problem.

3.3 A family of fuzzy membership functions

Let Φ denote the distribution function of the standard normal distribution.

Then for λ > 0 we claim that the family of functions of the form

Φ
( λ

√
n√

1 + λ2

θ0 − θ

σ

)
(4)

gives a sensible class of possible fuzzy membership functions to replace the

testing problem of equation 1. Before justifying this statement we find the

best unbiased estimator for a member of this family.

Lemma 1. Let X̄ =
∑n

i=1 Xi/n and Φ be the distribution function of the

standard normal distribution. Then

EθΦ
(
λ
√

n
θ0 − X̄

σ

)
= Φ

( λ
√

n√
1 + λ2

θ0 − θ

σ

)
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Proof. Let

a =
θ − θ0

σ/
√

n

Then by the change of variable formula we have

EθΦ
(
λ

θ0 − X̄

σ/
√

n

)
=

∫ ∞

−∞
Φ

(
λ

θ0 − x̄

σ/
√

n

) 1√
2πσ2/n

exp−(θ − x̄)2

2σ2/n
dx̄

=

∫ ∞

−∞
Φ(λy)

1

2π
exp−(y − a)2

2
dy

= P (Z − λY ≤ 0)

where Z and Y are independent and Z has the standard normal distribution

and Y is normal(a, 1). The result follows easily.

We note in passing that if we let λ = 1/
√

n− 1 then the function of θ in

expression 4 becomes Pθ(X1 ≤ θ0) and its estimator given in the lemma is its

well known unbiased estimator. (Lehmann, 1986)

We can also use the lemma to find the expected value of the usual p-value

for this problem. Let

pv(x̄) = Pθ0(X̄ ≥ x̄)

= 1− Φ
( x̄− θ0

σ/
√

n

)
= Φ

(√
n

θ0 − x̄

σ

)
then for θ > θ0

Eθpv(X̄) = EθΦ
(√

n
θ0 − X̄

σ

)
= Φ

(√n√
2

θ0 − θ

σ

)
As n increase for θ 6= θ0 this converges to the indicator function of the null

hypothesis.
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When trying to select a specific member of this family of functions for a

particular problem the job becomes a bit easier if we let a =
√

nλ/
√

1 + λ2

and rewrite the equation in lemma 1 as

EθΦ
( a√

1− a2/n

θ0 − X̄

σ

)
= Φ

(
a
θ0 − θ

σ

)
(5)

The first step in selecting a fuzzy membership function is choosing the

value θ0. It will play a similar role to θ0 in equation 1. Note for any choice

of θ0 every member of this family has the value 0.5 at θ0. Hence θ0 will be a

“soft break” point between the good values of θ and the rest of the parameter

space. The choice of 0.5 to be the value of our fuzzy membership function at

θ0 is somewhat arbitrary since it is really a question of calibrating the values

of our function. We have chosen 0.5 because it agrees with the usual p-value

at that point. It also gives the maximum range of possible values on either

side of θ0.

Once θ0 has been selected it remains to choose a value for a. For a given

a with 0 < a <
√

n the righthand side of the previous equation is easy to plot

and an appropriate function could be selected by inspection. Alternatively

one can choose a θ1 > θ0 and 0 < β < 0.5 where β is the value of the fuzzy

membership function at θ1 and find the value of a which satisfies

Φ
(
a
θ0 − θ1

σ

)
= β (6)

If zβ satisfies Φ(zβ) = β then clearly

a =
−zβσ

θ1 − θ0

(7)

where a must belong to the interval (0,
√

n). If not there is no solution.
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An interesting special case of equation 4 occurs when we let λ = σ/(
√

nτ).

In this case it becomes

EθΦ
(θ0 − X̄n

τ

)
= Φ

( θ0 − θ√
σ2/n + τ 2

)
(8)

In a particular case the value of τ can be determined by selecting θ1 and

0 < β1 < 1 and using the equation

Φ
( θ0 − θ1√

σ2/n + τ 2

)
= β1 (9)

to solve for τ .

3.4 One sided alternative with unknown variance

Now we will consider the testing problem of equation 1 when the population

variance is unknown. We assume the fuzzy membership function we wish to

estimate is of the form

Φ
(
a
θ0 − θ

σ

)
(10)

where a > 0. The function depends on how far θ is from θ0 in standardized

units, i.e. corrected for the standard deviation. The choice of a controls how

important a given standardized distance is in the fuzzy membership function.

We do not know an unbiased estimator for the function in equation 10.

But we will find an approximate unbiased estimator that works very well. To

that end let S2 =
∑n

i=1(Xi − X̄)2/(n− 1). Then

Eθ,σΦ
(
λ

θ0 − X̄

S/
√

n

)
= Eθ,σΦ

(λ(θ0 − θ)

S/
√

n
− λ(X̄ − θ)

S/
√

n

)
= Eθ,σΦ

(√n

σ

λ(θ0 − θ)√
S2/σ2

− λ
(X̄ − θ)/(σ/

√
n)√

S2/σ2

)
= E Φ

( γ√
V
− λ

Z√
V

)
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where Z and V are independent random variables and Z has a standard normal

distribution and V is a chi-squared distribution with n− 1 degrees of freedom

divided by n− 1 and

γ = λ
θ0 − θ

σ/
√

n

Note that this expectation depends on the parameters θ and σ only through

γ. To compute it we first condition on V = v.

E Φ
( γ√

V
− λ

Z√
V

)
= E E Φ

( γ√
V
− λ

Z√
V
| V

)
= E E Φ

(
b− aZ | V = v

) (11)

where

a = λ/
√

v and b = γ/
√

v

Let Z1 and Z2 be independent standard normal random variables. Then

E Φ
(
b− aZ | V = v

)
= E Φ(b− aZ)

= P (aZ1 + Z2 ≤ b)

= Φ
( b√

a2 + 1

)
= Φ

( λ√
v + λ2

θ0 − θ

σ/
√

n

)
Substituting the previous equation into equation 11 we see that we have proved

the following lemma.

Lemma 2. Let X̄ =
∑n

i=1 Xi/n, S2 =
∑n

i=1(Xi − X̄)2/(n − 1) and Φ be the

distribution function of the standard normal distribution. Then

Eθ,σΦ
(
λ
√

n
θ0 − X̄

S

)
= E Φ

( λ
√

n√
V + λ2

θ0 − θ

σ

)
(12)

14



where V is a chi-squared random variable with n−1 degrees of freedom divided

by n− 1.

The next step is to use the results of the lemma to find an approximate

unbiased estimator of the fuzzy membership function given in equation 10. A

simple Taylor series expansion about E(V ) = 1 for the expression in the right

hand side of equation 12 gives the following.

E Φ
( λ

√
n√

V + λ2

θ0 − θ

σ

)
.
= Φ

( λ
√

n√
1 + λ2

θ0 − θ

σ

)
(13)

If as in the previous section we let a =
√

nλ/
√

1 + n2 then the previous equa-

tion and the lemma yield

Eθ,σΦ
( a√

1− a2/n

θ0 − X̄

S

)
.
= Φ

(
a
θ0 − θ

σ

)
(14)

Simulation studies show that this approximation works quite well. We recall

in passing that the best unbiased estimator of the equation 12 is well known

when a = 1. (See page 87 of Lehmann (1983).) In this case we compared our

approximately unbiased estimator with the best unbiased estimator in a small

simulation study with n = 5 and observed that the two behave quite similarly.

In a particular problem to find an appropriate fuzzy membership function of

the type in equation 10 we first select a value for θ0. Next we select 0 < β < 0.5,

θ1 > θ0 and σ1 > 0 and solve equation 6 to get the value of a given in equation

7. This reflects our assessment of the point (θ1, σ1) belonging to the set of

good parameter values.

If we are interested in unbiased estimators then we could consider fuzzy

membership functions of the type in equation 9. For a fixed τ the function

Φ((θ0 − θ)/
√

σ2/n + τ 2) is easy to plot. The plot for the case when τ = 5,
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θ0 = 0, θ ∈ (−5, 5) and σ/
√

n ∈ (0, 25) is given in figure 1. Over this range

of values for θ and σ/
√

n as we increase the value of τ our contour lines will

become nearly parallel and the plot almost flat. While if we let τ approach zero

the lines will become rays emanating from zero and the surface will become

much steeper.

One important way that this family of fuzzy membership functions is differ-

ent from the family in equation 10 is that their values are no longer a function

of standard units, that is a function of (θ0 − θ)/σ. For some this could be a

strong objection since the usual t-test depends on the parameter values only

through their standardized value. But from the fuzzy point of view there seems

to be no reason to impose this requirement.

3.5 The example again

To demonstrate our approach we return to the example in section 3.1. We must

select the fuzzy membership function representing the set of good parameter

values. In this case they are the parameter points (θ, σ) where the cholesterol

of the population is of little concern. We begin letting θ0 = 200 which is

a weak dividing line between the points of no concern and the rest of the

parameter space. Next we select θ1 = 215 and decide we want our fuzzy

membership function to have the value β = 0.05 at the point (215, σ1) for

some choice of σ1. The rationale behind choosing σ1 is different than that for

choosing θ1 = 215. This later choice is based on medical knowledge about the

effects of cholesterol and does not depend on the true but unknown mean for

this particular population. On the other hand our choice for σ1 should be a

reasonable guess for the standard deviation for the population at hand. For
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this example we will consider two possible choices for σ1, 30 and 50. We can

then use equation 10 and our choices for θ1 and σ1 to find the value of a to

use in estimator 14. Similarly we use equation 9 to find the value of τ 2 for the

estimator in equation 8.

The data collected by VA was a random sample of size 4921 with a sample

mean of 210.9 and a standard deviation of 43.4. (For more information on

the data see Rubins et al. (2003). For the two sets of two fuzzy membership

functions we calculated the approximated unbiased estimators for the first set

and the unbiased estimators for the second set. To help see the influence of

sample size on our estimators we did this twice. Once for the true sample size

of 4921 and a second time with sample size 200. The results are given in table

1.

We see from the table that both estimators are quite robust against sample

size. The unbiased estimator of equation 8 is also robust against the choice of

σ1 while the approximate unbiased estimator of equation 14 is much more sen-

sitive and should only be used when a good guess for the population standard

deviation is available.

The usual p-value based on the t-test for θ ≤ 200 against the alternative

θ > 200 for our data is highly significant because of the large sample size. It

is of little use here because what it is estimating is really of no interest. Why

not then just estimate θ? The problem with this is that one would wishes to

estimate the degree of membership of the unknown pair of parameter points

(θ, σ) the set of good parameter points where the population’s cholesterol is

of little concern. This is not given by a point estimate of the population

mean. Our approach requires one to choose a fuzzy membership function

17



n σ1 a Est τ Est

4921 30 3.29 0.204 9.11 0.116

4921 50 5.50 0.084 9.09 0.115

200 30 3.29 0.198 8.87 0.101

200 50 5.50 0.068 8.41 0.097

Table 1: Values of the two fuzzy set estimators for the VA data for θ0 = 200,

θ1 = 215, β1 = 0.05, two choices of σ1 and two choices of the sample size.

which models our levels of concern over the entire parameter space. Although

not simple as the usual p-value it can be more informative.

4 Binomial problems

4.1 A family of fuzzy membership functions

We begin by recalling some facts about one sided binomal testing problems.

Let X be binomial(n, θ) where n is known and θ ∈ [0, 1] is unknown and

consider the testing problem

H : θ ≥ θ0 against K : θ < θ0 (15)

Let P (X) denote the p-value coming from the UMP family of tests. If θ0

is true and n is large then the distribution of P (X) is approximately uniform

on the unit interval and Eθ0P (X) is approximately 0.5. P (X) is essentially a

smoother version of 1− φ(X, 0.5, θ0) and its expectation looks very much like

1− Eθφ(X, 0.5, θ0) for large n.
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For ease of exposition we assume that θ is the proportion of patients which

will respond to a new treatment. Let A denote the fuzzy set of useful treat-

ments. For any value of θ the clinician needs to assess its degree of membership

in this set. This value measures the overall desirability of the new treatment

based on the current and perhaps somewhat limited information. This assess-

ment depends on many factors such as its cost, ease of application, severity of

side effects and so forth.

The first step in selecting a fuzzy membership function is choosing a value

for θ0, the “soft break” point between the useful values of θ and the rest of

the parameter space. It will play a similar role to θ0 in equation 15. In the

case where we are considering a new treatment and there is a well accepted

standard treatment we could take θ0 to be the probability of a response under

the standard treatment. However this need not be the case in general. If the

new treatment could have less serious side effects, be easier to apply or be

significantly cheaper then we could select a value for θ0 which is less than the

probability of response under the standard treatment.

For a positive integer m < n let φm denote the UMP level 0.5 test of

equation 15 based on Ym a binomial(m, θ) random variable. Let λm(θ) =

1 − Eθφm(Ym). Then λ is a strictly increasing function on the unit interval

whose range is also the unit interval and it takes on the value 1/2 at θ = 1/2.

So each such function is a possible fuzzy membership function along with any

finite convex combination of such functions. This is a reasonably rich family of

functions which are easy to graph. In many problems it should not to difficult

to select a sensible membership function.

After a sensible fuzzy membership function has been selected then one
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needs to find an estimator for it. It is well known (Lehman(1983)) that a

function of θ has an unbiased estimator if and only if it is polynomial in θ of

degree less than or equal to n. Clearly the family described just above have

unbiased estimators. Finding the unbiased estimator of the selected fuzzy

membership function is easy if we remember that the unbiased estimator of(
m

k

)
θk(1− θ)(m−k)

is

δm,k(x) =

0 for x < k or x > n− (m− k),(
m
k

)(
n−m
x−k

)
/
(

n
x

)
for k ≤ x ≤ n− (m− k).

4.2 An example

There has been some very recent interest in using Botox to relieve pain. See for

example Singh et al. (2008) In a clinical trial 22 patients with chronic, refrac-

tory shoulder pain were injected with a mixture of Botox and lidocaine. After

a month the patients were checked to see how many of them had experienced

a meaningful reduction in their pain.

In the such clinical trials it is known that as many as 25% of the patients

can experience a placebo effect. For this reason and the fact that little is

known about the efficacy of Botox as a pain reliever we decide to use a soft

break point of θ0 = 0.35. To choose an appropriate fuzzy membership function

we considered convex mixtures of the UMP level 0.5 tests based on the sample

sizes of 2, 7, 12, 17 and 21. In figure 2 the lines are the five fuzzy membership

functions based on these tests. We see that all the fuzzy membership functions

are approximately linear in the neighborhood of θ0 = 0.35. Hence, in this
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example, selecting a fuzzy membership function can come down to specifying

its slope at θ0 = 0.35 and to a much lesser extent its behavior further away

from this point. The question that needs to be addressed is how important are

small differences in the neighborhood of θ0 = 0.35. The more important such

differences are the steeper the fuzzy membership function should be around

this point. For this problem the derivative of 1 − Eθφm(Ym) evaluated at

θ = 0.35 increases from 1.20 to 3.82 as m goes from 2 to 21. The curve

represented by the small circles is the fuzzy membership function which is the

convex mixture of these two with weights 0.7 on the test based on m = 2 and

0.3 on the test based on m = 21. Its slope at 0.35 is.7 × 1.20 + .3 × 3.82 =

1.99. The plot of the x’s gives the values of its best unbiased estimator for a

sample of size 22. In the actual trial 10 patients noted a reduction in their

pain. The estimate of this fuzzy membership function for this outcome is 0.79

indicating strong evidence that the treatment belongs to the fuzzy set of useful

treatments.

In figure 3 the two lines plot the expected value of the usual p-value and

the fuzzy membership function described in the proceeding paragraph. For

a sample of size n = 22 the circles plot the values of p-value and the x’s

plot the values of the unbiased estimator of our fuzzy membership function.

The two curves are very similar. Remember however our fuzzy membership

function was selected to represent the realities of a specific problem and does

not depend on the sample size. If the sample size was increased however

the curve of expected value of the p-value would change, getting steeper and

steeper in the neighborhood of θ0 = 0.35. The p-value is designed to make as

sharp of distinction as possible between values on the either side of θ0. It is
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not clear to us why this is a good idea.

5 Concluding remarks

Our theory can be extended to other testing situations. For example the

common two sample binomial and normal testing problems are easily handled.

Here we have focused on finding unbiased or approximately unbiased es-

timators of fuzzy membership functions as an alternative to computing p-

values. For a Bayesian once the fuzzy membership function to be estimated

has been selected and a prior chosen finding its Bayes estimator, in principle,

is straightforward. The Bayesian approach always seems more natural in es-

timation than in testing. Our approach should work well and eliminate some

of the problems associated with testing problems. Point null hypotheses have

always been somewhat problematical for Bayesians. For example, Rousseau

(2006) discusses a Bayesian approach where a point null is replaced by a small

approximating interval hypothesis.

Some authors have considered testing hypotheses where the null and al-

ternative are both described by fuzzy membership functions. These functions

usually are piecewise linear. In such a setup they develop an analog of the

Neyman-Pearson theory which is quite different from the estimation approach

we have presented.

We have argued here that the usual Neyman-Pearson theory of hypothe-

ses testing with the sharp division between the null and the alternative and

accept-reject rules is not very useful in practice for many scientific questions.

Moreover the usual p-value or level of significance does not really fix the prob-
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lem. Our approach requires a careful assessment of the degree of membership

for parameter points belonging to the special set of designated values. In se-

lecting the appropriate fuzzy membership function more attention must be

paid than when one is selecting the dividing point between the null and alter-

native hypotheses in standard methods. We belive that the payoff for the extra

work is more useful inferences. We emphasize that there is nothing Bayesian

in this. We are not assessing which are the likely or unlikely parameter values.

In their discussion of the notion of a level of significance Kempthorne and

Folks (1971) emphasize that it is the ordering of the data values in strength of

evidence against the null which is crucial. Once this is decided the rest follows

easily. Note however in many problems the sensible order is usually obvious

and hence there is only one sensible level of significance for a given data point

once θ0, the dividing point between the hypotheses, is selected. This suggests

that the usual theory of p-values is to crude and does not allow for a more

nuanced measure of evidence. Some might argue that this simplicity is in

fact a strength of p-values. We disagree and believe that our approach allows

for a more realistic measure of strength of evidence. We believe that if one

has seriously contemplated the implications of various parameter values being

true when selecting the fuzzy membership function to be estimated then the

interpretation of the actual estimated value is easy and more informative.
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Figure 1: Contour plot of the fuzzy membership defined by τ = 5 in equation

9
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Figure 2: For the binomial example the lines are 5 possible fuzzy membership

functions. The circles are a convex combination of 2 of them and the x’s the

estimates of this function for a sample of size n = 22.
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Figure 3: Plots of the expected value of the p-value and the fuzzy membership

function in the binomial example. The circles are the values of the p-value

and the x’s are the estimates of the fuzzy membership function for a sample

of size n = 22.
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